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Abstract: The geometrical structure of the magnetic field is a critical character in the 

magnetospheric dynamics. Using the magnetic field data measured by the Cluster constellation 
satellites, the geometrical structure including the curvature radius, directions of curvature and 
normal of the osculating planes of the magnetic field lines within the current sheet/neutral sheet 
have been investigated. The results are: (1) Inside of the tail neutral sheet (NS), the curvature of 
magnetic field lines points towards Earth, the normal of the osculating plane points duskward, and 
the characteristic half width (or the minimum curvature radius) of the neutral sheet is generally 
less than 2Re, for many cases less than 1600km. (2) Outside of the neutral sheet, the curvature of 
magnetic field lines pointed northward (southward) at the north (south) side of NS, the normal of 
the osculating plane points dawnward, and the curvature radius is about 5Re~10Re. (3) Thin NS, 

where the magnetic field lines have the minimum of the curvature radius less than 0.25 ER , may 

appear at all the local time between LT 20hr and 4 hr, but thin NS occurrs more frequently near to 
midnight than that at the dawnside and duskside. (4) The size of the NS is dependent on substorm 
phases. Generally, the NS is thin during the growth and expansion phases and grows thick during 
the recovery phase. (5) For the one-dimensional NS, the half thickness and flapping velocity of the 
NS could be quantitatively determined. Therefore, the differential geometry analyses based on 
Cluster 4-point magnetic measurements open a window for visioning the three-dimensional static 
and dynamic magnetic field structure of geomagnetosphere. 
 

1. Introduction 
The geometrical configuration of magnetic field lines (MFLs) plays crucial roles on the 

magnetospheric dynamics, especially in the current sheet of magnetotail. Charged particles with 
gyroradius much less than the local spatial scale of the magnetic field are trapped and move along 
the filed lines. If the magnetic field is inhomogeneous with gradient and curvature, the trapped 
plasma particles will also perform magnetic gradient and curvature drift, which may produce 
significant current, e.g., the ring current in the inner magnetosphere. The particle velocity of 
curvature drift, as well as the resulted current, is reciprocal to the curvature radius of the MFLs. 
The geometrical configuration of MFLs also controls the non-adiabatic and chaotic motions of 
particles having gyroradius comparable to or larger than the characteristic scale of the magnetic 
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field. In a thin current sheet, these kinds of particles may perform diverse motions, e. g., the 
serpentine motion [Speiser, 1965].  The curvature parameter κ , which is the squared ratio between 

the minimum curvature mincR  of the magnetic filed and the maximum Larmor radius maxρ  of 

particles, i.e., 2/1
maxmin )/( ρκ cR= , has been put forward as a threshold to determine the motion 

types of charged particles in the current [Büchner and Zelenyi, 1987, 1989]. For 1>>κ , the 
particles perform adiabatic motions with their magnetic moment conserved; however, when 1≤κ , 
the motion of the particles will become non-adiabatic and some chaotic processes may appear. 
Furthermore, the spatial configuration of MFLs can also significantly affect the properties of 
waves and instabilities in plasmas [Mikhailovskii, 1992; Roux et al., 1991; Pu et al., 1997]. 
Presently it is believed that a thin current sheet with 1≤κ  favorites the occurrence of the tearing 
mode, current instability, even the current disruption and particle energization [Burkhart, 1992b;  
Lakhina, 1993; Mitchell et al., 1990; Lui  et al., 1992; Wang et al., 1990; Liu and G. Rostoker, 
1995]. 

Therefore it is important to know the actual geometrical configuration of MFLs in the tail 
current sheet (CS) and also its dynamical evolution. Assuming a special type of structure, such as 
the most popular 1-d Harris model [Harris, 1962], the thickness and other features can be 
determined based on single or two-satellite measurements.  By measuring the electron precipitation 
into ionosphere caused by pitch angle scattering in the near-Earth current sheet, Sergeev et al. 
(1990) have found that the half thickness of the CS near the end of the growth phase is about 

0.1 ER . Considering the cross tail current during the growth phase is mainly contributed by the 

electron curvature drifting, Mitchell et al. (1990) have estimated the curvature radius of the CS 
based on the magnetic and plasma measurements and thus obtained the characteristic half 
thickness of CS. Lui (1993) has developed a procedure to calculate the global properties of the CS 
based on the local magnetic plasma and current density measurements by one single satellite, in 
which one dimensional magnetic configuration of the CS has been assumed. Based on ISEE-3, 
magnetic field and plasma data, Pulkkinen et al. (1993) have revealed the average thickness of the 

deep tail current sheet was 2.45 ER . McComas et al. (1986) have first used the ISEE 1 and ISEE 2 

