Study of a dayside magnetopause reconnection event detected by MMS and related to a large-scale solar wind perturbation and cold ions

Mohammed Baraka * 1 , Olivier Le Contel 1 , Patrick Canu 1 , Soboh Alqeeq 1 , Mojtaba Akhavan-Tafti 2 , Alessandro Retinò 1 , Thomas Chust 1 , Emanuele Cazzola 1 , Dominique Fontaine 1 , S. Toledo-Redondo 3, Jeremy Dargent 4 and MMS team

- 1. Laboratoire de Physique des Plasmas, LPP, Paris, France
- 2. Climate and Space Sciences and Engineering, Ann Arbor, USA
- 3. Departimento Electromagnetismo and Electronomica, Universidad de Murcia, Murcia, Spain
- 4. Institut für Theoretische Physik, Ruhr-Universität Bochum, Germany

MMS Fall 2022 SWTM

Mohammed.baraka@lpp.polytechnique.fr

Introduction

- We investigate the role of the pileup of the density in front of largescale solar wind perturbation on the reconnection process at the magnetopause.
- The very large density and the B_y reversal detected by MMS in the magnetosheath is a consequence of the arrival of the compressed solar wind that's observed at L1.
- The Stream Interaction Region SIR is considered as shock-less event (Jian et al, 2006).

Event overview

- Highly asymmetric reconnection: $N_{SH}/N_{SP} = 50$, $B_{SP}/B_{SH}=2.46$
- A moderate guide field directed dawnward: 0.42 B_{SP}, 0.96 B_{SH}
- Ion and electron jets V_L -200 km/s
- First peak in density (10 cm⁻³) is dominated by cold ions.
- Reversal of EN (directed away from the magnetopause).
- Current density peaks $(-J_M \text{ and } -J_L)$ at 04:39:25 UT.

	MSP	MSH
B (nT)	76	31
BL (nT)	67	0.5
BM (nT)	32	30
N (cm ⁻³)	1.5	73.67

L =[0.11,0.24,0.96]

 $\mathbf{M} = [0.30, -0.93, 0.19]$

N = [0.94, 0.26, -0.17]

 V_{MP} = -47 km/s N (TA)

MMS Location for 2015-10-21 05:00:00 UTC

Diamagnetic currents analysis

Equations:

$$egin{aligned} oldsymbol{V_{dia,e}} &\equiv rac{laphi P_e imes B}{enB^2}, \ oldsymbol{V_{dia,i}} \equiv -rac{laphi P_i imes B}{enB^2} \ oldsymbol{J_{dia}} &= -enig(oldsymbol{V_{dia,e}} - oldsymbol{V_{dia,i}} ig) = rac{B imes laphi P}{B^2} \end{aligned}$$

- $V_{\perp,i}$ is consistent with $V_{(dia+E\times B)}$
- $V_{dia,i}$ $V_{\perp,i}$ in the separatrix region where the pressure gradient is large.
- Most of the source of the perpendicular current in M direction is J_{dia,I} (although J_{dia,e} Is not negligible)
- The current in L direction is mostly field aligned at the peak

Generalized Ohm's law

$$\mathbf{E} + [\mathbf{u}_i \times \mathbf{B}] = \frac{1}{\text{ne}} \mathbf{j} \times \mathbf{B} - \frac{1}{\text{ne}} \nabla p_e.$$

$$\mathbf{V}_{\mathsf{MB}_{\mathsf{L}}} - \mathbf{V}_{\mathsf{LB}_{\mathsf{M}}}$$

- Outflow region is far from EDR and IDR.
- Magnetospheric Separatrix crossing at 04:39:24 UT lons are decoupled, Electrons remained magnetized (not shown).
- J×B term is compensated by v×B term (vertical black line)

The following schematic illustrates the process between the two blue vertical lines in the figure:

Cold ions effect

- Kinetic simulation of asymmetric magnetic reconnection with cold ions (without guide field).
- Cold ion very low temperature (below 300 eV) enables them to E × B drift in the electric field structure.
- This signature maintained away from the x-line see panel (b).

[Dargent et al, 2017]

What is the source of the cold ions?

- ThD and ThA were separated by 1.5 h in magnetic local time, both spacecraft measure magnetic reconnection; however, only one measures the high-density plume.
- ThA measures the density of the plume plasma contacting the magnetopause to be 18–72 cm⁻³
- When the plume is present, the reconnection jets have lower velocities and larger densities.

Particle moments and spectrograms for energy range 0-700 eV from level 2 MMS3 FPI velocity distribution data.

	V _{jet} (km/s)	V _{C+S} (km/s)	n _{jet} (cm ⁻³)	n _s (cm ⁻³)	n _m (cm ⁻³)	B _s (nT)	B _m (nT)	Mass inflow	Jet field
ThD No-plume	361	364	2.9	8.4	0.4	24	63	0.05	Sphere
ThA Plume	221	176	15.9	9.4	55	38	56	3.97	Sheath
MMS	200	188	92	60	10.5	31	76	0.07	Sheath

(Walsh et al, 2014)

Conclusions

- The reconnection event which is far away from the x-line detected by MMS on Oct. 21, 2015 during a period when the magnetosheath density is very large (up to 160 cm ⁻³) is related to the arrival of a weak SIR.
- The pile-up of the density near the boundary layer in the magnetospheric side is due to cold ions.
- The negative values of E_N (Earthward) on the magnetospheric side is due to the relative motion of cold ions in the out of plane direction (V_MB_L).
- The positive values of **En** (Sunward) on the magnetosheath side is due to the existence of the guide field (-**V**L**B**M).
- $\mathbf{J} \times \mathbf{B}$ term is due to the large diamagnetic current which is the largest contributor in the out of plane current (- \mathbf{J}_{M}) at the separatrix (mostly produced by ion pressure gradient).

Thank you

Appendix

Is the cold ions heated when they reached the boundary layer?

