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Lyman-alpha

Lyman-alpha (Lya; 1216A) line of H | is the
strongest emission line in the solar
spectrum

Line core is formed in the lower TR; wings
are formed mid-chromosphere (quiet Sun)

During solar flares, Lya comes
predominantly from the ribbons/footpoints

Lya is optically thick

Lya photons cause photodissociation of
water in the mesosphere (ozone) and
lonizes nitric oxide generating the D-layer
of the ionosphere (80-110km; Lean+ 1985)
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Woods+ (2000)

e Medium (AR) and long-term (SC) variability in Lya irradiance have been
well studied, however flare observations have been notoriously absent

 Many instruments have not had the sensitivity, cadence, or duty cycle to
capture flare increases above the intense solar background

e Of the few flares observations obtained, most are “Sun-as-a-star” with
no spatial or spectral information, and measurements have been known

to contradict one another



Lya Flare (Irradiance) Observations

 Milligan+ (2020) published a
statistical study of ~500 M+X
class flares using GOES-15/
EUVS-E data. Follow up
included B+C class flares
(Milligan 2021).

* These data are spatially and
spectrally integrated, and
based on a Quiet-Sun line
profile

* What are the spatial and
spectral variations of Lya
emission during flares?
GOES-class dependence?

Ly flux (W m™)
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Contradicting Measurements

PROBA2/LYRA (Kretzschmar+ 2013) FILX GOES | 4 EU\’S E
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e For an M2 flare (8-Feb-2010) PROBA2/LYRA showed a
profile, with a 0.3% enhancement above background (Kretzschmar+ 2013;
similar to SDO/EVE. See also Milligan & Chamberlin 2016)

e For the same flare, GOES-14/EUVS-E showed an profile, with an
~3% contrast (similar to SORCE/SOLSTICE)
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~ Raulin et al. (2013)

Looked for correlation between Lya (from
PROBAZ2) and D-layer response (from VLF)
for seven C and low-M flares

Lya contrasts were found to be <1%

“...we have shown that the impact of transient
solar Lyman-a excesses on the electrical
conductivity of the D region is negligible”

PROBAZ2/LYRA significantly underestimates Lya
enhancements compared to GOES/EUVS
(Geocoronal absorption? See also Wauters+ 2022)

C-class flares are less likely to produce Lya
enhancements above the background, especially
in the case of limb flares

In Milligan+ 2020, we show that Lya increases
correlate with E-layer response



Flare Excess (Wm™?)

e During the 7-Sep-2011 X-class

IOnOSphe r|C flare, enhanced E-layer

conductivity closely followed the

Effects of Lya  inreasedLyaemission

o * Due to increased ionisation of
nitric oxide (“Solar Flare Effect/
Magnetic Crochet”)

60°N 60°N

30°N 30°N

. e Corresponding X-rays lagged the
E-layer response, implying that

o o they could not have been the

1 Tenl driver (Raulin+ 2013)

| — GOES Lya

—— GOES 1-8A 1 1725

B | e The X-ray profile resembled the D-
1" | ¢ layerresponse from VLF
S Ssesese2d| 2 observations with the known ~3-
_ minute delay (“sluggishness”)

O
(3]

M lsw |,,” ®* How common is this correlation?
| ; Was NO abundance abnormally

e ‘ ., high during this event?
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 Why do flares of comparable X-ray * HXR spectroscopy revealed that

magnitude (and similar locations)
have different Lya responses?

e (Greatorex+ (2023) studied three
M3 flares with different Lya (and
He Il) responses

e FISM2 significantly
underestimates the increases in
Lya for each event

"harder’ nonthermal electron
distributions tend to produce greater
Lya enhancements

Lya was found to radiated 2-8% of
the non thermal energy in agreement
with Milligan+ (2014)

What are the corresponding
lonospheric responses for these
events?



Lya Contrast and Energetics
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e Enhancements of Lya emission above ¢ Total radiated energy in Lya was up to
100 times more than in the associated

background do not exceed 30% for
the ~500 flares studied, typically <5%

e Comparable to variability due to AR

rotation, albeit on much shorter
timescales (Woods+ 2000)

X-rays

e Flares that occurred closer to the solar
limb showed less of a Lya enhancement

Milligan+ (2020)]



Center-to-Limb Variation

Center—to—lLimb Variation (X-class only)
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* CLV has been found for flares of all

classifications using a superposed
epoch analysis.

