# GOES Extreme UltraViolet Sensors (EUVS) calibrations with SDO EVE

Janet Machol<sup>1,2</sup>

James Mothersbaugh III<sup>1,2</sup>, Frank Eparvier<sup>3</sup>, Donald Woodraska<sup>3</sup>, Andrew Jones<sup>3</sup>, Tom Woods<sup>3</sup>, Tom Eden<sup>3</sup>, Edward Thiemann<sup>3</sup>, Ann Marie Mahon<sup>1,2</sup>, Stefan Codrescu<sup>1,2</sup>, Rodney Viereck<sup>1,4</sup>

<sup>1</sup> University of Colorado Boulder /CIRES
 <sup>2</sup> NOAA/NCEI
 <sup>3</sup> University of Colorado Boulder /LASP
 <sup>4</sup> NOAA/SWPC

## 48 Years of GOES Measurements

- Geostationary Operational Environmental Satellites
  - Earth imagery and space weather monitoring
  - At GEO: 36,000 km altitude, at 6.6 R<sub>E</sub>
  - Always two satellites in operations
- GOES-1 through -15 (1975-2020)
  - Space Environment Monitor (SEM)
  - particles, MAG, XRS, EUVS (GOES 13+)
- GOES-R (-16 through- 19; 2017- )
  - EUV and X-Ray Irradiance Sensors (EXIS)







### GOES-R



- EXIS designed and built by the Laboratory for Atmospheric and Space Physics (LASP) at CU Boulder
- GOES-16 2016 launch
- GOES-17 2018
- GOES-18 2022
- GOES-19 2024



## GOES-R EUVS

## EUV and X-Ray Irradiance Sensors (EXIS)

### Extreme Ultraviolet Sensor (EUVS)

EUNSIB

150

200

X-Ray Sensor (XRS)

+R5.A. EUNS.A

50

100

0



CU buffalo (bison)

### GOES-R EUVS

### Very different measurements between generations

- GOES 13-15: 5 broadband channels
- GOES-R: higher resolution spectral measurements

3 grating spectrographs EUVS-A: 24-diode array EUVS-B: 24-diode array EUVS-C: 512-diode array

Key measurements

7 spectral lines

Mg II index

- Spectral model (5-127 nm)
- uses representative
- emissions from solar layers



### Mg II Index

 Mg II core-to-wing ratio (Mg II index) is a proxy for UV solar spectral irradiance

$$Mg II index = \frac{I_h + I_k}{I_{blue wing}} + I_{red wing} \leftarrow photospheric$$

• No degradation correction needed (to first order)



## On-orbit Absolute Calibration of EUVS-A

**EUVS-A scaled to SDO EVE Calibration** Rocket measurements.

- GOES-16 and -17:
- GOES-18: ullet
- $\bullet$

2018 EVE rocket flight scaled to GOES-16

GOES-16 and -18: will use 2023 rocket flight

|                     | EVE rocket scaling factor |         |  |
|---------------------|---------------------------|---------|--|
| GOES-17 EUVS-A line | GOES-16                   | GOES-17 |  |
| 25.6 nm             | 0.89                      | 0.92    |  |
| 28.4 nm             | 0.82                      | 0.85    |  |
| 30.4 nm             | 0.98                      | 1.02    |  |



## Degradation of EUVS-A, -B

### EUVS-A degradation

 Uses primary to secondary filter ratio

EUVS-B calibration + degradation

- Use ratio of daily average to...
  - SORCE SOLSTICE (into 2019)
  - proxy for each wavelength based on GOES-R Mg II (now)



## GOES-16 Degradation

### **EUVS-A**

| λ[nm] | Degradation<br>May 2023 after 20 years |       |  |  |
|-------|----------------------------------------|-------|--|--|
| 25.6  | 0.86                                   | 0.54* |  |  |
| 28.4  | 0.82                                   | 0.59  |  |  |
| 30.4  | 0.79                                   | 0.48  |  |  |

### **EUVS-B**

| λ[nm] | Degradation<br>May 2023 after 20 years |       |  |  |
|-------|----------------------------------------|-------|--|--|
| 117   | 0.85                                   | 0.34* |  |  |
| 121   | 0.58                                   | 0.42  |  |  |
| 133   | 0.95                                   | 0.42* |  |  |
| 140   | 0.90                                   | 0.76* |  |  |

\* Upper bounds based on linear (instead of exponential) fits.