two-satellite magnetic field measurements to deduce the current density distribution in the CS as 
well as the CS thickness.  Assuming the magnetic field in the CS varies linearly from the northern 
boundary to the southern boundary of the CS, Sergeev et al. (1993) have determined the half 
thickness of the CS based on data from two satellites (ISEE 1 and ISEE 2); the minimum variance 
analysis method [Sonnerup and Cahill, 1967] has been applied to calculate the normal vector of the 
CS. It wasfound that the CS half thickness were thinning from ~3000km to ~800km just before the 
substorm onset.  Assuming a one dimensional Harris model of the CS magnetic field, Sanny et al. 
(1994) have investigated the global structure of the CS and its temporal variation with the ISEE 1 

and ISEE2 measurements; the lobe magnetic field strength LB  was estimated by the pressure 

balance condition. They have found that, for the CDAW 6 substorm on March 22, 1979, the CS at 

ERX 13−≈  was approximately exponentially thinning with its half thickness decreasing from 
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~5 ER  to only ~1 ER  during the growth phase, and during the expansion phase after the onset the 

current sheet may keep with a half thickness as small as about 1000km. Zhou et al. (1997a, b) have 
investigated in details on the average structure of the current sheet and revealed that the current 
sheet could be twisted significantly due to the existence of IMF By. Regarding the configuration of 
current sheet/neutral sheet, many researchers have also performed numerical and theoretical 
explorations [Birn, et al., 1977; Baker and McPherron, 1990; Pulkkinen, et al., 1994; Burkhart, et 
al., 1992; Sitnov, 2000, and the references therein]. 

The Cluster II mission has made it a reality to directly deduce the 3 dimensional structure of 
the magnetic field in magnetosphere from the four-point simultaneous magnetic measurements 
[Balogh, et al., 2001]. Some methods have been developed to determine the spatial configuration 
and velocity of a discontinuity plane, wave vector, the gradient of magnetic field and current 
density [Dunlop, et al., 1990; Mottez and Chanteur, 1994; Dunlop and Woodward, 1998; Chanteur, 
1998; Harvey, 1998]. However, presently there is still no special stress on drawing the geometrical 
structure of MFLs in magnetosphere based on the Cluster four-point magnetic observational data.  
In this investigation, we would develop an approach to calculate the curvature vector and normal 
of the osculating plane of magnetic filed lines based on Cluster magnetic measurements so that the 
geometrical structure of MFLs in the magnetosphere could be revealed. Here we would mainly 
focus on deducing the geometrical structure of MFLs of the tail CS from the Cluster FGM 
observations during July through October 2001.  

  

2. Method for Determining the Geometrical Structure of Magnetic field 
In order to determine the local geometrical structure of one magnetic field line, we need to 

know its curvature cρv  and the normal N
v

of its osculating plane (some necessary and important 

concepts of differential geometry are described in Appendix A). Fig 1 shows the configuration of 

one magnetic field line and the relationship between its unit tangential vector b
v

, curvature cρv  and 

normal N
v

of the osculating plane. Therefore, the local three dimensional structure of one magnetic 

field line is demonstrated by five parameters, i.e., the curvature radius cR , the polar and azimuthal 

angles ( cθ , cϕ ) and ( Nθ , Nϕ ) of the curvature vector and the normal of the osculating plane, 

respectively.  
To calculate the curvature, the formula (A1) is expanded as  

lilijjiicj BBBBBBBB ∇−∇= −− 42ρ ,   (1) 

where the subscript Latin index i , j  or l  (=1,2 and 3) denote the three components( x , y  and z ). 

After obtaining the magnetic field cB
v

 and its gradient cB)(
v

∇  at the mesocentre of the four 

Cluster satellites (mesocentre’s definition refers to Appendix B), we can calculate the curvature cρv  
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and curvature radius cR  at the mesocentre. Presently, there are two approaches that can be applied 

for deducing the local gradient of magnetic field, i. e., the least square minimization [Harvey, 
1998] and the linear interpolation [Chanteur, 1998]. It could be verified that these two methods 
yield equivalent results [Chanteur and Harvey, 1998]. The difference between them is that the least 
square minimization method could include the solenoidal condition of the magnetic field. In order 
to take this advantage, we have used the least square minimization method in this research. In the 
appendix B, a new form of the action S , which is somewhat different from that of Harvey (1998), 

has been constructed so as to deduce the expressions of the magnetic field cB
v

 and its gradient 

cB)(
v

∇  at the mesocentre of the Cluster tetrahedron. cB
v

 is just the average of the magnetic field αB
v

 

(α =1,2,3,4) at the positions of the four satellites as expressed as Eq. (B5). The obtained formula 

(B6) of the gradient cB)(
v

∇  at the mesocentre is equivalent to that of Harvey (1998), but rather 

simpler and helpful for reducing the calculation error. 
Also, during Cluster CS/NS crossing from July 1 through October 31, 2001, the 

tetrahedron of Cluster is nearly a regular one. Thus it is proper to use the least square minimum 
method to calculate the gradient and curvature of magnetic field B

v
.  

