Trends in Southern Hemisphere Albedo using a 27-yr Composite TOMS/SBUV(/2)/OMI Dataset of UV Lambertian Equivalent Reflectivity

Steven Lloyd and William H. Swartz
The Johns Hopkins University Applied Physics Laboratory (JHU/APL)

Matthew DeLand and Liang-Kang Huang
Science Systems and Applications, Inc. (SSAI)
Composite Dataset for 60°S to 60°N

Linear Increase in Lambertian Equivalent Reflectivity (LER) at 331 nm is 0.0061 per decade

Mean Albedo = 0.262
Nimbus 7 Comparison

Monthly Mean Tropical Albedo (25°S to 25°N)

Mean Difference = 0.0003
Max Difference = ± 0.015

Compare with: Herman and Celarier, JGR, 102 (D23), 28,003, 1997.
The composite albedo dataset is the average of the available near-UV (331 nm) Lambertian Equivalent Reflectivity (LER) data from eight similar satellites from November 1978 to the present, binned into 5° latitude (zonal) bands by month.
Comparison with ERBE

Nov. 1984 to Sept. 1999

60°S-25°S
Mean Ratio = 0.921

25°S-25°N
Mean Ratio = 0.918

25°N-60°N
Mean Ratio = 0.926

On average, ERBE is 7-8% higher than the TOMS/SBUV reflectivities.

ERBE S10N WFOV
Edition 3

5° zonal monthly means of daily mean total sky short-wave (0.2-5.0 μm) albedo
Comparison with ERBE

Monthly Mean Tropical Albedo (25°S to 25°N)

- **ERBE**
- **TOMS/SBUV**

Mean increase in TOMS/SBUV LER = 0.023

Mt. Pinatubo Eruption
15 June 1991, 15°N Latitude
Comparison with ERBE

Monthly Mean Tropical Albedo (25°S to 25°N)

Trend = -0.007 per decade

Mt. Pinatubo Eruption, June

Trend = +0.011 per decade
Comparisons with CERES

March 2000 to Dec. 2005 for Albedo=0.0-0.5:

- 90°S-25°S: Mean Ratio = 0.958
- 25°S-25°N: Mean Ratio = 0.940
- 25°N-90°N: Mean Ratio = 0.927

Terra FM1, Terra FM2, Aqua FM3, Aqua FM4, NOAA-14 SBUV/2, EarthProbe TOMS, NOAA-16 SBUV/2, NOAA-17 SBUV/2, Aura OMI, CERES ES4 Edn. 1-CV

5° zonal monthly means of daily mean total sky short-wave (0.2-5.0 μm) albedo.
Comparisons with CERES

March 2000 to Dec. 2005
for Albedo=0.0-1.0:

90°S-25°S
Mean Ratio = 1.047

25°S-25°N
Mean Ratio = 0.940

25°N-90°N
Mean Ratio = 1.048

NOAA-14 SBUV/2
EarthProbe TOMS
NOAA-16 SBUV/2
NOAA-17 SBUV/2
Aura OMI

CERES ES4 Edn. 1-CV
5° zonal monthly means of
daily mean total sky short-
wave (0.2-5.0 μm) albedo
Comparisons with ERBE and CERES

