Responsivity Calibration of the SUSIM UARS

Linton Floyd

Interferometrics Inc.

SORCE Calibration Workshop
September 19, 2006
Solar Ultraviolet Spectral Irradiance Monitor (SUSIM)

experiment overview

Operated between 11 October 1991 (UARS day 30) and 1 August 2005 (UARS day 5072) aboard the Upper Atmosphere Research Satellite (UARS)

Dual-dispersion, dual-spectrometer wavelength scanning instrument calibrated by 4 onboard stable deuterium lamps

Full wavelength range: 108–412 nm

Three available wavelength resolutions: low (5 nm), mid (1.1 nm), and high (0.15 nm)

Selectable entrance filters (6), primary gratings (2), secondary gratings (2×4), exit filters (6), detectors (7).
SUSIM UARS Solar and Lamp Scans
Solar and lamp UV spectra each measured using two separate scans

SUSIM UARS Solar and Deuterium Lamp Spectra

Solar spectrum
1.1 nm resolution

D2 lamp spectrum
5 nm resolution

Ly α
O I triplet
C II
C IV
Si IV doublet
Al edge
Mg edge
Mg II h+k
K H Ca II
SUSIM UARS Optical Paths
a flexible instrument with interchangeable optical elements

SUSIM UARS OPTICAL ELEMENT DIAGRAM

Elements used to obtain SUSIM daily 1.1 nm spectral irradiance
An **optical channel** comprises the set of optical elements in a single optical path used to observe UV radiation either from the Sun or lamps.

The **Working Channel** (aka Standard Channel) is the optical path used to gather the daily and weekly solar UV irradiances.

The **Reference Channels** are the set of channels scanned infrequently on **calibration days** whose purpose is to provide responsivity information.

Anomalous degradation is amount of additional responsivity degradation in a channel when it observes the sun over that observing a lamp.

A **self-similar** calibration determines the parameters in a calibration model through intercomparisons of two or more data sets.
SUSIM UARS UV Irradiance Measurements
summary of working channel solar measurements

Full wavelength range (108–412 nm) solar measurements:
▶ mid resolution (1.1 nm) scans, daily cadence (primary measurement)
▶ low resolution (5 nm) scans, daily cadence
▶ high resolution (0.15 nm) scans, weekly cadence

High resolution scans of selected solar features (aka continuous monitoring), daily cadence:
▶ Ly-α (121.6 nm)
▶ CII (134 nm)
▶ CIV (154 nm)
▶ MgII/MgI (280 nm/285 nm)
▶ Call K (393 nm)
SUSIM UARS: Working Channel Evolution

Working channel was changed to maintain measurement quality.

Operational Philosophy: use working channel in to as near to a consistent day-to-day and week-to-week manner as possible

- so that the responsivity can be accurately interpolated between calibration days.

<table>
<thead>
<tr>
<th>Wavelength range (nm)</th>
<th>Entrance filter</th>
<th>Grating pair</th>
<th>Detector</th>
<th>UARS day range</th>
</tr>
</thead>
<tbody>
<tr>
<td>110–264</td>
<td>MgF₂-1</td>
<td>UG4</td>
<td>PSE</td>
<td>30–895</td>
</tr>
<tr>
<td>233–412</td>
<td>Quartz-1</td>
<td>UG4</td>
<td>PLE</td>
<td>30–2741</td>
</tr>
<tr>
<td>110–264</td>
<td>none</td>
<td>UG4</td>
<td>PSE</td>
<td>896–2740</td>
</tr>
<tr>
<td>110–264</td>
<td>MgF₂-2</td>
<td>UG1</td>
<td>PSE</td>
<td>2741–4318</td>
</tr>
<tr>
<td>233–412</td>
<td>Quartz-1</td>
<td>UG1</td>
<td>PLE</td>
<td>2741–5072</td>
</tr>
<tr>
<td>110–264</td>
<td>MgF₂-3</td>
<td>UG1</td>
<td>PSE</td>
<td>4319–5072</td>
</tr>
</tbody>
</table>
SUSIM working channel responsivity is established as follows:

- scans of NIST sources provide initial calibration of working and reference channels
- declining deuterium lamp output over time is calibrated through lamp intercomparisons
- degradation in infrequently used reference channels are calibrated by scans of the lamps
- intercomparison of reference channels establishes their anomalous (i.e., the difference between solar and lamp) degradation
- working channel responsivity on reference channel days is found through intercomparisons with reference channel scans
- working channel responsivity on all other days is established through interpolation
Lamps are scanned by various channels on approximately, monthly, quarterly, biannual, and annual cadences.