We may discuss the error of the calculations. Generally, the physical errors are rather 
small, 01.0/ ≤∆ BB and 01.02/ ≤∆ Lr [Dunlop et al., 1990], where B∆  and r∆  are the errors of 
magnetic field and Cluster position, respectively, and L  is the maximum characteristic size of 

Cluster tetrahedron. When Cluster crossing CS, L  is about 1600km ER
4
1≈ . Apart from the above 

two physical errors, the calculation method for the curvature may cause a truncation error. In 
Appendix B, we have made a linear approximation and omitted the second order term in Eq. (B3); 
this would produce a truncation error of the curvature as well as that of the radius. Compared with 
the truncation error, the contribution of the physical errors to the total errors of curvature and 
curvature radius can be neglected. Appendix C has offered an estimate on the truncation errors of 

the curvature and curvature radius, which are at the 2nd order of )2/( cRL . When 2/LRc ≤ , the 

above method can only give the upper limit of cR . Presently there is still no known method for 

calculating cR  when 2/LRc ≤ . The proper method needs to be developed in the future. 

We can also obtain the directional feature of CS/NS boundary layer from the Cluster FGM 
4 point magnetic measurements. In this research, the three axis of the GSM  coordinates are 
denoted as X , Y  and Z , while the three axis of the boundary layer (BL) coordinates of CS/NS 

are denoted as x , y  and z . If the CS/NS has a steady structure, it is reasonable to regard that the 

y  axis of the NS BL coordinate system is along the direction of the current density and the z  axis 

is along the normal of the CS/NS. (Note that the y  component of magnetic field in the NS BL 
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coordinates is considered constant as shown in Appendix D.) The current density is  

BJ
vv

×∇= −1
0µ ,                  (2) 

which can be determined by using the formula (B5) of the gradient cB)(
v

∇  in Appendix C. The 

normal nv  of the CS/NS boundary layer can be regarded as pointing along the direction of the 

gradient of the magnetic pressure Bp , i.e., 

BB ppn ∇∇= /v
 

  jjjj BBBB ∇∇= / .                (3) 

This formula can be applied for locally determining the normal of the CS/NS boundary layer based 
on the 3–d magnetic measurements of Cluster. The z  axis of the NS BL coordinates is along the 

normal of the CS/NS. The components and gradients of magnetic field, jB  and jB∇ , in Eq. (2) 

and (3) should be that in the mesocentre.  

     By the way, from the measured gradient of magnetic field B
v

∇  we can only draw three 

independent physical vectors, i.e., the curvature cρv  of MFLs, the curl of magnetic field B
v

×∇  and 

the gradient of magnetic pressure jjB BBp ∇=∇ −1
0µ . 

 

3. Geometrical Structure of the Magnetic field of CS Deduced from Cluster 

Observations  
In this exploration, the Cluster satellite position data with an one minute resolution is 

generated by the Hungarian Data Centre, magnetic field data with a 4-sec resolution is from 
Cluster FGM measurement. 

The plasma sheet crossings of Cluster during July through October of 2001 have been 
surveyed. The curvature direction and curvature radius of MFLs within current sheet/neutral sheet 
have been calculated.  

 

3.1 General Features 

Figures 2 and 3 show the direction of the curvature, curvature radius, the direction of 
osculating plane and the magnetic field in GSM coordinates for the Cluster CS crossings during 
Sept. 17 and Sept. 29 of 2001, respectively, when the CS has no strong flapping. The CS crossing 
intervals are about 2 hours.  

It is known that in the center region of CS there is a thin layer with small magnetic field 
strength, which is called neutral sheet (NS) [Ness, 1965; Cowley, 1972; Lui, 1978; Fairfield, 
1980]. In this research, we would conveniently define the NS is the region within the CS where 
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NX BB ≤ , here NB  is the northward component of the magnetic field.  

 (1)  Within NS 

  The curvature radius is very small, generally less than 2 ER . The polar angle cθ  is about 

between 45° and 135°. The azimuthal angle cϕ  is near to 0° or 360°. So that the curvature of the 

MFLs points earthward. As for the osculating plane, the azimuthal angle Nϕ  of its normal is near 

to 90°, and the polar angle Nθ  is generally less than 90° due to the appearance of minus YB  

component within the NS. The observational features of NS can be expressed as the following. 