» |s this purely an opacity effect or a
foreshortening of the flare ribbons?
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* Confirmed by stereoscopic observations

of an X-class flare observed by GOES
(on the limb) and MAVEN (at disk centre)

Left: Milligan (2021); Right: Milligan+ (2020)
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integrated emission.
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An Unusual
C-class Flare

One event in the study - a C6.6
flare - produced a remarkable 7%
Increase in Lya!

This equates to 1030 ergs of energy

Such enhancements were believed
to be associated with X-class flares

Appears to be due to a failed
filament eruption

Evidence for Lya emission from the
corona? Would this be optically
thin? (see also Rubio da Costa+
2009, Wauters+ 2022)

Milligan (2021)
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Figure5 Comparison of the normalized irradiance vanation in LYRA/Lyman-« (black), AIA 160 nm (blue),
and AIA 30.4 nm (pink).

SDO/AIA 1600A 8-Sep-2011 15:55:53 UT
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Figure 6 The left panel shows the regions corresponding to the flare (white-square) and to the filament
(red-square) as observed at 15:55 by AIA 160.0 nm. The right panel shows the time series corresponding,
respectively, to the flare (whire) and filament (red) integrated intensities.

Wauters+ (2022) studied an M6
flare that displayed an increase in

Lya irradiance during the decay
phase (both GOES and PROBA2)

This enhancement did not
correspond to any increase in
SXR or HXR

Using SDO/AIA 1600A images we
generated separate lightcurves for
the flare and an erupting filament

Late-phase Lya increases were
therefore attributed to the filament
eruption in the corona

Additional evidence for coronal
Lya emission...?



- - - e Could this induce a quasi-
ACOUStIC OSC”Ia“OnS periodic response In the
lonosphere, similar to that found
e 3-minute oscillations have been for X-rays by Hayes+ (2017)7?
detected in Lya during a solar flare

d Solar Flare Pulsations

* Believed to be a dynamic
response at the acoustic cutoff
frequency of the chromosphere to
an impulsive injection of energy

EUV Intensity DNs™?
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Lya profiles from MAVEN/EUM (1s cadence) also appear to
show evidence for “acoustic oscillations” (4.4 minutes)

Milligan+ (2020)
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MAVEN/EUM data showed a ~26% increase in Lya during the
10-Sept-2017 flare. Largest increase measured by GOES-15
for Solar Cycle 24 was 29%. Is there some fundamental upper
limit to how much flares can increase the Lya irradiance by?



Flux

Lya Flare Spectra

e SORCE/SOLSTICE scans across the Lya line at 60s cadence once per orbit. Only one
published result from 28 October 2003 X17 flare.

» Spectrally-resolved Lya increased by 20% in the line core, x2 in the wings (Woods+ 2004).
Blue wing responded more than the red wing (filament eruption ~1500 km/s..?). s this
behavior commonplace? What does this tell us about formation height/energy deposition?

* All line scans are now (as of December 2020) publicly available (https://lasp.colorado.edu/
home/sorce/data/ssi-data/)
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https://lasp.colorado.edu/home/sorce/data/ssi-data/
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e Examined 18 M+X flares
that SOLSTICE captured
the impulsive phase of

* Wings generally
enhanced more than the
core, but also respond
earlier (wings are formed
deeper; background
effect?)

e Core emission
dominates broadband
irradiance

Butler+ (2023; In Prep.)




Main Conclusions

Lya emission during flares - and its ionospheric effects - has been overlooked in recent
decades. New instrumentation is now making detailed, statistical studies possible.

Increases of <B0% are observed in Lya during flares (typically <5%). Comparable to
that of active region evolution but on much shorter timescales.

Impulsive Lya emission induces currents in the E-layer of the ionosphere (previously
attributed to X-rays, which affect the D-layer) during one major event.

Energy radiated in Lya can be up to 100 times that of X-rays.

Center-to-limb variation is significant for flares of all magnitudes due to either opacity
effects or foreshortening of the flare ribbons (confirmed by coordinated observations
between GOES/EUVS and MAVEN/EUM)

We eagerly anticipate more Lya flare data from GOES-15 (September 2017 flares),
GOES-R (pseudo line profiles), SORCE/SOLSTICE (spectra), Solar Orbiter/EUI
(images), ASO-S/LST (imager+coronagraph), Solar-C/EUVST (spectra) +SoSpIM
(photometry), and SNIFS rocket (spatial, spectral, and temporal)



Outstanding Questions

What property of Lya emission determines its geoeffectiveness?

