Imperial College London

MMS SWT October 2022

The Influence of Plasma Conditions on Electric Fields in Magnetosheath Turbulence

Harry C. Lewis¹, Julia E. Stawarz¹

¹Imperial College London

Imperial College London Turbulent Electric Fields

- Electric fields are required to describe how B evolves
- Generalised Ohm's law describes electric field in collisionless plasma

$$\mathbf{E} = -\mathbf{u} \times \mathbf{B} + \frac{1}{n_e e} \mathbf{j} \times \mathbf{B} - \frac{1}{n_e e} \nabla \cdot \mathbf{P}_e + \frac{m_e}{n_e e^2} \left[\nabla \cdot \left(\mathbf{u} \mathbf{j} + \mathbf{j} \mathbf{u} - \frac{\mathbf{j} \mathbf{j}}{n_e e} \right) + \frac{\partial \mathbf{j}}{\partial t} \right]$$

 E_{MHD} controls large scales E_{Hall} controls sub-ion scales E_{Hall} controls sub-ion scales $E_{Pressure}$ subdominant throughout $E_{Inertia}$ controls sub-electron scales $f = e(n_i v_i - n_e v_e)$ $E_{Inertia}$ controls sub-electron scales

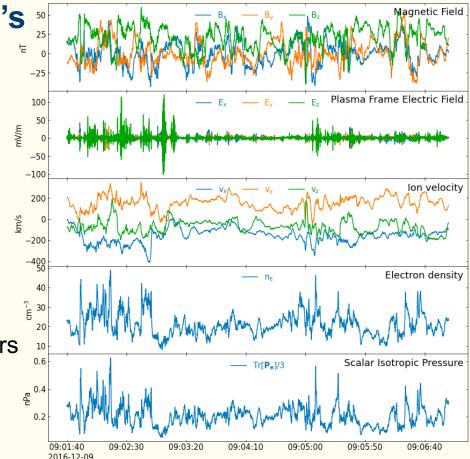
Imperial College London Generalised Ohm's Law: Components

- Contributions to the electric field come from background, linear and nonlinear
- Interplay between different effects is complex

$$\mathbf{E} = -[\mathbf{u}_{0} \times \mathbf{B}_{0} + \delta \mathbf{u} \times \mathbf{B}_{0} + \mathbf{u}_{0} \times \delta \mathbf{b} + \delta \mathbf{u} \times \delta \mathbf{b}] + \frac{1}{n_{e}e} [\mathbf{j}_{0} \times \mathbf{B}_{0} + \mathbf{j}_{0} \times \delta \mathbf{b} + \delta \mathbf{j} \times \mathbf{B}_{0} + \delta \mathbf{j} \times \delta \mathbf{b}] - \frac{1}{n_{e}e} \nabla \cdot [n_{e0}\mathbf{T}_{e0} + \delta n_{e}\mathbf{T}_{e0} + n_{e0}\delta\mathbf{T}_{e}] + \frac{\delta n_{e}\delta\mathbf{T}_{e}}{\text{Nonlinear}}$$

- Each of these components can be measured by MMS
- Understanding interplay of terms tells us about what is influencing dynamics

Imperial College London


Measuring Ohm's Law with MMS

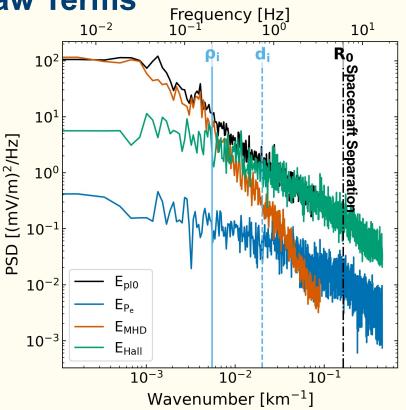
Why MMS?