Ec RR 2≤ , 

oo 13545 ≤≤ cθ , 

oo 3600 orc ≈ϕ ,       for the NS. 

o90≤Nθ , 

°≈ 90Nϕ .  

(2) In the north (south) lobe and north (south) CS  

In the north (south) lobe and north (south) CS, the curvature radius is about 5~10 ER , the 

polar angle cθ  of the curvature is near to 0° (180°), the azimuthal angle cϕ  is near to 90° or 270°. 

Thus the curvature of the MFLs points northward (southward), which is not in agreement with that 

predicted by the Harris model. The azimuthal angle Nϕ  of the binormal of the osculating plane is 

about 270°, and the polar angle Nθ  is about 90° for the north (south) lobe and north (south) CS. 

Ec RR 10~5≈ , 

)180(0 oo≈cθ , 

oo 27090 orc ≈ϕ ,     for the north (south) lobe and north (south) CS. 

o90≈Nθ , 

°≈ 270Nϕ .  

 (3) In the transition layers between NS and north (south) CS 
There are two special transition layers between the NS and north (south) CS, where the 
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curvature radius grows larger rapidly, indicating that the curvature radius is rather large and the 
field lines are almost straight. 

The common features of the curvature and normal of the osculating planes of the MFLs in 
the CS have been schematically demonstrated in Fig. 4. The figure 4 can be used to conveniently 
determine whether the region Cluster crossing is the NS, or the north (south) CS and north (south) 
lobe.  

The general geometrical configuration of MFLs in the CS is illustrated in Fig. 5. It should 
be noted that not only during active period, such as the growth, expansion and recovery phases, but 
also when the magnetotail is quiet, CS always has this kind of geometrical structure. The 
observational results as shown above indicate that the magnetic field in the lobes and also CS 
outside NS can not be well modeled by Harris configuration. Some previous investigations have 
also shown that the actual CS/NS could have certain deviations from the Harris model , e.g.,   the 
distant tail CS might have double-peaked current density in some cases [Hoshino et al., 1996]. 

 

3.2  CS / NS Flapping Phenomena 

CS/NS flapping are frequently occurring phenomena in magnetosphere [Lui, et al., 1978]. 
For static CS/NS, the Cluster crossing would generally spend about 1-3 hours, as shown in Fig. 2 
and 3. However, during CS/NS flapping, Cluster may enter and exit CS repeatedly for a number of 
times, and the crossing intervals can be only about 10 minutes during which the structure of CS 
would not have much large change. This would facilitate investigating the features of the CS/NS, 
such as the spatial size of NS. Fig. 6 shows a series of CS flapping events occurring on August 5, 
2001. 

    During one complete NS crossing of Cluster, generally there is one minimum of cR , i.e., mincR , 

which appears at the center of the NS. mincR  is an important parameter that may roughly reflect the 

characteristic thickness of NS. In the NS flapping event during UT (hrs) 17:30-18:00 on August 5, 

2001, the minimum curvature radius is Ec RR 19.0min ≈  at UT (hrs) 17.74, indicating the NS is very 

thin during this crossing event. Based on calculating mincR , we may find the variation properties of 

the NS size during CS flapping. 

 

3.3   Variation of NS Size during Substorms 

The thickness of NS is dependent of substorm phases. This investigation has found that 
generally NS is thin during the growth phase and expansion phase, and grows thick during the 
recovery phase. During August 5, 2001, the CS is strongly flapping and Cluster have crossed the 
NS several times as illustrated in Fig. 6, while a substorm with a maximum AE  index of 1500 nT  
is developing. Fig. 6 has shown the calculated curvature and normal of osculating planes of the 
MFLs of the CS in this period. Table 1 shows the variation of the NS characteristic thickness 
during a series of Cluster crossing events on August 5, 2001. On the onset during UT (hrs) 13.9-
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14.0 and the expansion phase during UT (hrs) 14.0-14.5, mincR of the NS is less than 0.6 ER . On the 

recovery phase of the substorm during UT (hrs) 14.5-15, mincR of the NS is larger than 0.8 ER . 

However, the NS becomes thin again at the end of the recovery phase during UT (hrs) 15.4-15.5. 
During the last three crossings at UT (hrs) 16.6, 17.2 and 17.7-17.8, the NS is very thin, while the 
IMF is about southward as observed by ACE satellite and the magnetosphere is under the growth 
phase of the next substorm. ISEE 1/2 and other missions have also observed similar phenomena of 
substorm evolution processes [Sergeev et al. ,1990; Sergeev et al. ,1993; Sanny et al. ,1994; Zhou 
et al.,1997(a, b) ]. 
Table 1. The calculated minimum curvature radius of the NS during a series of Cluster crossing on Aguest 5, 
2001. The crossing types and corresponding substorm phases have also been shown. 