What dictates Lya irradiance variability during flares?

Greatorex+
(2023)

Does Lya consistently drive an E-layer response?
Milligan+ (2020)?

Why do different instruments, with similar response functions, derive different Lya
contrast values for the same events?

FISM2 (Chamberlin+ 2020) is commonly used to drive ionosphere/thermosphere
models, but drastically underestimates Lya flux during flares. By how much does
this affect the modelled terrestrial response? Greatorex+ (2023)



Other ideas..?

Lya/Ha ratio is temperature sensitive (Canfield+ 1981)
Lya/LyC (LyB, Lyy, Lyd,...) can tell us about ionisation fractions (Brown+ 2018)

Redwing asymmetry in Lya line has been theorised as evidence for accelerated protons
through charge exchange (the Orral-Zirker effect; Orral+Zirker 1976, Hudson+ 2012)

Investigate CLV and coronal contributions through coordinated stereoscopic observations
with MAVEN (Chamberlin+ 2018)

Search for further acoustic oscillations in Lya (and other chromospheric lines; Millar+ 2021)

Measure ionospheric responses (D-, E-, and F-layers) for disk/limb flares (on both Earth
and Mars). How does this response ultimately depend on nonthermal electron distribution?

How do irradiance measurements depend on the assumed underlying (QS) line profile?

More detailed radiative hydrodynamic modelling (RADYN currently truncates the line) —>
contribution functions for different heating rates (compare with other models, e.g. HYDRAD)






The solar—terrestrial
environment

J. K. Hargreaves
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“Lya... penetrates below 95km and
ionises the minor species NO whose
lonisation limit is 1340A”

“... the electron density in the D-region
has increased. Thus the enhancement is
most likely to be in the Lyman-a line or in
the X-ray flux.”

“Lyman-a is enhanced by a few percent
during a flare...But... X-rays... intensified
by several powers of ten. Thus the SWF
IS now attributed to X-rays.”

“One good reason for studying the effects
of solar flares is that nuclear explosions
also create dramatic effects in the
lonosphere and it is important not to
confuse the two!”



lonospheric
Effects of Lya
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The Kakioka magnetometer in
Japan measures changes in
lonospheric conductivity due to
iIncreased ionisation

During the 7-Sep-2011 X-class
flare, enhanced E-layer
conductivity closely followed the
increased Lya emission

Excess Lya flux was an order of
magnitude greater than X-rays

The corresponding X-rays

lagged the ionospheric response,
implying that they could not have
been the driver

The X-ray profile resembled the
D-layer response from VLF
observations with the known ~3-
minute delay (“sluggishness”)
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e Lya photons cause photodissociation of water in the mesosphere
(ozone), and ionises NO (nitric oxide) generating the D-layer of the
ionosphere (80-110km; Lean+ 1985)

- Important for satellite drag, GPS accuracy, RF propagation

 Lya is believed to be a signifiant radiator of energy deposited in the
chromosphere by nonthermal electrons (Milligan+ 2014)

* In the search for habitable exoplanets, knowledge of a star’s Lya
radiation field - and how it varies - is crucial (Linsky+ 2013)
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Lyman-alpha

Lyman-alpha (Lya; 1216A) is the strongest
emission line in the solar spectrum (H I:
2p—1s, T=8-40x103K)

Line core is formed in the lower TR; wings
are formed mid-chromosphere (quiet Sun)

During solar flares, Lya comes
predominantly from the ribbons/footpoints

Lya is optically thick

Lya photons cause photodissociation of
water in the mesosphere (ozone), and
ionises NO (nitric oxide) generating the D-
layer of the ionosphere (80-110km; Lean+
1985)



Solar Flares: Fundamental Challenges

- Magnetic reconnection facilitates
the rapid liberation of stored
energy to accelerate particles, heat
plasma and drive bulk motions

- How does the Sun accelerate
particles so efficiently? And how do
these particles drive increases in
radiation?

* How does this release of energy
get distributed throughout the solar
atmosphere?

- What are the implications for
planetary atmospheres?

My research focuses on
understanding heating and energy
transport processes In the solar
atmosphere through a combination
of state-of-the-art multi-wavelength
observations and advanced
theoretical models.



