FIRE vs FIRE

Tom Crowley and Gabi Hegerl, Univ. of Edinburgh
Global Temperatures (1856-2006)

Global Temperature Anomalies (°C)

Year

Data from Climate Research Unit
Univ. of East Anglia U.K.
Conclusions of IPCC Chapter 9 AR4 (Hegerl, Zwiers et al) about solar forcing in the 20th century

Greenhouse gas forcing has very likely caused most of the observed global warming over the last 50 yrs

Based on distinguishing time-space pattern of warming between solar and ghg forcing.

However, the response to solar forcing could be underestimated by climate models.

Early 20th century warming may have a solar contribution, results vary between studies.

Other contributors: early greenhouse gas signal or internal variability with warming pattern centered around North Atlantic
Comparison of Tree Ring/Ice Core Reconstruction with Alpine Glacial Advances

Temperature Variations (°C)

Year

N. Hemisphere Alpine Glaciers

Observ.Inst 30-90N sm10
Paleo.CH5.est.
2000 Year Climate Reconstruction

![Graph showing temperature reconstruction over 2000 years.](image)

- Y2k.2.temp(Z)
- Inst.30-90N

Year

Temperature Reconstruction
Comparison of Two Cosmogenic Indices

C14 Bond sol.

Be10/Lean

Year AD Bond
Is Solar Significant?

Y2k and solar variations are shown in the graph. The smoothed temperature variations (°C) are plotted against the year. The correlation coefficient, $r = 0.2$, indicates a weak positive correlation between the two variables.
Extruding a core

Geoffrey Hargreaves, Curator
USGS/National Ice Core Laboratory
Global Volcanism (1500-2000)

Global Radiative Forcing (W/m²)

Year AD
30-90N Volcanism vs Temperature Reconstruction

Year

30-90N

Jones
Model-Data Comparisons for 30-90N

- \(r^2 \) (1480-1840):
 - all forcing - 60.4
 - volcanism - 38.4
 - solar - 5.4

30-90N Anomalies (°C)

Year
Detection of forced change in records of last millennium

<table>
<thead>
<tr>
<th>record</th>
<th>Briffa</th>
<th>CH-blend</th>
<th>Mann</th>
<th>Esper</th>
<th>Moberg</th>
</tr>
</thead>
<tbody>
<tr>
<td>volc</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>solar</td>
<td>No</td>
<td>No (\text{(Yes 1100on)})</td>
<td>No (\text{(Yes periods)})</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Ghg+aer</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Not robust</td>
</tr>
<tr>
<td>Res std</td>
<td>0.09 57%</td>
<td>0.09 70%</td>
<td>0.07 49%</td>
<td>0.15 70%</td>
<td>0.11 61%</td>
</tr>
</tbody>
</table>

Hegerl et al., *J Climate* 2007
“Hope springs eternal in the human breast” Alexander Pope
10 year bandpass at 512 years peak with 10 years low resolution
(intra-interpolate Y2K data into 10 year resolution)
Comparison of power spectra from last three glaciations

NGRIP MIS 3 HSG MIS 6 HSG MIS 8 HSG
A Fly in the Ointment…

Covariance of Volcanism and C14?

Year AD

C14.Bond.sol.
Volc sm20
Keeping Things in Perspective…

Future Greenhouse Projections vs the Past

- EBM.all
- Observations (30-90N)
- Future (A2 Scenario)
- Future (B2 Scenario)

Temperature Variations (°C)

Year AD/BC
Ice core Holocene 14C
Calendar Years; 10 year sampling
AD 1970 - BC 9670
Solar Forcing vs N. Atlantic Sea Ice

(Data Courtesy G. Bond)
Global Temperature vs
Two Best Constrained Forcing Terms

Global Radiative Forcing Perturbations (W/m²)

Global Temperature Anomaly (°C)

Year

1880 1900 1920 1940 1960 1980 2000
Total Solar vs Observations

\[y = -0.24576 + 2.1392x \quad R = 0.60804 \]

Temperature Anomaly (°C) vs Year

- Net Solar
- Jones sm5