Entry Time 
(UT, hrs) 

Crossing Type mincR  (Re) Substorm Phase 

13.9-14.0 N-N 0.5 Onset 
14.15 N-N 0.1 Expansion 

14.3-14.5 N-N 0.6 Expansion 
14.7 N-N 1.1 Recovery 
14.8 N-N 0.8 Recovery 

15.4-15.5 N-S 0.2 End of Recovery 
16.6 S-S <0.1 Growth Phase 
17.2 S-N 0.15 Growth Phase 

17.7-17.8 N-S 0.19 Growth Phase 
 

3.4  Dependence of NS Characteristic Thickness on the Local Time 

 

The observation of Cluster shows that the half width of NS is dependent of the local time or 

the GSM Y dimension. During the Cluster crossing from LT04 (GSM ERY 16−≈ ) on July 1 to 

LT22 on Oct 30(GSM ERY 16≈ ) (see the demonstration of the apogee of Cluster in Fig. 7), both 

the thin and thick NS can be observed. It is noted that in the dawn side and dusk side far away 
from the mid night, there still are thin NS. For example, during the Cluster crossing on July 27, NS 

mincR  can be as small as 0.2Re, while during the Cluster crossing on Oct 20, NS mincR  can be as 

small as 0.1Re. Nevertheless, there are more thin NS crossings during the midnight local time than 

that at the down or dusk sides. The thin NS with Ec RkmR 25.01600min ≈≤  have appeared during 

the following dates of 2001: 
July 1, 3, 5, 10, 20, 24 and 29; 
August 3, 5, 7, 10, 12, 15, 17, 19, 22, 24, 27, 29 and 31; 
September 5, 10, 12, 14, 15, 17, 19, 22, 24, and 26; 
October 1, 4, 6, 8, 11, 13, 15 and 20. 
     This Cluster observation result is in agreement with the common understanding regarding the 
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CS thickness dependence on the local time [Bame, et al., 1967; Meng and Mihalov, 1972; Crooker, 
1977; Birn, et al., 1977]. 

 

3.5  Quantitatively Determining the NS thickness 

 

   Commonly, the neutral sheet (NS) is regarded as a thin layer embedded in the centric region of 
current sheet (CS), and the magnetic field strength is rather small. 

In this research, NS is considered to be the region with nxn BBB ≤≤− , or nx BB ≤ . xB , yB  

and zB  are the x , y  and z  components of the magnetic field in the NS BL coordinates, 

respectively, while nB  is the normal component. 

Generally, xB  is approximately linear to z . Let nx BB ±=  at hz ±= , then 

h
zBB nx = ,                        (4) 

here h  is the characteristic half thickness of NS. The properties of the curvature and curvature 
radius of the MFLs in the NS have been shown in the appendix B. Generally the half thickness h  

is less than the minimum curvature radius mincR  when there is a dawn-dusk component yB . If there 

is no yB component, then the half thickness h  is just equal to the minimum curvature radius mincR .  

         We may investigate the Cluster crossing event during UT (hrs) 17.7-17.8 on August 5, 2001 
shown in Fig. 6. The magnetic field has been transformed into the NS boundary coordinates, where 

the y component nTB 2≈y , the normal component nTBB zn 5.2≈= , as illustrated in Fig. 8. (It is 

noted that the normal of the NS, as defined as the gradient of the magnetic pressure, points 
northward (southward) of the NS at the northern (southern) part of the NS except near the center of 
the NS. At the center of the NS, the gradient of the magnetic pressure points earthwards.) Thus the 

constant 8.0/ ≈= ny BBb . The minimum curvature radius is Ec RR 19.0min ≈  as shown in Fig. 7. 

Therefore, the half thickness of the NS can be obtained as min
12 )1( cRbh −+=  

EE RR 12.019.0)8.01( 12 ≈⋅+≈ − .  

We may further calculate the flapping velocity of the NS relative to Cluster. (The velocity 
of the Cluster satellites near the apogee as Cluster crossing the tail NS is about skm /1.1  and may 
be omitted compared with the flapping velocity of NS.) As illustrated in Fig. 7, when 

hrt 74.171 = , Ecc RRR 19.0min ≈= ; when hrt 718.171 =  or hrt 763.172 = , min8 cc RR ≈ . 