Self-similar calibration of the output of each lamp consists of:

- assumption of a parameterized model of lamp output degradation that applies to all lamps
- determination of the parameter values through (nearly) coincident measurement of different lamps by the same optical channel.

Base measurement is the ratio of the degradation of one lamp to another as measured by the same optical channel:

\[
\frac{L_2(d_1)}{L_2(d_2)} \times \frac{L_4(d_2)}{L_4(d_1)}
\]

where \(L_2\) and \(L_4\) are the signals of lamps 2 & 4, respectively, and \(d_1\) and \(d_2\) are days where both lamps were measured.
Initial calibration performed at NIST SURF and with FEL lamps.

In flight corrections applied for:
- dark current (D)
- detector gain/temperature (G)
- stray/scattered light (Y)
- wavelength (λ)
- solar pointing ($P(\theta, \lambda)$); θ represents off-pointing angles
- responsivity of optical path (R)

The spectral irradiance, I, is related to the measured signal, S, by:

$$I(\lambda) = \int \frac{G(T) [P(\theta, \lambda) (S(\lambda) - D)) - P(\theta, \lambda') Y(\lambda, \lambda')]}{R(\lambda)} d\lambda'$$
Responsivity Degradation in the SUSIM Instrument
characteristics and causes

Responsivity of all optical elements degrade in proportion to UV exposure.

Accordingly, entrance filters degrade most strongly followed by primary gratings.

Filters only degrade because they “darken”.

Gratings mostly degrade because of interference (!):
 ▶ negative degradation has been observed (\(> 3 \times\))
 ▶ near 180 nm gratings don’t degrade (for moderate exposures)
Responsivity Degradation in the SUSIM Instrument
characteristics and causes

Responsivity of channels with entrance filters (both MgF$_2$ and quartz types) follow the same general dependence (Floyd, 1999):

\[R(\lambda, x) = c_0(\lambda) + c_1(\lambda) \times \log(1 + x/c_2(\lambda)) \]

where:
- x – exposure
- λ – wavelength
- c_n – wavelength-dependent constants

That the same general dependence is experienced by both types of filters indicates that the responsivity degradation is a surface phenomenon.

Likely candidate: UV-induced polymerization of contaminant hydrocarbons
Responsivity Degradation in the SUSIM Working Channel
Example: MgF$_2$ entrance filter
Responsivity Degradation in the SUSIM Working Channel

Example: Quartz entrance filter

SUSIM Working Channel Signals, Fits, and Ratio: (252−258nm)
Calibration of the Output of the Deuterium Lamps

Although the lamp output is itself stable, the lamp’s MgF$_2$ exit window degrades probably by the same (polymerization) mechanism as do the other optical elements.

Accordingly, we assume the same form of the lamp (window) degradation as was found for the SUSIM entrance filters.

Although most and channels gave similar results, the least degrading lamps (biannual and annual) and channel (RC) were used to establish the output degradation for those lamps.

The degradations of the other (monthly and quarterly) lamps were established through direct intercomparisons with the other two lamps.
Responsivity degradation will be different for the lamps and sun if each has a different grating footprint.

Because the rays from the lamp are not parallel, the grating exposure footprint is larger for the lamp than for the sun.

Because lamp measurements are made with, on average, less exposed and therefore less degraded grating surfaces, they will experience (at first) LESS degradation than solar measurements on the same channel.

Accordingly, the lamp’s larger exposure footprint causes its measurements to underestimate the degradation experienced with solar measurements.

