How TIMED-SEE uses other FUV irradiance data

Frank Eparvier,
Rachel Hock,
Tom Woods,
and the whole SEE Team

eparvier@lasp.colorado.edu
303-492-4546
EGS:
• EUV Grating Spectrograph,
• Rowland-circle grating design
• 64x1024 pixel CODACON (MCP-based detector)
• 27-194 nm at $\Delta \lambda=0.4$ nm
• Special filter for Ly-α (121.6 nm)

XPS:
• XUV Photometer System,
• Set of 12 Si photodiodes
• 0.1-34 nm at $\Delta \lambda=7$-10 nm
• Ly-α (121.6 nm) at $\Delta \lambda=2$ nm

• SEE observes the Sun for ~3 minutes of every 97-min orbit.
• SEE has operated from 22 Jan 2002 to the present.
• SEE data products are available from http://lasp.colorado.edu/see/
SEE Pre-Flight Calibrations

- Pre-flight calibration at NIST SURF-III in Gaithersburg, Maryland (to a few %).
 - Sensitivity (QT) as a function of wavelength and FOV angles

Sample EGS QT measurement made at NIST SURF-III.

Sample EGS sensitivity variation over FOV.
EGS In-Flight Calibrations

- On-Board Tracking of Relative Changes:
 - **Redundant channel:**
 - Calibration Channel uses different slit and and different areas on same grating and same detector.
 - Primary Channel used every orbit, redundant channels used for 2 orbits every week (1:52 duty cycle)
 - **Other On-board Tracking:**
 - Weekly detector flat fields with internal Hg lamp
 - Regular FOV maps (using Sun as source)
 - Wavelength scale set using solar spectrum itself

- Re-Calibration (Tracking of Long-Term Changes)
 - **Regular Sounding Rocket Underflights**
 - Same instruments as on SEE, calibrated @ NIST pre- and post-flight
 - Allows transfer of absolute calibration from ground to both channels
 - Launch on 23-Oct-2006 is last one planned for TIMED mission
 - Uses SDO-EVE rocket instrument and XPS, but no EGS (EVE covers 0.1-105 nm plus Ly-α)
 - Plan regular underflight calibrations for SDO EVE starting in late 2008
Weekly Tracking

- Weekly flat fields and calibration channel comparisons are used to adjust daily high-duty channel irradiances for relative degradation.

- Degradation greatest for largest signals (e.g. CIII 97.7 nm and HI continuum ~90 nm)

- Still get good signals even in most degraded lines.

- Only a small amount of degradation is seen in the calibration channel.
Long Term Changes

- **EUV:**
 - See lots of degradation in bright lines and H continuum (weekly fits with flatfields and redundant channel)
 - See some increase in sensitivity where degradation doesn’t occur (linear fit between rockets)

- **FUV:**
 - See little degradation in FUV portion of spectrum
 - See large (~10%/year) increase in sensitivity in both primary and redundant channels (time-dependent fit with SUSIM/SOLSTICE composite reference)

![Graphs showing irradiance changes over time for 30.5 nm and 150.5 nm wavelengths.](image-url)
Long-Term FUV Correction

- **Version 6**: First applied almost linear correction based on comparison with rockets

- **Version 7**: Realized that linear fit was over-correcting, switched to fit based on comparison with UARS-SUSIM and SORCE-SOLSTICE:
 - produced composite FUV daily average time series
 - SUSIM prior to 2003/060, SOLSTICE after spliced by scaling to match in few months overlap
 - normalized to unity on 2002/039 (first SEE rocket date) so absolute calibration is not dependent on SUSIM or SOLSTICE
 - ratioed composite to SEE daily averages
 - fit ratios at Ly-\(\alpha\) and for 5-nm bins from 130-195 nm
 - apply correction to SEE data by interpolating between 5-nm bins onto 1-nm bins

- **Version 8**: Updated time-series fits using more SORCE-SOLSTICE data
A New Long-Term Correction is Needed

- Fits need updating with more recent SORCE data
 - correction looks OK at many wavelengths, but is wandering off with others

- UARS SOLSTICE data is now available
 - fills in 130-155 nm range where SUSIM uncertainty is higher

- Wavelength binning has issues
 - Using 5-nm bins has introduced a bias towards longer wavelengths of bins (sawtooth effect)
Making an New Long-term Reference

Since SORCE doesn’t cover the full time-span or wavelength range of SEE-EGS, a new composite reference spectrum was made for comparison.
Some Normalized Comparisons (1)

New normalized composite reference time-series compared with un-corrected SEE data in 1-nm bins.

121-122 nm

+ + + + + + + + + + + + +

Normalized SEE/Reference

- - - - -

V8 Long-term Correction

- - - - -

Test New Correction

146-147 nm
Nearing Solar Minimum, the V8 fits are starting to overestimate the long-term change at some wavelengths.
Fitting the Long-term Correction
Discussion Points

- Are the chosen time and wavelength regions for the composite appropriate?
 - What combination of UARS and SORCE data is best?

- What wavelength/time binning for corrections?
 - 5-nm bins for fits are too large (sawtooth)
 - 1-nm bins will force SEE data to have the same spectral shape as composite reference
 - Should fits be smoothed in time? in wavelength?