Therefore, based on the conclusion in Appendix D we may know that, during the interval 
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hrttt 045.012 =−=∆ , the NS have been moving over a distance ERhz 24.02 ≈=∆  along the NS 

normal direction. Then the flapping velocity of the NS along the normal direction relative to the 
Cluster satellites should be 

t
hVF ∆

= 2
 

   skm /9≈ ,                      (5) 
    Therefore, for some cases, the half thickness of the NS can be quantitatively determined based 
on Cluster 4 point magnetic measurements, and the flapping speed along the NS normal may 
further be obtained. Still, it should be mentioned that in many situations the NS actually is under 
wave disturbance and has no regular 1-d structure but 3-d complicated geometric configuration; 
then the thickness of the NS could be characterized by the measured minimum curvature radius of 
MFLs, just as applied in Section 3.3 and 3.4. 
 

4. Summaries and Discussions  
 

     In this research, we have investigated the geometrical structure of the magnetic field in the tail 
current sheet / neutral sheet based on the Cluster 4-point magnetic measurements. An approach has 
been developed to deduce the curvature and normal of the osculating plane of the MFLs in 
magnetotail. Further more, we have applied the magnetic geometrical analyses for exploring the 
variations of the NS thickness with the substorm phases, the dependence of the NS thickness on 
the local time and quantitatively determining the half thickness and the flapping speed of the NS 
with a one dimensional structure.  

We have obtained the geometrical features of the MFLs in the CS /NS as summarized as 
bellows. 
(1) Within the NS, the curvature of the MFLs points towards the earth, or the MFLs curve 

towards the earth; the osculating plane of the MFLs has a normal pointing duskside. The 

curvature radius of the NS MFLs is generally less than ER2 .  

(2) In the northern (southern) lobes and the northern (southern) CS outside of the NS, the 
curvature of the MFLs points northwards (southwards), or outward of the CS; the osculating 

plane of the MFLs points dawnside. The curvature radius of the NS MFLs is about 5~10 ER .  

(3) Between the NS and the northern (southern) CS, there are two transition layers, where the 
curvature radius of the MFLs is much large and the MFLs are almost straight.   

 

The observational properties of the MFLs in the NS / CS / Lobe have been illustrated in Fig. 
4 and the deduced geometrical configuration demonstrated in Fig. 5.  

We have investigated in details the CS / NS flapping phenomena during July 1 through 

October 31. For convinience we have used the minimum of the curvature radius, mincR , as the 

characteristic half thickness of the NS.  
It is found that characteristic thickness of the NS is varying with substorm phases. The NS is 
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very thin during the growth phase and expansion phase with mincR  less than about 0.5 ER . The NS 

grows thick during the recovery phase with mincR  larger than about 0.8 ER . Approaching the end of 

the recovery phase, the NS again becomes thin.  
The analysis results have shown that the thickness of the NS is dependent of the local time. 

It has been revealed that thin NS with mincR <0.25 ER  may possibly appear at all the local time 

between LT 20hr and 4 hr. Nevertheless, near to the midnight local time there are more thin NS 
crossings than that at the dawnside and duskside. So that thin NS tends to occur near to midnight. 

Finally, we have made explorations on quantitatively determining the half thickness of the 
NS when the NS approximately has a one-dimensional configuration. The NS BL coordinates have 
been applied, which are determined based on the Cluster FGM three-dimensional measurements. 
Deduction in Appendix B shows that the half thickness of the NS is dependent of the minimum 
curvature radius and the ratio between the y and z components of the magnetic field in NS BL 
coordinates. For the NS flapping event during UT (hrs) 17.7-17.8 on August 5, 2001, the 

calculated half thickness is about ER12.0 . Further more, the flapping velocity of the NS could be 

obtained. For the above flapping event, the NS flapping speed along the NS normal is about 
skm /9 . 

     In conclusion, the geometry analyses based on the Cluster 4-point magnetic measurements 
makes it reality to vision the static and dynamic three dimensional magnetic structure of 
geomagnetosphere. 
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Appendix A: Some Basic Concepts of Differential Geometry 

Generally the local geometrical structure of one curve may be specified by its curvature 
vector and osculating plane. The curvature and curvature radius of one curve reflect the intensity 
and spatial size of the curving. Locally, one curve lies in its osculating plane and can be fitted by a 
circle arc with a radius same as its curvature radius. 

 The curvature of one magnetic field line can be defined as  

bb
s
b

c

vv
v

v )( ∇⋅=
∂
∂=ρ ,                 (A1) 

where s  is the arc length of the magnetic field line; b
v

 is the unit vector of magnetic field B
v

, 

BBb /
vv

= . The curvature vector cρv  points inward of the magnetic field line as defined here. 

Making differential of the condition 1=⋅ bb
vv

 yields 

0=⋅=
∂
∂⋅ cb

s
bb ρv

v
v

v
,                 (A2) 

Thus the curvature vector cρv  is perpendicular to the unit tangential vector b
v

. 