Anomalous degradation estimated through self-similar comparisons of the time series of measurements by different channels having different UV exposures.
Anomalous Degradation
Ly-α signals during period of no entrance filter

Ly-α Mid and Low Resolution Adjusted Signals

1.1 nm resolution
5 nm resolution

SC 22 & 23 minimum
SUSIM UARS Reference Channels

<table>
<thead>
<tr>
<th>Reference Channel</th>
<th>λ range (nm)</th>
<th>Entrance Filter</th>
<th>Grat. Pair</th>
<th>Det.</th>
<th>UARS days</th>
<th>cadence</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC</td>
<td>110–265</td>
<td>MgF$_2$-4</td>
<td>UG1</td>
<td>SSE</td>
<td>30–2741</td>
<td>2/year</td>
</tr>
<tr>
<td>RC</td>
<td>235–412</td>
<td>Quartz-2</td>
<td>UG1</td>
<td>SLE</td>
<td>30–2741</td>
<td>2/year</td>
</tr>
<tr>
<td>nRC</td>
<td>110–265</td>
<td>MgF$_2$-4</td>
<td>LG2</td>
<td>SSE</td>
<td>2741–5071</td>
<td>2/year</td>
</tr>
<tr>
<td>nRC</td>
<td>235–412</td>
<td>Quartz-2</td>
<td>LG2</td>
<td>SLE</td>
<td>2741–5071</td>
<td>2/year</td>
</tr>
<tr>
<td>MoRC</td>
<td>110–265</td>
<td>none</td>
<td>UG2</td>
<td>PSE</td>
<td>316–5071</td>
<td>12/year</td>
</tr>
<tr>
<td>MoRC</td>
<td>235–412</td>
<td>none</td>
<td>UG2</td>
<td>PLE</td>
<td>316–5071</td>
<td>12/year</td>
</tr>
<tr>
<td>MiRC</td>
<td>110–265</td>
<td>none</td>
<td>UG3</td>
<td>SSE</td>
<td>1369–5071</td>
<td>9/all</td>
</tr>
<tr>
<td>MiRC</td>
<td>235–412</td>
<td>none</td>
<td>UG3</td>
<td>SLE</td>
<td>1369–5071</td>
<td>9/all</td>
</tr>
<tr>
<td>LMiRC</td>
<td>110–265</td>
<td>none</td>
<td>LG3</td>
<td>SSE</td>
<td>2740–5071</td>
<td>4/all</td>
</tr>
<tr>
<td>LMiRC</td>
<td>235–412</td>
<td>none</td>
<td>LG3</td>
<td>SLE</td>
<td>2740–5071</td>
<td>4/all</td>
</tr>
<tr>
<td>StRC</td>
<td>110–265</td>
<td>none</td>
<td>UG4</td>
<td>PSE</td>
<td>2741–5071</td>
<td>4/year</td>
</tr>
<tr>
<td>StRC</td>
<td>235–412</td>
<td>Quartz-1</td>
<td>UG4</td>
<td>PLE</td>
<td>2741–5071</td>
<td>4/year</td>
</tr>
</tbody>
</table>
Solar Changes as Measured by Reference Channels
determine the change in responsivity over each time period

Ratios of solar scans from each reference channel, after correction for degradation (both lamp-measured and anomalous) measure the solar change over the corresponding period of time.

By combining (e.g., averaging) the solar changes over the same time interval as measured by different reference channels, one may generate an estimate of solar change over than period.

These solar changes serve to determine the responsivity change in the working channel over that period.

The working channel was changed only on days when several reference channel scans were performed.
Solar Changes as Measured by Reference Channels
determine the change in responsivity over each time period

Solar Changes Between Calibration Days

[Graph showing wavelength on the x-axis and irradiance ratio on the y-axis, with various datasets labeled such as 1845/0896 Mids uncorrected, 1845/0896 Lows uncorrected, 1845/0896 Daily Mids Lamp3, 1845/0896 Daily Lows Lamp3, 1845/0895 Monthly, 1845/0895 Monthly Lamp1, 1845/0896 Ref. uncorrected, 1845/0896 Ref. Lamp2]