Class 17 - Giant Planets 1

Reading - New Solar System - Chapter 15


Familiarize yourself with JSUN....

Planet Orbital Distance (in AU)

Mass (Relative to Earth, in ME)

Radius (Relative to Earth, in RE) Density (Relative to Water, in g/cm3) Rotation or Spin Period (hours) Tilt(tilt) Moons Composition
Jupiter 5.20 317 11.2 1.33 9.8 3.1 63 Mostly Hydrogen & Helium
Saturn 9.53 90 9.4 0.70 10.6 26.7 33 Mostly Hydrogen & Helium
Uranus 19.2 14 4.11 1.32 -17.3 97.9 27 H, He, Hydrogen compounds & rocks
Neptune 30.1 17 3.92 1.64 16.1 28.8 13 H, He, Hydrogen compounds & rocks

HOW do we measure these properties?

Interiors of the Giant Planets


Atmospheric Layers



Here's the table of planetary atmospheres - note the scaleheights, the values of g, temperature, column mass, column density, "surface" density.....

DISTANCE (AU) 0.387 0.723 1 1.524 5.203 9.538 19.18 30.06
PERIOD (yrs) 0.24 0.61 1.00 1.88 11.87 29.46 84.00 164.81
RADIUS (km) 2439 6052 6378 3398 71400 60330 25559 24764
MASS (10^24 kg) 0.33 4.87 5.98 0.642 1900 569 86.8 102
GRAVITY (m/s2) 3.70 8.87 9.81 3.71 24.86 10.43 8.86 11.09
ESCAPE SPEED (km/s) 4.25 10.35 11.18 5.02 59.54 35.45 21.27 23.43
SPIN (hrs) 1408 5832 24 24.62 9.8 10.6 17.3 16.1
COMPOSITION He,O, Na CO2 N2, O2, CO2 H2, He H2, He H2, He H2, He
MOLECULAR MASS (amu) 16 44 29 44 2.22 2.07 2.64 2.61
ALBEDO 0.12 0.59 0.39 0.15 0.44 0.46 0.56 0.51
TEMPERATURE (eq) 444 268 252 222 108 79 53 43
TEMPERATURE (actual) 100-700 740 288 223 125 95 60 50
SURFACE PRESSURE (bar) 9.47E-15 92 1 0.006 1 1 1 1
SCALEHEIGHT (km) 62 16 8 11 19 36 21 14
RADIUS/H 39 387 763 301 3819 1660 1207 1737
COLUMN MASS (kg/m2) 2.6E-10 1.0E+06 1.0E+04 1.6E+02 4.0E+03 9.6E+03 1.1E+04 9.0E+03
TOTAL MASS (kg) 1.9E+04 4.8E+20 5.2E+18 2.3E+16 2.6E+20 4.4E+20 9.3E+19 6.9E+19
COLUMN No. DENSITY (/m2) 1.0E+16 1.5E+31 2.2E+29 2.3E+27 1.1E+30 2.9E+30 2.7E+30 2.2E+30
SURFACE No. DENSITY (/m3) 1.55E+11 9.01E+26 2.52E+25 1.95E+23 5.80E+25 7.63E+25 1.21E+26 1.45E+26
SURFACE DENSITY (kg/m3) 4.11E-15 6.58E+01 1.21E+00 1.42E-02 2.14E-01 2.62E-01 5.29E-01 6.28E-01

Atmospheric Composition


HOW do we know these are the compositions of Jupiter and Saturn?

(1) spectroscopy (2) probe (only into Jupiter so far)




WHY colors?

Intro Astro version....

Version with longer words....


Why are Uranus and Neptune blue?


HEAT FLUXES - and Equilibrium Temperatures

The giant planets receive, absorb and reflect sunlight - that's how we see them (left picture). But they also emit heat - infrared light (right)


Integratingn over the whole disk, the spectrum of the whole disk has a "double hump" - visible reflected sunlight at short wavelengths, and thermal IR at longer wavelengths.

Knowing the total output of sunlight and that light decreases as 1/distance2, we can calculate the amount of sunlight that should be hitting a square meter of each planet. The ALBEDO (A) of a planet is the reflectivity of a planet. Therefore, the total amount of sunlight absorbed the by the planet per square meter is (1-A)x Solar Flux@Earth / distance2 (where distance from the Sun is in AU). In equilibrium, we expect


The energy emitted per square meter is described by the Stefan-Boltzmann law for thermal emission: Power/Area = sigma x T4 where T = Temperature of the radiating surface.