## EUVS Line Measurements



## EUVS Line Irradiances



### 2017-09-10 Flares



16:10:00

16:40:00

15:40:00

Ę

### Ē

## EUVS Spectral Model

- 24 bins from 5 127 nm
  - Thiemann, E.M.B, et al. (2019), J. Space Weather and Space Clim.
  - uncertainties: 2-20% long term, short-term: 6-80%
- EUVS lines can be input to other models or serve as proxies for missing data



GOES 13-15 EUVS

### Ę

## GOES 13-15 EUV Irradiance

5 broadband measurements

Sporadic measurements for GOES-13 and -14

Cadence: 10 sec

| Response | A |    | B<br>30.4 | C       | D        |     | E<br>Lyman α |
|----------|---|----|-----------|---------|----------|-----|--------------|
| C        | ) | 20 | 40        | 60      | 80       | 100 | 120          |
|          |   |    | W         | aveleng | ıth (nm) |     |              |

| GOES | Years of Operation |
|------|--------------------|
| 13   | 2006 - 2017        |
| 14   | 2009 - 2020        |
| 15   | 2010 - 2020        |

## Science-Quality GOES 13-15 Lyman $\alpha$

EUVS-E (121 nm; Lyman alpha)

- Degradation and calibration with SORCE SOLSTICE Lyman alpha
- Science-quality
  - G14 and -15: 2010-2020, version 5
  - G13: 2006-2016, version 4



## Science-Quality GOES 13-15 EUVS-A, B

### EUVS-A (15 nm) EUVS–B (30.4 nm, He II)

- validated against EVE/MEGS-A
- Science-quality data at Version2 through 2014,
- Redo EUVS-B next year to Version 5
  - Challenge would be to extract 30.4 nm line
    - Use MEGS-A

https://www.ngdc.noaa.gov/stp/satellite/goes/ doc/GOES\_NOP\_EUV\_readme.pdf





Some applications of EUVS

## EUV for Satellite Drag Model

- High Accuracy Satellite Drag Model (HASDM)
  - Run operationally by the US Air Force.
  - Calculate and predict neutral density and satellite position for collision avoidance
  - Customers: DOD, NASA, NOAA, satellite operators
  - The output used to revise NORAD catalogue of satellite 2 line elements every 8 hours.
  - Uses solar indices as inputs.
- solar indices
  - Produced by Space Environment Technologies (SET)
  - Use 28.4, 30.4 and 121.6 nm from GOES
  - Use measurements from other satellites also.

## Exospheric Neutral Hydrogen Densities



Use solar occultations to determine neutral hydrogen densities

### Challenges

- Need proxy for top-ofatmosphere Lyman alpha during dip
  - Tried proxies. Use scaled second satellite.
- Multiple scattering in optically thick region (<3 R<sub>F</sub>)
  - Determine line-of-sight velocity distributions and associated cross section

## NOAA/NCEI GOES Irradiance Data

## Operational vs Science-quality Data

### **Operational data (real time)**

Calibrations changes delayed & abrupt Algorithm updates

### Data gaps

Original file format & products

### **Science-quality**

Cal changes are smooth

Reprocessed from mission start

Gaps filled

GOES-R format & product types



## EUVS Data

XRS Daily Background

**XRS Flare Location** 

### NOAA/NCEI EUVS

- Science quality and Operational
- Includes aggregations
- GOES-18 August
- Future: high resolution, composites, GOES-19