The curvature radius is the reciprocal value of the curvature cρ , i. e., 

c
cR

ρ
1= ,                        (A3) 

Another important quantity for determining the geometrical structure of MFLs is the 

normal of the osculating plane, denoted as N
v

 here. The osculating plane of one curve at one point 

is the plane the curve locally lies in. The osculating plane of one magnetic field line can be 

determined by its unit tangential vector b
v

 and curvature vector cρv . The normal of the osculating 

plane N
v

 is defined as    
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c

c

b
bN

ρ
ρ
vv
vv

v

×
×= .                    (A4) 

    The curvature cρv  and the normal of the osculating plane N
v

 may determine the local 

geometrical structure of the MFLs. 
 

 

Appendix B: Deducing the Formula of the Magnetic Field and its Gradient at the Mesocentre of 
Cluster Tetrahedron 
 

Here the least square minimum method [Harvey, 1998] is used here.  

At one specific time, the 4 satellites of Cluster at 4 different positions αr
v  (α =1,2,3,4) can 

obtain the measurement of the magnetic field αB
v

(α =1,2,3,4). The mesocentre of the four identical 

satellites is the center of mass of them, which is at the position 

∑
=

=
4

14
1

α
αrrc
vv ,                      (B1) 

Here we use the barycentre coordinates for convenience, i.e., 

0=cr
v ,                           (B2) 

Magnetic field αB
v

 at one satellite may be expanded as 

2)()()( cjjcjjcijcii rrrrBBB −Ο+−∂+= ααα  

    2)( jjijci rrGB αα Ο++= ,           (B3) 

Where cijij BG )(∂=  is the gradient of the magnetic field at the mesocentre of the Cluster 

tetrahedron. 

We have constructed a new action for deducing the formula of the magnetic field cB
v

 and its 

gradient cB)(
v

∇  at the mesocentre, which has the following form 

     ∑
=

+−−=
4

1

2 2])[(
4
1

α
αα λ lljijcii GrGBBS ,  (B4) 

The second term at the right hand side of the above equation is to ensure the free 
convergence of magnetic field [Harvey, 1998]. 

To minimize S, we need 0=Sδ , which yields  

0/ =ciBS δδ , 0/ =ijGS δδ , 0/ =δλδS .    
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Subsequently, we may get 

∑
=

=
4

14
1

α
αici BB ,                     (B5) 

ijijij RGG 10 −+= λ ,                  (B6) 

where, 

∑
=

−=
4

1

10

4
1

α
αα kjkiij RrBG ,               (B7) 

The volume tensor ∑
=

=
4

14
1

α
αα jkkj rrR , and the Lagrangian multiplier λ  is 

iiii RG 10 / −−=λ .                    (B8) 

    The formula (B7) of the gradient is simpler than that of Harvey (1998). It can be verified that the 
expression for the gradient of magnetic field obtained here is equivalent to that of Harvey (1998). 
The special advantage of the formula (B7) is that the errors caused by magnetic and position 
measurements could be reduced. 
 
Appendix C: An Estimate of the Truncation Error of the Curvature 
  
     In order to obtain an estimate of the truncation error of the curvature, we may just simplify the 
Cluster tetrahedron by two satellites that are at the same magnetic field line and have a distance 
between them of the characteristic size L , as illustrated in Fig. 9. It is assumed that the magnetic 

field line within the spatial scale of L  has a constant curvature radius cR .  

According to the definition, the formula of the curvature is 

s

bb
c ∆

−
= 12

vv

ρ  ,             (C1) 

where s∆  is the arc length of the magnetic field line between the two satellites, 2b
v

 and 1b
v

 are the 

unit vectors of the magnetic field at the two satellites, as illustrated in Fig. 9. If θ  is the angle 

between 2b
v

 and 1b
v

, then θ2⋅=∆ cRs . 

    In calculating the curvature based on multiple satellites, the arc length s∆  in (C1) has been 
replaced by the line segment between the satellites.  Thus the calculated curvature may be 
approximated by  

     
L

bb
c

12~
vv

−
=ρ ,                (C2) 

Then 
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L

R
L
s c

c

c θ
ρ
ρ 2~ ⋅

=∆=  

  
L

RLR cc )2/(sin2 1−⋅
= ,             (C3) 

The error of the curvature is 

c

cc

c

cc

c

c

RL
RLRL

2/
2/)2/(sin~ 1 −

=
−

=
∆ −

ρ
ρρ

ρ
ρ

 

2)2/(
6
1

cRL≈ .                    (C4) 

Due to ccR ρ/1= , the error of the curvature radius is 

c

c

c

c

R
R

ρ
ρ∆

=
∆ 2)2/(

6
1

cRL≈ .          (C5) 

    Therefore the error of the curvature as well as that of the curvature radius is at the two order of 

cRL 2/ . 

