Imperial College London

THE ROYAL SOCIETY

MMS Science Working Team Meeting 4-6 October 2022

Magnetosheath Turbulence: Similarities & Differences with Turbulence in the Solar Wind

Julia E. Stawarz Imperial College London

Imperial College **Turbulence In Near-Earth Space** London

Bow

Shock

How do turbulent dynamics vary across different plasma systems?

- Turbulence-driven reconnection & Reconnection-driven turbulence [Phan+ (2018); Stawarz+ (2019, 2022); Ergun+ (2018, 2020a,b)]

Solar Wind

- Energy conversion/dissipation [Chen+ (2019); Afshari+ (2021); Bandyopadhyay+ (2019, 2020, 2021)]
- Measurement of nonlinear dynamics [Stawarz+ (2021)]

Plasma Sheet

Magnetopause

Magnetosheath

Sun

Imperial College **Overview** London

Taylor Hypothesis in the Magnetosheath

Correlation Lengths

Bulk Alignment Properties

Cross Helicity & Residual Energy

Intermittency & Small-Scale Structures

Taylor Hypothesis \boldsymbol{B}_0 **Imperial College** in the Magnetosheath

Taylor hypothesis tested by comparing single and multi-spacecraft 2nd-order structure functions

 $\mathbf{U}_{raylor} = -\mathbf{U}_{o} \mathbf{\Delta}^{t}$

L_{Multi-S}C

j.stawarz@imperial.ac.uk

London

Imperial College Turbulence Correlation Length London

Correlation length defined as:

$$\lambda_{C}(\theta) = \int_{0}^{\infty} A(\boldsymbol{l}) d\boldsymbol{l}$$

with $A(\boldsymbol{l}) = \frac{\langle \delta \boldsymbol{b}(\boldsymbol{x}+\boldsymbol{l}) \cdot \delta \boldsymbol{b}(\boldsymbol{x}) \rangle}{\langle |\delta \boldsymbol{b}(\boldsymbol{x})|^{2} \rangle}$

Characteristic size of largest turbulent structures – set by driving scale or inverse cascade

While λ_c converges to a value in magnetosheath, it continues to grow with interval length in solar wind

Imperial College Turbulence Correlation Length London

Imperial College Cross Helicity & Residual Energy London

Imperial College Cross Helicity & Residual Energy London

 σ_{C} and σ_{R} can impact the nonlinear turbulent dynamics

Imperial College Solar Wind Intermittency London

Scaling of structure functions $S_m(\ell) = \left\langle \left(B_i(x+\ell) - B_i(x) \right)^m \right\rangle \sim \ell^{\zeta(m)}$

Scale-dependent kurtosis

 $\frac{S_{4,i}(\ell)}{\left[S_{2,i}(\ell)\right]^2} = \frac{\langle [B_i(x+\ell) - B_i(x)]^4 \rangle}{\langle [B_i(x+\ell) - B_i(x)]^2 \rangle^2}$

Previous studies show sub-proton scale fluctuations become less intermittent in solar wind

Imperial College Scale Dependent Kurtosis London

In many cases, the magnetosheath shows increasing scale-dependent kurtosis through sub-proton scales

→ Suggests kinetic scale structures may be different solar wind and magnetosheath [see also Chhiber+ (2018) JGR for a case study]

Imperial College Scale Dependent Kurtosis London

In many cases, the magnetosheath shows increasing scale-dependent kurtosis through sub-proton scales

→ Suggests kinetic scale structures may be different solar wind and magnetosheath [see also Chhiber+ (2018) JGR for a case study]

Imperial College London Summary

We examine several properties of the turbulence in the magnetosheath with an eye toward characterizing the similarities and differences with solar wind turbulence

Taylor Hypothesis reasonable for many (though not all) magnetosheath intervals and signatures of anisotropy/isotropy scaling with $\delta b_{rms}/B_0$ apparent

Correlation Length in magnetosheath much shorter than those in the solar wind

Cross Helicity & Residual Energy place the magnetosheath in a more nonlinear state than many solar wind intervals

Intermittency continues to develop through sub-proton scales in many intervals in contrast to solar wind