Allowing for the fact that objects receive an area 2piR2 of sunlight but emit from all 4piR2, and "normalizing" to the Earth (at 1 AU), we get

Tequilibrium = 288K [(1-A)/a2]1/4


What happens when this equilibrium temperature is compared with the TRUE temperature? How do we measure the TRUE temperature?

This figure (from Hubbard's chapter in The New Solar System) shows that the giant planets tend to emit more energy than they receive - all except Uranus where the internal heat source (red arrow) is negligible. Hartmann quotes these ratios:

  Jupiter Saturn Uranus Neptune
Heat Emitted / Sunlight Absorbed 2.5 2.3 ~1.1 2.7

This table tells us that all of the giant planets except Uranus emits about 21/2 times the amount of solar energy absorbed. What's the story with Uranus? Why does it emit so much less energy? This is a MAJOR issue of planetary science.

So, putting the IR thermal emission of these planets in context, how bright do these giant planets glow? Is this really a lot of heat, like a star? If you compare JSN with the Earth, they are BRIGHT - but they are pretty dim compared with the Sun.

From Planets, Moons and Rings - ASTR 3750


The main source of heat comes from formation - gravitational collapse and accretion of material

Gravitational Potential Energy -> Kinetic Energy (in-fall) -> Heat

This happens very quickly - during formation.

Then, slowly material begins to settle downwards - DIFFERENTIATION. This process is important for the Terrestrial Planets (more about that next week) but is also important for the giant planets.

First consider Jupiter and Saturn - The energy release by the formation of the small rock/iron cores is probably not very important for either Jupiter or Saturn (the cores are so small). So, most of the heat coming from Jupiter is thought to be primarily primordial - the heat generated in formation of the planet. For Saturn we have a different story - 2 pieces of evidence (i) a depletion of Helium in Saturn's atmosphere and (ii) lower internal temperatures on Saturn (derived via internal models as per Class 11) - suggest that there is HELIUM RAIN. That is, the PHASE DIAGRAM for H,He mixtures suggest that at high pressures liquid helium does not mix with liquid hydrogen - just like oil and water. The heavier liquid - helium - falls down through the hydrogen - the helium "rains out". The slightly warmer temperatures inside Jupiter probably prevent the helium from raining out much on Jupiter.

Second, what about Uranus and Neptune? These outer 2 giant planets are smaller and denser - consistent with much more denser materials than hydrogen and helium. We have discussed before that the prime candidates are the "hydrogen compounds" (often called "ices" even though they are not solid as ices inside the giant planets) which are made by combining the next most abundant elements - oxygen, carbon and nitrogen - with the abundant hydrogen. These are WAM - Water, Ammonia and Methane. These ices form the liquid layer outside the rock/metal core, below the outermost layer of hydrogen & helium. If Uranus and Neptune have similar interiors, why doesn't Uranus have a similar heat output? Was the heat dissipated (e.g. stirred up in a giant impact) or is there a stable layer of "opaque" material (a thermal blanket) preventing the heat from escaping - while Neptune was stirred up by an impact?.......???????


First, the Astro 101 story - as the solar nebula cooled, refractory materials condensed closer to the Sun while the more abundant, volatile "ices" condensed outside the "frost line" (along with the less abundant rock -> dirty snowballs).

The growing planet "embryos" were able to sweep up the surrounding gas to become giant planets. All this happened VERY QUICKLY - within 1-10 million years of the collapse of the original molecular cloud.

So - what about Uranus and Neptune? Farther out in the solar system the density of the solar nebula was less and the collision times between accreting materials is much slower. It is really difficult to make Uranus and Neptune where they are currently located. It would be MUCH easier if we could make them closer in and then allow them to migrate outwards. How can planets migrate? By interacting (gravitationally - not necessarily colliding) with other objects - specifically, Uranus and Neptune could migrate outwards by sending material inwards - where the objects get kicked out by Jupiter. This is the current theory for the formation of the Kuiper Belt - but wait a couple of months and there will probably be another theory around......