LASP/TRF diagnostic test and results for the ACRIM3 experiment

Implications for the multi-decadal TSI database

ACRIM3 TEAM

Dr. Richard C. Willson
Principal Investigator
ACRIM

Sandy Kwan
ACRIMSAT Project Manager
JPL

Roger Helizon
Instrumentation Consultant

Dr. Nicola Scafetta
Co-Investigator
Duke University

SORCE Science Team Mtg.
Sept 13, 2011

Richard C. Willson
ACRIM3 Guidance from the NASA 2009 Senior Review

SORCE Science Team Mtg.

Sept 13, 2011

Richard C. Willson

Senior Review 2009 directed task areas:

- ACRIM Gap (TSI trends)
- Annual signal (short term variability)
- Scale difference (Calibration)

TOTAL SOLAR IRRADIANCE MONITORING RESULTS: 1978 to Present

Daily mean results reported on experiments' native scales
Investigation of ACRIM3 - TIM TSI Scale Difference

Approach: Characterize ACRIM3_EM (flight backup) instrument at the LASP/TRF

- The LASP/TRF team led by Greg Kopp conducted the TRF testing including:
 - Comparison of ACRIM self-calibration with the TRF cryo-radiometric scale
 - Diagnostic testing to measure ACRIM scattering and diffraction effects

- The ACRIM3 Team accomplished the following:
 - Prepared the ACRIM and operated the Instrument at the TRF
 - Analyzed ACRIM TRF data and provided results to LASP and NRL
 - Derived scale/scattering/diffraction corrections for ACRIM3 observations
 - Applied corrections to ACRIM3 database and ACRIM Composite TSI time series

- NRL led by Jeff Morrill participated and:
 - Provided independent oversight as TRF testing observers
 - Convened a review of the process and findings (Dec. 2010)
 - Conducted independent scattering, diffraction, cavity reflectance modeling/testing
 - Is preparing a final report on NRL activities

1 Laboratory for Astronomy and Space Physics (LASP) Total Solar Irradiance Radiometer Facility (TRF)
2 Naval Research Laboratory (NRL)
ACRIM3 Sensor

- Most key components fabricated during ACRIM3 flight instrument build
- ACRIM3_EM representative of ACRIM3 flight instrument properties and performance
Laboratory for Atmospheric And Space Physics (LASP) Total Solar Irradiance Radiometer Facility (TRF)

532nm transfer laser

ACRIM3_EM Instrument

Moveable Transfer Stage

Test Chamber

Collimator

Steering Mirror

TRF Cryogenic Radiometer

SORCE Science Team Mtg.
Sept 13, 2011

Richard C. Willson
ACRIM3 Sensor Module and Irradiance Testing Modes

15mm Circular Beam
Over-fill View Limiting aperture
Calibrates total scattering & diffraction

5mm Circular Beam
Under-fill Primary aperture
Basic Power measurement in SI Units

10mm Circular Beam
Over-fill primary aperture, Under-fill View Limiting aperture and Baffle
Calibrates scattering in lower view limiting assembly

Front View of Sensor Module
October 2010 results

- Basic optical power scale: ACRIM3 sensors and TRF agree within +/- ~ 500 ppm
- Significant scattered light signal from ACRIM3 view-limiter (~ 5000 - 6000 ppm)
- ACRIM3_EM precision apertures not conform to ACRIM3 flight spec.'s
 Primary aperture surface below quality spec.'s for flight apertures
 A more diffuse reflective surface assumed to increase scattered light in the sensor
- ACRIM3 TRF re-test required to evaluate scattering effect of primary aperture surface
 Sensor B aperture replaced with ACRIM3 flight spare
 Sensor A left unchanged as a control for second test

January 2011 Re-test

- Similar set of testing procedures employed with modified sensor B
ACRIM3 LASP/TRF Characterization Summary

Basic optical power scale observations ¹

- Sensor A: ~ 200 ppm (+/- ~ 600 ppm)
- Sensor B: ~ 450 ppm (+/- < 100 ppm)

Scattered light and diffraction results ¹,²

- 2010 test:
 - Sensor A: ~ 7000 ppm
 - Sensor B: ~ 6000 ppm
- 2011 test:
 - Sensor A: ~ 6500 ppm
 - Sensor B: ~ 5000 ppm
- Diffraction component ~ 1000 ppm ³

¹ Ratio to the TRF cryo-radiometric scale
² Uncertainty of scattering & diffraction results ~ 500 ppm
³ Based on LASP interpretation of annular beam test results

SORCE Science Team Mtg.
Sept 13, 2011

Richard C. Willson
ACRIM3 LASP/TRF Characterization

Conclusions

- Basic optical power scale observations: ACRIM3 agrees within 500 ppm with TRF & NIST
- Scattering and diffraction effects: 5000 ppm (+/- ~ 500 ppm)

Comments and Observations

- Correction of ACRIM3 results for scattering and diffraction is required
- ACRIM3 basic scale agrees with TRF and NIST scales within the uncertainty of TRF testing
- ACRIM and LASP analyses of TRF data agreed within their bounds of uncertainty
- The LASP/TRF is a valuable diagnostic tool for TSI radiometry
- Substitution of flight quality aperture in Sensor B reduced scattering by ~ 1000 ppm
- Additional testing could reduce TRF test uncertainties
• The ACRIM3 flight data algorithm was updated per TRF test findings

 A temperature dependent reference voltage correction was found necessary and implemented with the following effects:

 An ‘annual’ component in the ACRIM3 results was reduced by ~ 300 ppm
 The average noise level increased slightly (~ 50 ppm)
 The ACRIM3 self-calibration scale increased by ~ 1000 ppm

• A TRF-derived Scattering, Diffraction and Cryogenic scale (SDC) correction was applied

 ACRIM3 data were reprocessed to level 1 (prior to 1 A.U. distance correction)
 The SDC correction was applied at level 1 - reducing results by 5025 ppm
 The SDC-corrected results were processed to level 2 (1 A.U. distance correction)
 Final results were corrected for ACRIM3 self-calibration of degradation
Graphical Summary of ACRIM3_EM TRF Test Results
TOTAL SOLAR IRRADIANCE MONITORING DURING ACRIM3 MISSION

 Reported on experiment's native scales

RC Willson - earth_obs_fig2 09/11/2011
Satellite Total Solar Irradiance Monitoring Results Since 1978

Daily mean results reported on "native" scales of experiments (W/m² @ 1 AU)

RC Willson, earth_obs_fig5 09/06/2011
ACRIM Composite TSI Time Series

Minima trend between during solar cycles 21 - 23: + 0.037 %/decade

TSI trend between minima during solar cycles 21 - 24, approaching next minima: + 0.004 %/decade

ACRIM Composite:
- Uses Nimbus7/ERB, ACRIM1, 2 & 3 results
- Uses Nimbus7/ERB comparisons to bridge the ‘ACRIM Gap’
- Uses TSI results published by satellite experiment teams
- Results reconciled to ACRIM3 scale

Fractional components of ACRIM Composite:
- ACRIM: 89.7 %
- Nimbus7/ERB: 10.3 %

TRF-derived correction reduces calibration scale, does not affect TSI trending

Components of ACRIM Composite:
- ERB
- ACRIM1
- ERB
- ACRIM2
- ACRIM3

Willson & Mordvinov, GRL, 2003

RC Willson, earth_obs_fig26 09/09/2011
TSI Monitoring Continuation Scenario

ACRIM Composite TSI during solar cycles 21 - 24

TSI trend during solar cycles 21 - 23: +0.037 %/decade
TSI trend during solar cycles 21 - 24: +0.003 %/decade

ESA Missions
NASA Missions

SOHO/VIRGO
ACRIMSAT/ACRIM3
SORCE/TIM
PICARD, SOVAP, & PREMOS
JPSS1/TSIS.

Willson & Mordvinov, GRL, 2003
RC Willson, earth_obs_fig39 06/16/2011
Resolution of ‘ACRIM Gap’ Issue

Comparison of ACRIM, Nimbus7/ERB and ERBS/ERBE Results

Solar Cycle Minimum

ACRIM1

Solar Cycle 22

ACRIM1

ACRIM Gap

No Data

Overlap with ACRIM2

Slope: -0.004

Slope: +0.021

Slope: +0.008

Slope: -0.003

Slope: -0.005

Slope: +0.021

Slope: -0.012

Slope: -0.000

% Var. about Period Means

% Var. about Series Mean

% Var. about Series Mean

RC Willson, earth_obs_fig15, 05/03/2011
ACRIM Composite TSI Time Series (Daily Means) *

TSI trend between minima during solar cycles 21 - 23: + 0.037 %/decade
TSI trend between minima during solar cycles 21 - 24, approaching next minima: + 0.003 %/decade

ACRIM Composite:
Uses Nimbus7/ERB, ACRIM1, 2 & 3 results
Uses Nimbus7/ERB comparisons to bridge the ‘ACRIM Gap’
Uses TSI results published by satellite experiment teams
Results reconciled to ACRIM3 scale

PMOD Composite TSI Time Series (Daily Means) *

TSI trend between minima during solar cycles 21 - 23: -0.007 %/decade
TSI trend between minima during solar cycles 21 - 24, approaching next minima: -0.011 %/decade

PMOD Composite:
Uses Nimbus7/ERB, ACRIM1, ACRIM2 & VIRGO results
Uses ERBS/ERBE comparisons to bridge the ‘ACRIM Gap’
Adjusts published TSI results to conform to TSI proxy models
Results reconciled to VIRGO scale

* Willson & Mordvinov, GRL, 2003
* Frohlich & Lean, GRL, 1998

RC Willson, earth_obs_fig28 06/11/2011
ACRIM3 TSI Proxy Results for Exoplanet Exploration

J. Pasachoff

ACRIM3 Total Solar Irradiance during Venus Transit

% var

Hour (UT 6/08/04)

RC Willson, acrim3_venus_transit_1p_30m 06/30/2004
Experimental

• Continue data processing, analysis and dissemination of ACRIMSAT/ACRIM3 results
• Re-test ACRIM3_EM to reduce uncertainties in scattering, diffraction and basic scale results
• Investigate apparent absence of an annual scattering & diffraction signal (~ 200 ppm)
• Investigate the signal noise level increase (~ 50 ppm) with updated algorithm
Science Investigations

- TSI trending and ‘ACRIM Gap’ implications of new solar magnetic activity data
- Possible solar/Planetary barycentric motion effects on Solar Activity, TSI and climate (w/Scafetta)
- TSI signature of the 2012 transit of Venus (w/Pasachoff)
- Co-convene AGU special session GC43: ‘Climate Change and the Sun 2. Improvements to the Total Solar Irradiance Record’ with Greg Kopp (LASP) at the 2011 Fall Meeting
- Publish ACRIM/TRF findings and their TSI monitoring significance