- High cadence plasma moments
- Multipoint measurements $(\nabla \cdot \mathbf{P}_e)$

58 Intervals of data used:

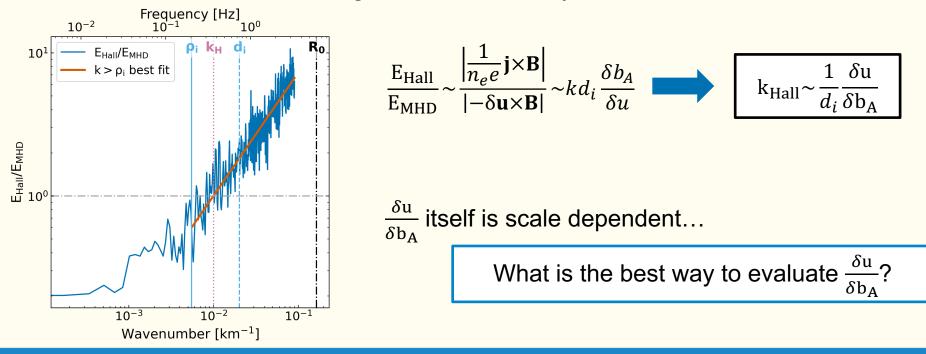
- From Stawarz+ (2022)*
- Situated in the Magnetosheath
- Strong fluctuations, steady parameters
- Taylor's hypothesis valid
- 3 43 minutes in length

Imperial College London Spectra of Ohm's Law Terms

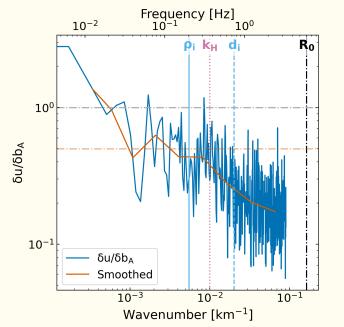

Scale dependence is noticeable:

- E_{pl0} well described by dominant term
- E_{MHD} dominates above ion scales
- E_{Hall} dominates sub-ion scales
- E_{Pe} tracks E_{Hall}; subdominant throughout

Two characteristics:


- **1.** Crossover between E_{MHD} and E_{Hall}
- **2. Relative amplitude** of E_{Hall} and E_{Pe}

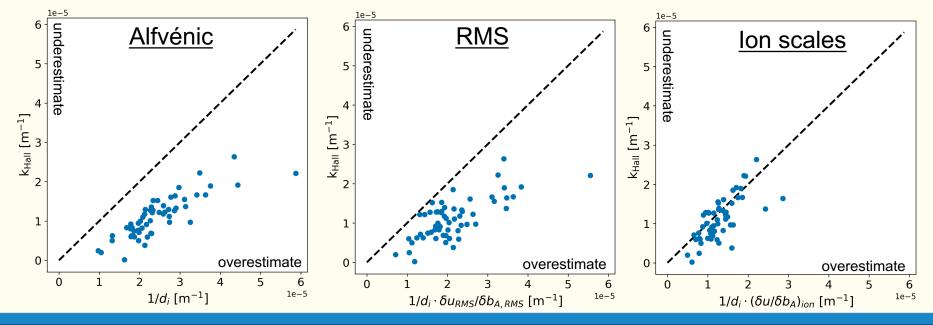
Do these characteristics vary with plasma properties?



Imperial College London Hall/MHD: The Hall scale

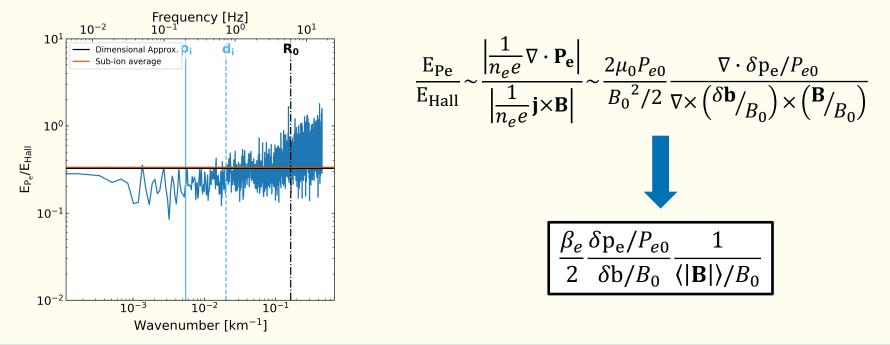
• Tells us where Hall term begins to control the dynamics

