ASTR/ATOC 3720: Homework Assignment #2
Due: Tues. Feb 18 in class

Show your work, as partial credit will be given for your thought processes, even if you don’t get to the correct answer at the end! Work the problems on a separate sheet of paper please. Be neat and organized! We can’t give credit for answers we can’t read! You may work in groups, but turn in your own individual answers. I suggest you use the Feb 13 classtime to gather in the classroom to work on these problems.

1. Imagine a lamp in the lab that can emit a horizontal beam of EUV light at a wavelength of 30.4 nm. The pressure of air in the lab is 1013 mb, the temperature is 288 K, and the ionization plus absorption cross section for N\textsubscript{2} at 30.4 nm is 2.340x10-17 cm-2 and for O\textsubscript{2} is 3.328x10-17 cm-2. Assuming that air is made of 78% N\textsubscript{2} and 22% O\textsubscript{2} and nothing else, perform the following calculations:
 a. What are the optical depths of the N\textsubscript{2}, O\textsubscript{2} and air in the lab at 30.4 nm?
 b. How far will the EUV light from the lamp travel before it is diminished to 5% of its original brightness?
 c. Repeat the calculation of part b) for a lab in Boulder which has a pressure of air of 840 mb.

2. In the Earth’s atmosphere the number density of N\textsubscript{2} at 250 km altitude is about 8x108 cm-3 and that for O\textsubscript{2} at the same altitude is 8.5x107 cm-3 and for O it is 9x108 cm-3. Assume that the scale heights for these three constituents are constant with altitude above 250 km and are equal to 30.1 km for N\textsubscript{2}, 26.4 km for O\textsubscript{2}, and 49.2 km for O.
 a. Calculate the optical depth for ionization at 250 km for each of these three constituents at 30.4 nm assuming the cross sections are 1.170x10-17 cm-2 for N\textsubscript{2}, 1.664x10-17 cm-2 for O\textsubscript{2}, and 7.693x10-18 cm-2 for O.
 b. Assume that the flux of 30.4 nm solar light before entering the Earth’s atmosphere is 1.0x1010 photons-cm-2-sec-1. Also assume that the sunlight enters the atmosphere vertically from the top and that the cross sections for absorption at these wavelength are equal to the cross sections for ionization. Calculate how much 30.4 nm sunlight is left at 250 km if no other processes besides absorption by and ionization of N\textsubscript{2}, O\textsubscript{2}, and O are occurring.
 c. Calculate the ionization rates (ionizations-cm-3-sec-1) for N\textsubscript{2}, O\textsubscript{2}, and O at 250 km due to the 30.4 nm flux in part b). Also calculate the total electron production rate (electrons-cm-3-sec-1) assuming one electron per each ionization.
 d. Repeat parts b) and c) assuming that the sunlight is entering the atmosphere at an angle of 30 degrees from the vertical.