 
Appendix D: Curvature of Magnetic Field in CS/NS  
 

The components of magnetic field zzyyxx eBeBeBB vvvv
++=  of CS/NS in NS boundary 

coordinates may be expressed as  

nx BzB )(η= ,                      (D1) 

.0 ConstBB yy == ,                  (D2) 

.ConstBB nz == .                   (D3) 

Within the NS, )(zη  is about linear to z , i.e., 

h
zz =)(η ,                         (D4) 

where h  is defined as the half thickness of NS.  

We may denote ny BBb /0= . The total magnetic field is  

2/1222/1222 )1()( ++=++= bBBBBB nzyx η ,   

                                 (D5)  
The curvature of B

v
 is 

xzzxjzjxcj BBBBBBB ∂−= −− )( 42δρ ,     (D6) 
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The 3 components of curvature are 

ηηρ ′+++= −2222 )1)(1( bbcx ,        (D7) 

ηηηρ ′++−= −222 )1( bbcy ,           (D8) 

ηηηρ ′++−= −222 )1( bcz ,            (D9) 

where η ′  is the derivative of )(zη  on z. 

The value of the curvature is 
2/1222 )( zyxc ρρρρ ++=  

   ηη ′+++= − 2/3222/12 )1()1( bb .     (D10) 

The curvature radius is 

ηη ′+++= − /)1()1( 2/3222/12 bbRc .  

                                (D11) 
For the NS, the value of the curvature and the curvature radius are 

12/3222/12 )1()1( −−+++= hbbc ηρ ,   

                               (D10’) 

hbbRc
2/3222/12 )1()1( +++= − η .   

                               (D11’) 

At the center of the NS, 0)( == nx BzB η , both of B  and cR  have the minimum values as 

2/12
min )1( bBB n += ,               (D12) 

hbRc )1( 2
min += .                 (D13) 

Generally, within the CS 
12/3222/32

min )()1()1(/ −− ′+++= hbbRR cc ηη ,        

                               (D14) 
and within the NS 

2/3222/32
min )1()1(/ bbRR cc +++= − η .    

                               (D14’) 
Therefore we can get 

2/122/13/2
minmin )1(]1)/[( −+−= bRRRz ccc , 

      for the NS.                (D15) 
Formula (D15) can be used for determine the Cluster crossing distance along the normal of 



 

 17 

NS (or the z  direction) as NS is rapidly flapping. E. g., when 22/ min =cc RR , 

2/12
min )1( −+= bRz c . 
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Captions 
 

Fig.1  Illustration on the relationship between the unit tangential vector b
v

, curvature vector 

cρv  and the normal N
v

of the osculating plane of one magnetic field line in GSM coordinates. The 

direction of the curvature cρv  is determined by the polar and azimuthal angles ( cθ , cϕ ), while the 

direction of normal N
v

 determined by ( Nθ , Nϕ ). The polar angles cθ  and Nθ  are from the axis Z, 

and the azimuthal angles cϕ  and Nϕ  are from the axis X. 

 

Fig. 2 The CS crossing event during September 17, 2001. The first panel shows the 
direction of the curvature of the MFLs; the second panel shows the curvature radius; the third 
panel shows the direction of the normal of the osculating plane of the MFLs; the last panel shows 
the three components and strength of the magnetic field. The GSM coordinates are used in this 
figure. 

 
Fig. 3 The CS crossing event during September 29, 2001. The form of the figures and the 

instruction are the same as Fig. 2. 
 
Fig. 4  Schematic illustration of the variation of the geometrical structure of the MFLs in 

CS when Cluster are crossing PS from the north lobe to south lobe. It is assumed there is no strong 
flapping of PS. 

 
Fig. 5  Schematic illustration of the magnetic geometrical structure of CS deduced from 

Cluster 4-point measurements. 
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Fig. 6  A series of CS flapping events occurring on August 5, 2001. The form of the figures 
and the instruction are the same as Fig. 2. 

 
Fig. 7  Schematic illustration of the position of the apogee of Cluster during July-Oct, 2001. 

The apogee of Cluster is moving from dawnside to duskside smoothly, about 2 hours of local time 
per month. The Cluster apogee is about the position of one NS/CS crossing event observed at the 
corresponding time. 

 

Fig. 8  The y  and z  components of magnetic field in NS BL coordinates in the NS flapping 

event during UT (hrs) 17:70-17:78 on August 5, 2001.  
 

Fig. 9  Demonstration on the cause of the truncation error of the curvature of one magnetic 
field line. 