### NOAA/SWPC

- Real-time, but limited info
- No EUVS yet

| Level 2 Data                                                                                             | Level 1b Data                                                                                                                                            | Special Event Data                                               | Documents                                                                     | GOES 1-15                                    |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------|
| GOES-R L2 data wi<br>longer netCDF files<br>instruments are av<br>Consult the ReadMo<br>Example codes to | Il be available on a rolling basis a<br>, while the SUVI files are in FITS<br>ailable from SWPC.<br>e files below before using the da<br>use these data. | as products reach maturit;<br>; format. Real-time JSON fi<br>ta. | r. The L2 time series data are aggro<br>iles with partial data products for s | egated into daily and<br>ome GOES-R          |
| GOES-R Level                                                                                             | 2 Data: Space Weath                                                                                                                                      | er Instruments                                                   |                                                                               |                                              |
| Instrument                                                                                               | Product                                                                                                                                                  | File Access                                                      | Description                                                                   |                                              |
|                                                                                                          | EUVS                                                                                                                                                     | User Guide<br>Readme                                             |                                                                               |                                              |
|                                                                                                          | EUVS 1-min Averages                                                                                                                                      | Data: 16 17<br>Plots: 16 17                                      | Spectral line irradiances, the Mg 1<br>spectra from the EXIS Extreme U        | II index, and proxy<br>Itraviolet Sensor (EU |
|                                                                                                          | EUVS Daily Averages                                                                                                                                      | Data: 16 17                                                      | Daily averages of spectral line irra<br>index, and proxy spectra              | adiances, the Mg II                          |
| l                                                                                                        | EUVS High Resolution                                                                                                                                     |                                                                  | High temporal and spectral resolu                                             | ition EUVS                                   |
| EXIS:<br>Extreme Ultraviolet<br>and X-ray Sensors                                                        | XRS                                                                                                                                                      | User Guide<br>Readme<br>Responsivity                             |                                                                               |                                              |
|                                                                                                          | XRS 1-minute Averages                                                                                                                                    | Data: 16 17 18<br>Plots: 16 17 18                                | 1-minute averages of XRS measu                                                | rements                                      |
|                                                                                                          | XRS 1-second Fluxes                                                                                                                                      | Data: 16 17 18                                                   | High cadence measurements from<br>Sensor (XRS)                                | n the EXIS X-Ray                             |

Data:

16 17

Data: 16 17

18

Daily averages and background

Based on XRS quad diode measurements



## Future

### EUVS

Continued degradation tracking Improved artifact corrections temperature impacts: ~1% annual oscillations, post-eclipse Mg II second order corrections New GOES-R products: high resolution (spectral & time), other spectral models, composites, event detection Version 5 for 30.4 (GOES 13-15) and 121 (GOES-13) XRS

Improved electron contamination correction Improved flare location algorithm New products: flare report and composite Science-quality GOES 1-12 XRS Science fun! GOES-U (-> GOES-19) launch in April 2024!



## Questions?

https://www.ngdc.noaa.gov/stp/satellite/goes-r.html

janet.machol@noaa.gov



### Solar X-ray and EUV Variability

**EUV** (10-120 nm) and **soft X-ray** irradiance create the ionosphere and heat the thermosphere.

EUV / X-ray irradiances have the **highest variability** < 0.01% of total solar irradiance (TSI) TSI varies by 0.1% while EUV varies by <2, X-rays by <10<sup>5</sup>



Woods et al., 2006, JGR, doi:10.1029/2005JA011507

## Operational Uses of EUV measurements

With an increase in solar EUV irradiance... The thermosphere heats up and expands. Satellite drag increases by up to a factor of 10. Satellite operators must correct orbit calculations.

Ionospheric changes impact radio communications and GPS navigation.

EUV irradiance is key input to thermospheric/ ionospheric models

Flares emit at some EUV wavelengths before X-rays >> faster flare detection

### **EXIS** Calibrations

- Nominal Weekly 90 s comparison with secondary
  - EUVS A, -B Measure and trend darks and gain.
  - EUVS-A Measure and trend primary filter changes.
  - EUVS A, -B, -C Measure and trend flatfield.
  - EUVS -C Measure and trend primary channel offset.

### • Quarterly cruciform

- XRS, EUVS-A, -B, -C Measure and trend FOV map
- XRS, SPS
  Measure and trend internal gain, dark

### • Quarterly other

- XRS, EUVS-A, -B Measure radiation k factors
- SPS
  Check for radiation sensitivity
- EUVS-C Check radiation filtering, Mg II scaling.
- XRS Find cross-over thresholds for A1-A2 and B1-B2. Check impact on ratios.
- XRS Determine NOAA scaling, L1b uncertainties.
- EUVS
  L1b model baseline and uncertainties.
- EUVS Check for bootstrap relationships and degradations.

### • Longterm comparisons

| - XKS Compare hare locations from XKS and SUVI | – XRS | Compare flare locations | from XRS and SUVI |
|------------------------------------------------|-------|-------------------------|-------------------|
|------------------------------------------------|-------|-------------------------|-------------------|

XRS, EUVS
 Compare measurements with other satellites