

Laboratory for Atmospheric and University of Colorado **Boulder**

ACHIEVING HIGHER SPECTRAL RESOLUTION DATA AND DETERMINING DOPPLER VELOCITIES DURING FLARES USING SDO/EVE LEVEL OB DATA

Gabriela Gonzalez^{1,2}, Phil Chamberlin², and Vicki Herde^{1,2}

(1)Department of Aerospace Engineering and Sciences, University of Colorado Boulder, Boulder, CO. United States (2)Laboratory for Atmospheric and Space Physics, Boulder, CO, United States

Science Motivation

Reconnecting Magnetic Field Line

GOES X1.1 Class Flare Feb 15th, 2011

Movie made using Helioviewer.org

SDO/EVE MEGS-A

(Multiple EUV Grating Spectrograph)

David A. Crotser, Thomas N. Woods, Francis G. Eparvier, Matthew A. Triplett, Donald L. Woodraska, SPIE, 2007; DOI: 10.1117/12.732592

- Has a special grazing incidence, off-Rowland circle design
 - Minimal photon absorption at grating
 - Increased photon absorption at detector due to it being at near-normal incidence
 - More spectral resolution with the sacrifice of spatial resolution
- Two slits together measure wavelengths between 5-37nm
 - Each slit has its own filter to measure different wavelengths of light and block higher orders

SDO/EVE MEGS-A Spectral Line Geometry

MEGS-A "Quiet Sun" Spectral Image (1024 x 2048 pixels)

MEGS-A Flare Spectral Image (1024 x 2048 pixels)

Spectral Image of the Gradual Phase of a Flare

You can see that the emission line coming from the flare is at a slant

How can we create more accurate wavelength scale, that will inherently have higher spectral resolution, from the EVE Level OB flare data?

A Late Gradual Phase Spectral Image

MEGS-A1 (~5-18nm)

MEGS-A2 (~17-37nm)

Our Flare: Feb 15th, 2011

Twelve Image Median Spectral Image

Late Gradual Phase Time Range Feb 15th, 2011 02:08:07, 02:09:57 Time found using GOES-XRS

Late Gradual Phase Spectral Image

Impulsive Phase Spectral Image Impulsive Phase Time Range: Feb 15th, 2011 01:52:17-01:54:37 UTC

Late Gradual Phase Spectral Image

Peak of Gradual Phase Spectral Image Gradual Phase Time Range: Feb 15th, 2011 01:56:17-01:57:27 UTC

Subtract Late Gradual Phase Spectral Image by Pre-Flare Spectral Image

To See Only Late Gradual Phase Emissions

Gaussian Fitting Emission Lines to find X-Pixel Peak Locations

Fe XVI 33.54nm Example for a Single Row of Data From MEGS-A2

Fe XVI 33.54nm is located between pixels 227 and 235

Results Fitting a Single Row of MEGS-A2 Data

Results Fitting a Single Row of MEGS-A1 Data

	Peak Location		
lon	(Pixel)	Wavelengths* (nm)	T _{max} (10 ^T)
Fe XXII	1376.279	13.57912	7.1
Fe XXI	1421.87	12.87526	7.1
Fe XX	1466.794	12.18448	7.1
Fe XIX	1478.847	11.99836	7
Fe XVIII	1653.424	9.39322	6.9

Wavelength Scale

Reminder that MEGS-A1 measures about 5-18nm and MEGS-A2 about 17-37nm

Comparing Level 2 and 3 Data to Level 0B

Comparing Level 2 and 3 Data to Level 0B

Wavelength Scale Accounts for Slant in Flaring Data

What We Were Hoping to See vs Our Results

Future Work

- Calculate doppler velocities for MEGS-A1
- Find more ions to fit and analyze
 - Learn to fit a double-gaussian
- Look at different times of the flare
- Calculate uncertainties