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Subset</th>
<th>Period</th>
<th>Location</th>
<th>Latitude Range</th>
<th>Albedo Range</th>
<th>Mean Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERBE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov. 1984 to Sept. 1999</td>
<td>Southern Hemisphere</td>
<td>60°S-25°S</td>
<td>0.0-0.6</td>
<td>0.921</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tropics</td>
<td>25°S-25°N</td>
<td>0.0-0.6</td>
<td>0.918</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Northern Hemisphere</td>
<td>25°N-60°N</td>
<td>0.0-0.6</td>
<td>0.926</td>
</tr>
<tr>
<td>Terra FM1</td>
<td></td>
<td>March 2000 to Dec. 2005</td>
<td>Southern Hemisphere</td>
<td>90°S-25°S</td>
<td>0.0-1.0</td>
<td>0.979</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tropics</td>
<td>25°S-25°N</td>
<td>0.0-0.5</td>
<td>0.952</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Northern Hemisphere</td>
<td>25°N-90°N</td>
<td>0.0-1.0</td>
<td>1.063</td>
</tr>
<tr>
<td>Terra FM2</td>
<td></td>
<td>March 2000 to Dec. 2005</td>
<td>Southern Hemisphere</td>
<td>90°S-25°S</td>
<td>0.0-1.0</td>
<td>0.979</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tropics</td>
<td>25°S-25°N</td>
<td>0.0-0.5</td>
<td>0.952</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Northern Hemisphere</td>
<td>25°N-90°N</td>
<td>0.0-1.0</td>
<td>1.063</td>
</tr>
<tr>
<td>CERES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aqua FM3</td>
<td></td>
<td>July 2002 to Dec. 2005</td>
<td>Southern Hemisphere</td>
<td>90°S-25°S</td>
<td>0.0-1.0</td>
<td>1.107</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tropics</td>
<td>25°S-25°N</td>
<td>0.0-0.5</td>
<td>0.928</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Northern Hemisphere</td>
<td>25°N-90°N</td>
<td>0.0-1.0</td>
<td>1.033</td>
</tr>
<tr>
<td>Aqua FM4</td>
<td></td>
<td>July 2002 to March 2005</td>
<td>Southern Hemisphere</td>
<td>90°S-25°S</td>
<td>0.0-1.0</td>
<td>1.124</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tropics</td>
<td>25°S-25°N</td>
<td>0.0-0.5</td>
<td>0.929</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Northern Hemisphere</td>
<td>25°N-90°N</td>
<td>0.0-1.0</td>
<td>1.032</td>
</tr>
</tbody>
</table>
Comparison with Earth Shine Data

Monthly data have been deseasonalized.

Seasonality of LER

Seasonality of LER

Monthly Mean Albedo (area weighted over 25°S to 25°N)

ERBE measures from 0.2-5.0 μm
TOMS/SBUV measures at 331 nm

ERBE (1990-94, Mean=0.231)
TOMS/SBUV (1990-94, Mean=0.222)
Seasonality of LER

Monthly Mean Albedo
(area weighted over 25°S to 25°N)

- ERBE (pre-Pinatubo, Mean=0.231)
- ERBE (post-Pinatubo, Mean=0.231)
- TOMS/SBUV (pre-Pinatubo, Mean=0.204)
- TOMS/SBUV (post-Pinatubo, Mean=0.227)

Mean increase in TOMS/SBUV Lambertian Effective Reflectivity (LER) is 0.023

ERBE measures over 0.2-5.0 μm
TOMS/SBUV measures at 331 nm
Increase in Lambertian Equivalent Reflectivity (LER) at 331 nm is 0.020 per decade

55°S to 50°S

January, February and March

June

Mean Albedo = 0.384
What can cause a large increase in albedo at mid- to high Southern Latitudes?

- Land use changes? X
- Snow cover changes? X
- Sea ice changes? X
- Ocean changes? X
- Cloud cover changes? √
Deseasonalized “Trends” at 20°S to 20°N

Decadal Trends in Albedo

Decadal Trends in LER in the Southern Hemisphere
$R^2 = 0.98$ for the inverse correlation between the reflectivity trend and the surface temperature anomaly trend in the Southern Hemisphere (60°S-10$^\circ$S).
1978-2005
Increasing Albedo, Aerosol Index and Temperature Anomalies
Conclusions

• A 27-year Composite dataset of near-global UV Lambertian Equivalent Reflectivities (LER) at 331 nm has been compiled from eight satellite instruments (TOMS, SBUV(/2) and OMI) using the same TOMS Version 8 retrieval algorithm

• Accuracy and precision of the dataset is estimated to be ~0.01 (1%)

• ERBE is on average 7-8% higher than the TOMS/SBUV(/2) Composite

• For albedo<0.5, CERES is on average 4-7% higher than the Composite

• Seasonality of the albedo agrees reasonably well with model estimates (esp. GISS Model E20/H)

• Seasonality of the albedo has changed over the past three decades!

• TOMS/SBUV(/2)/OMI Composite agrees very well with Earth shine data

• Decadal trends in albedo are: near zero in the Tropics slightly negative at high NH latitudes large and positive at high SH latitudes

• Decadal trends are significant and should be included in climate models!