Imperial College London Hall/MHD: Estimating the Hall scale

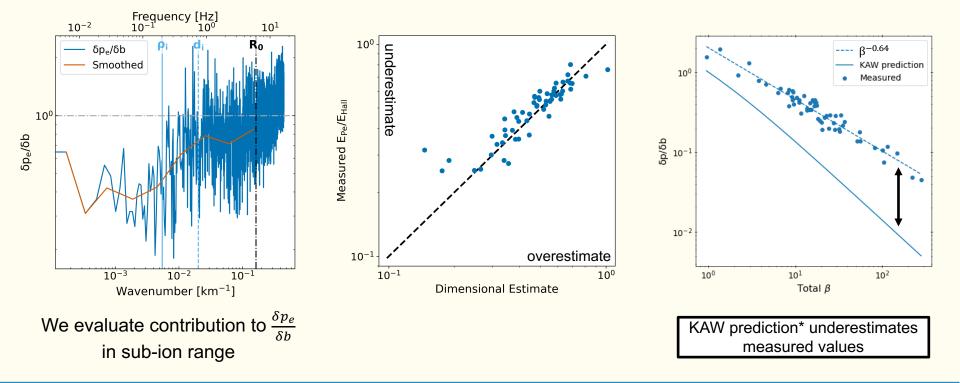

• Alfvénic: assume Alfvén waves; take $\frac{\delta u}{\delta b_A} = 1$

• RMS: Incorporates full range of
$$\frac{\delta u}{\delta b_A}$$

Ion scales: Contribution from around k_{Hall} - Typically $k_{Hall} \sim 0.5 d_i$ in our intervals


Imperial College London Hall/MHD: Estimating the Hall scale

- Alfvénic and RMS fluctuations overestimate measured value
- Contribution to $\delta u / \delta b_A$ from ion scales gives best agreement

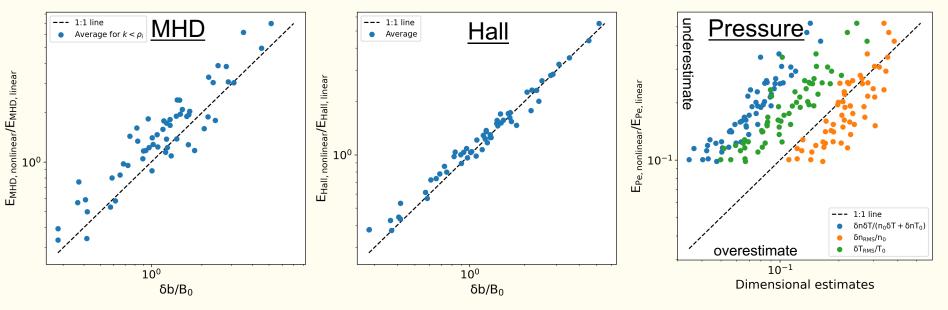


Imperial College London Pressure/Hall Amplitude

Tells us relative importance of Hall and Pressure terms

Imperial College London Pressure/Hall Relative Amplitude

Imperial College London Nonlinear / Linear Terms


• We split each term into linear (wave-like) and nonlinear (scale transfer)