Flaring Chromosphere: Cause and Effect

Electrons__\
Non-Thermal

E|ectr0ns Flare Energy

Release-..

Evaporation

A i
@' Radiation
. _Accelerated
Footpoints -~ Particles

oprop

Magnetic Loop

e Hard X-rays

~ A
7 "o Nuclear

Gamma Rays

- Cause: incident electron spectrum is derived

from hard X-ray (HXR) observations generated
by thick-target bremsstrahlung

- Effect: resulting heating is diagnosed from

optical, UV, EUV, and soft X-ray (SXR)
observations of the chromosphere

Radiative hydrodynamic modelling can
establish the physical processes that drive
these emissions in response to an injection
of energy

Hot thermal loops

UV flare | A/
ribbons \5

HXR footpoints

2005 Jan 20 36:4é:30




Flaring Chromosphere: Cause and Effect

Relative Radiation Flux

ey F N B

100-500 MHz Radio
(Type lll Bursts)

Microwave Radio (~3000 MHz)
g

Ha (656.2 nm)

EUV {1-103 nm)

Soft X-rays 110 keV

X-rays (10-30 keV)

ard X-rays 1 30 keV

Electrons (Protons) 1 40 ke\/

-

e Gradual Phase —*
Impulsive Phase

Precursor
5 10 15 20 25 30

Time (minutes)

- Cause: incident electron spectrum is derived

from hard X-ray observations generated by thick-
target bremsstrahlung

- Effect: resulting heating is diagnosed from

optical, UV, EUV, and soft X-ray observations of
the chromosphere during the impulsive phase

Radiative hydrodynamic modelling can
establish the physical processes that drive
these emissions in response to an injection
of energy

Hot thermal loops

UV flare : /

ribbons \5

HXR footpoints

2005 Jan 20 CG:Qé:ED
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e Lya photons cause photodissociation of water in the mesosphere
(ozone), and ionises NO (nitric oxide) generating the D-layer of the
ionosphere (80-110km; Lean+ 1985)

- Important for satellite drag, GPS accuracy, RF propagation

 Lya is believed to be a signifiant radiator of energy deposited in the
chromosphere by nonthermal electrons (Milligan+ 2014)

* In the search for habitable exoplanets, knowledge of a star’s Lya
radiation field - and how it varies - is crucial (Linsky+ 2013)



Acoustic Oscillations

e 3-minute oscillations were detected
in Lya, LyC and 1600A and 1700A
during a solar flare from Sun-as-a-
star observations!

e Believed to be a dynamic response
at the acoustic cutoff frequency to
an injection of energy

e Similar periods were not found in
HXRs implying the oscillations were
iIndependent of the energy injection
rate

e Can the wave energy dissipate the
nonthermal energy? Does the
measured wave frequency depend
on deposition height? Or B-field
inclination angle (Jess+ 2013)7?
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27—Day Variability
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Lya variability from various sources
over 5 solar cycles. Woods+ (2000)

Woods+ (2000) measured the long-
term variability of Lya using AE-E
and UARS

Mean 27-day AR variability = 9%
(5% at solar min; 11% at solar max)

Mean 11-year SC variability = 1.5

Max 11-year SC variability = 2.1



SOIar Lya e Current:
I nStru me ntS - PROBA2/LYRA

- SDO/EVE (MEGS-P)

e Past:
- GOES-13, -14, -15 (EUVS)
- Solrad-8
- 0SO-3. -4 -5. 6. -8 - SORCE/SOLSTICE
_ AE-E - UARS/SOLSTICE
- SME - MAVEN/EUM (Mars)
- Skylab/ATM (HCO) e Future:
- TRACE - Solar Orbiter/EUI
- CORONOS-F/VUSS - Solar-C/EUVST+SoSpIM
- SOHO/SUMER+UVCS - ASO-S/LST
- CLASP, VAULT (+ >60 other - GOES-16(R), -17(S), -18(T), -19(V)
sounding rockets) (EXIS)




Literature on Lya Flares

Instrument
Canfield+ (1980) Skylab/ATM
Lemaire+ (1984) 0OSO-8
Brekke+ (1996) UARS/SOLSTICE
Woods+ (2004) SORCE/SOLSTICE
Nusinov+ (2006) CORONOS/VUSS
Rubio de Costa+ (2009) TRACE
Vourlidas+ (2010) VAULT
Johnson+ (2011) SOHO/UVS
Chubb+ (2012) Rocket
Milligan+ (2012) SDO/EVE
Raulin+ (2013) PROBA2/LYRA
Kretzschmar+ (2013) PROBA2/LYRA
Milligan+ (2014) SDO/EVE
Kretzschmar (2015) GOES15/EUVS
Milligan+ (2016) SDO/EVE
Milligan+ (2017) GOES15/EUVS
Dominique+ (2018) PROBA2/LYRA
Chamberlin+ (2018) MAVEN/EUM

Observation

Spectra
Spectra
Spectra
Spectra
Photometry
Imager
Imager
Photometry
Photometry
Photometry
Photometry
Photometry
Photometry
Photometry
Photometry
Photometry
Photometry
Photometry

Result
Temporal variations
Redshift in Lya
6% increase
20% increase in core, wings x2
~8-10% increase
<10% of nonthermal energy
Impulsive microflare
L~1025-27 erg s-1, 4 events off-limb
No change detected
L~1030 erg during X-class
No ionospheric response
0.6% increase/gradual variations
6-8% of nonthermal energy
Scaling power of a=2.3-2.9
Anomalous temporal behaviour
Acoustic (~3 min) oscillations
Used to isolate BaC
Neupert Effect
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Milligan et al. (2014) used multi-wavelength observations of the 15 February 2011 X-
class flare to determine the radiated energy budget of the flaring chromosphere

RHESSI HXR data were used to determine the amount of energy deposited by
nonthermal electrons (>2x1031 erQ)

SDO (EVE+AIA) and Hinode (SOT) were used to quantify the radiative losses in the
chromosphere (~3x1030 erg; ~15% of the nonthermal energy. i.e. 85% is “missing”)

Lya dominated the radiative losses (~8%; see also Rubio de Costa+ 2009)
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Anomalous Temporal Behaviour

e Milligan & Chamberlin (2016)
showed that the Lya flare time
TN "> profiles from SDO/EVE and

GOES/EUVS-E (Lya)

o oo GOES/EUVS differed

e GOES/EUVS peaked during the
_ impulsive phase, SDO/EVE
. e  peaked after the X-ray peak

1.001 - ) L 1 . 1 . . J———0

»s e This was later attributed to a
Milligan & Chamberlin (2016) Kalman filter used to smooth the
EVE data on the ground
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Geostationary Operational Environmental
Satellites (GOES)

~

GOES-West ‘:{; _ GOES-East
GOES-15 TN GOES-16
135" West 75.2° West

4 \{ A \/

Standby
GOES-14
105" West }

£

e GOES satellites have been used by NOAA to monitor weather in the US since
1975 (altitude ~35,000 km)

e Beginning with GOES-12 (2001) they have included a Space Environment
Monitor (SEM) to measure the effects of the Sun on the near-Earth environment

e GOES X-ray Sensor (XRS) data are the “industry standard” for solar flare
classification (A, B, C, M, X)



Response

available GOES EUV data

GOES/EUV Sensor (EUVS)

B D \ . GOES-13, -14, and -15 have been

M\ observing the EUV since 2006 at

IR ’
VAR

10.24s cadence

O 20 40 60 8 100 e The E channel is 100A Wideo and
el oLl centred on the Lya line (10A sub-band)

e R I SR B e GOES-15 is the most reliable but only

data up until summer 2016 have been

- * The data are scaled to the SORCE/
T 1 s N — SOLSTICE measurements, but also

suffer from ‘geocoronal absorption’ for
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e GOES-15/EUVS-E data are currently available from 7-Apr-2010
to 6-Jun-2016

e During this period there were 677 M-class flares and 45 X-
classes

e (C-class flares often do not produce an appreciable response in
full-disk Lya



Geocoronal Absorption

 The geocorona is the luminous
part of Earth’s outer atmosphere

 Primarily seen in solar Lya due to
scattering from neutral H

e Extends out to ~50Re (beyond the
orbit of the moon)

Earth’s geocorona as seen from
the moon by Apollo 16 astronauts in 1972



Geocoronal Absorption

 The geocorona is the luminous
part of Earth’s outer atmosphere

 Primarily seen in solar Lya due to
scattering from neutral H

e Extends out to ~50Re (beyond the
orbit of the moon)

Baliukin+ (2019)