Term	Linear	Nonlinear
MHD	$-\delta \mathbf{u} imes \mathbf{B}_0$	$-\delta \mathbf{u} imes \delta \mathbf{b}$
Hall	$rac{1}{n_e e} \delta {f j} imes {f B}_0$	$\frac{1}{n_e e} \delta \mathbf{j} \times \delta \mathbf{b}$
Pressure	$-\frac{1}{n_e e} \nabla \cdot \left(n_{e0} \delta \mathbf{T}_e + \delta n_e \mathbf{T}_{e0} \right)$	$-\frac{1}{n_e e} \nabla \cdot (\delta n_e \delta \mathbf{T}_e)$

MHD & Hall ratios:
$$\frac{\delta b}{B_0}$$

Pressure ratio: $\frac{\delta n \delta T_e}{\delta n T_{e0} + \delta T_e n_{e0}}$

$$\begin{cases} \text{Assuming } \delta n \gg \delta T_e & \longrightarrow & \frac{\delta T_e}{T_{e0}} \\ \text{Assuming } \delta n \ll \delta T_e & \longrightarrow & \frac{\delta n}{n_{e0}} \end{cases}$$

Imperial College London Nonlinear / Linear Terms

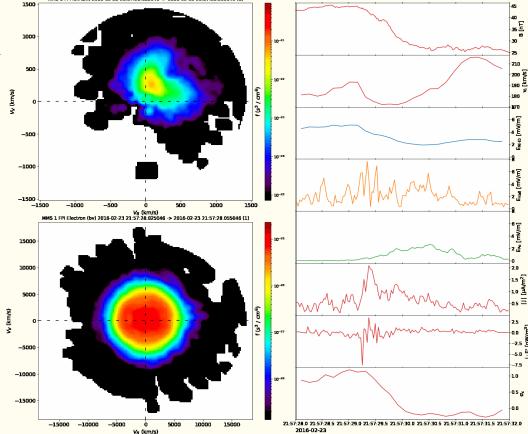
- MHD and Hall well described by $\delta b_{RMS}/B_0$
- Pressure term approximation improved assuming dominant δT_{RMS}

Imperial College London Summary

Results

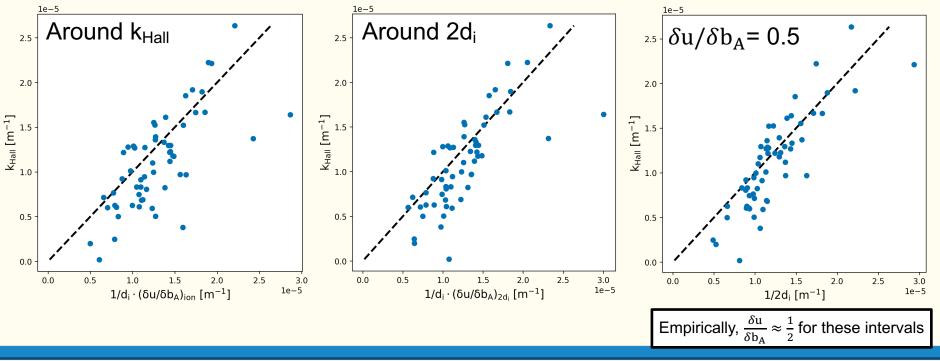
- Predicted interplay between MHD, Hall and Pressure terms via dimensional analysis estimates of 'Hall scale' and relative amplitude of E_{Pe}/E_{Hall}
 - Explored how to best estimate quantities used in dimensional analysis
- We find intervals where MHD and Hall terms dominated by either nonlinear or linear dynamics

Ongoing work


- Why is $\delta u / \delta b_A$ adjacent to Hall scales ≈ 0.5 ?
- How can we improve nonlinear/linear pressure term estimate?
- Investigating discrepancy with KAW prediction
- Linking structures in Ohm's law to velocity distributions (next slide)

Imperial College London Ongoing Work

How do physical structures affect velocity distributions?


Are terms in Ohm's law associated with velocity structures?

What can we learn about dissipation etc from these relations?

Imperial College **EXTRA: Hall/MHD: Values of** $\delta u/\delta b_A$

• If k_{Hall} is not known, taking $\delta u/\delta b_A$ around $2d_i$ provides a good result