“Typical” Lya Flare
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Methodology

e Start with the HEK/GOES event list (573 M’s, 33 X’s)

e X-ray background: minimum value within £12h of X-ray peak

e Lya background: fit lightcurve (+12h of X-ray peak) with constant (modal
value) plus Gaussian (for geocoronal absorption)

e [gnore events with GOES start/end time within 20 of dip minimum
(leaves 446 M’s, 31 X’s; for comparison, SDO/EVE saw 94 M’s, 8 X’s)

e |Integrate between GOES start/end times - both X-rays and Lya - and

convert from flux to power (1 W m-2 =

= 1.406x1030 erg s)
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Center-to-Limb Variation
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* Following from Woods+ (2006) Evya/Ex-ray

was plotted against heliocentric angle
and fit with:
( >\ )
R=Rg|k+2(1 -k ﬂ—%
\ J

e For X-class flares k=0.11 (Woods+ 2006
also found k=0.11)

e Peak contrast vs. angle also shows
some degree of limb darkening

Peak contrast

e Possibly due to opacity effects,
foreshortening of the ribbons near the
limb, or (partially) occulted events
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Instrumental passbands centred
on Lya are often ~100A FWHM

Underlying spectra is often based
on the quiet-Sun

Radiative hydrodynamic flare
models (e.g. RADYN) are limited
to around 2A at the line peak

We lack knowledge about how
the changes to the line profile
affect the broadband response
(e.g. core/wing ratio, red/blue
asymmetry, central reversal,
blends)
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e We propose use RADYN(T) to model the Lya line profile in response to various
heating functions to determine contribution function/formation height

* Resulting profile will be compared with spectra from Skylab(l) and convolved with
iInstrumental response functions to determine relative contributions to irradiance
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Future Lya Data/Missions/Models

GOES-15 data from intense storm period in Sept. 2017 not yet released
GOES-16 (Feb ‘17—) and -17 (Jun ‘18—) EXIS data due autumn 2020
EUVST (Lya spectrograph) has been selected for Phase A by NASA
Chinese ASO-S/LST will feature a Lya imager and Lya coronagraph
Solar Obiter (launched in February 2020) includes a Lya imager

Solar eruptioN Integral Field Spectrograph (SNIFS) sounding rocket is
being proposed by LASP, Colorado (Lya spectrograph)

| have submitted a Heliophysics Supporting Research proposal to NASA to
carry out detailed modeling of Lya (and LyC) during flares, as well as an
ISSI proposal to bring together solar flare and ionospheric experts



Summary

A self-consistent, statistical analysis of ~500 solar flares in Lya is presented (Milligan
et al. 2020; Space Weather, In Review..?)

Increases of <30% are observed in Lya during flares (typically <10%). Comparable to
that of AR evolution but on much shorter timescales

Energy radiated in Lya equals 1-100x that of X-rays (0.1-1x that of thermal plasma)

Center-to-limb variation is significant (confirmed by coordinated GOES/EUVS and
MAVEN/EUM observations) - due to either opacity effects, foreshortening of the flare
ribbons, or occultation by the solar disk

Impulsive Lya emission induces currents in the E-layer of the ionosphere (previously
attributed to X-rays, which affect the D-layer)

Eagerly anticipate more Lya data from GOES-15 (September 2017 flares), GOES-16
and -17 (line profiles), SORCE/SOLSTICE, Solar Orbiter/EUl and ASO-S/LST



Future Work..?

Lya/Ha ratio is temperature sensitive

Lya/LyC (Lyp, Lyy, Lyd,...) can tell us about ionisation fractions

Look in more detail at the CLV (establish the cause)

Search for more jointly observed GOES/MAVEN flares (Sept 20177?)
Systematic search for acoustic oscillations in Lya

Measure ionospheric responses for disk/limb flares (on both Earth and Mars)
Fraction of nonthermal energy for more events

More detailed radiative hydrodynamic modelling (RADYN currently truncates
the line) —> contribution functions for different heating rates
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IOnOSphenC » The Kakioka magnetometer

iIn Japan measures changes

EffeCtS Of Lya In ionospheric conductivity

due to increased ionization
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V | NN class flare, enhanced
| BV, B conductivity closely followed
~ | S st increased Lya emission
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| o Excess Lya flux was an order
1\ of magnitude more intense
o\ than X-rays
VI  The corresponding X-rays

lagged the ionospheric
response, implying that they
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