

Working with CRISM data

Hari Nair, Kim Seelos, Debra Buczkowski, Frank Morgan, Frank Seelos, Scott Murchie, and the CRISM Science Operations Center Johns Hopkins University Applied Physics Lab

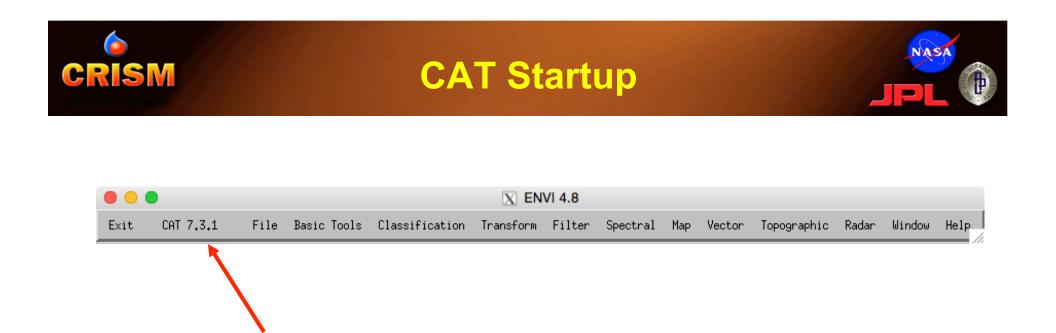
Presented at the Mars Data Analysis Meeting ISRO Headquarters, Bangalore Feb 22-25, 2016

The CRISM Analysis Tool (CAT)

- The CRISM Analysis Toolkit (CAT) is a series of custom IDL procedures packaged as a plug-in to ENVI, a proprietary remote sensing software available through ITT Exelis.
- To download and install the CAT, go to http://pds-geosciences.wustl.edu/missions/mro/crism.htm
- You will need CAT Version 7.0 or better to utilize the MTRDRs and related data products.

- IDL/ENVI procedures for CAT are found under:
 - CAT_ENVI/save_add/CAT_programs
- Calibration Data Records (CDR):
 - CAT_ENVI/aux_files/CDRs/
- Ancillary Data Records (ADR):
 - CAT_ENVI/aux_files/ADR/
- User manuals, CRISM SIS:
 - CAT_ENVI/aux_files
- Default CAT output:
 - CAT_ENVI/out

CRISM


- CAT temporary file output:
 - CAT_ENVI/tmp
 - Nominally CAT will clean up; files may be left in event of a crash; can be deleted after a session

CAT Setup

- Need envi.cfg in CAT_ENVI
- Can copy from one of the defaults, envi_win.cfg, envi_unix.cfg according to OS
- Useful things it specifies: tmp file directory, default output directory, spectral library directory, default data directory (where it looks first to open files)
- CAT config file:
 - CAT_ENVI/catconfigs/crismcat*.cfg
 - Replace * with any text, or omit
 - Can have multiple configs (multiple users, customized analysis, etc) – select at startup, reload during session if desired
 - Not required
 - PDS path, aux_files path, default volcano scan

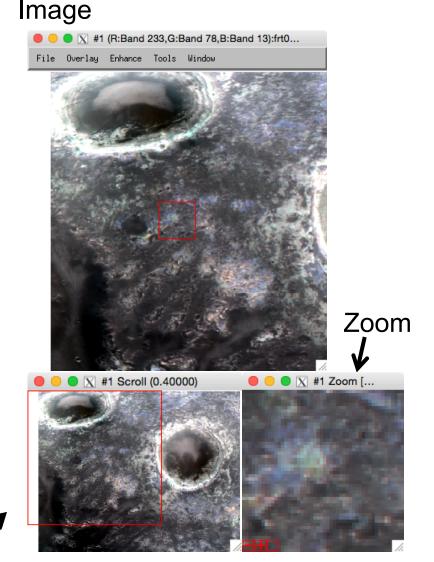
- When CAT installed, ENVI starts with CAT menu added – includes CAT version number
- Additional CAT-specific items added under Help and Display/Tools menus

Open CRISM File

CAT 7.3.1 File Basic	Too					
Reload CAT config file						
Open CRISM File						
Convert Format: PDS to CAT						
Radiance to I/F						
ATP Corrections						
EPF Utilities						
Spectral Analysis Utilities						
Map Utilities	A					
Data Filtering						
Miscellaneous Utilities 🔷 >						
Apply CRISM Bad Bands						

INPUT DATA:

- CRISM PDS image file (*.img)
- Corresponding PDS label (*.lbl)
 - example: frt000094f6_07_if166l_trr3.img frt000094f6_07_if166l_trr3.lbl

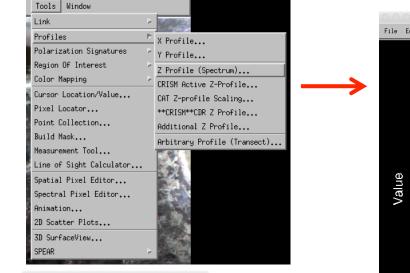

Spectral Analysis Utilities >		00	Select CRISM file(s) to open:
Map Utilities 📃 >		Directory	
Data Filtering 📃 👂		/project/sis/users/nairał	1/CRISM/data/
Miscellaneous Utilities 🔷 🕨		Filter	Files
Apply CRISM Bad Bands		*.img;*.IMG	frt000028a1_07_de1641_ddr1.img frt000028a1_07_if1641_trr3.img
		Directories	frt0000334d_07_de1651_ddr1.img frt0000334d_07_if1651_trr3.img
			frt000094f6_07_de1661_ddr1.img frt000094f6_07_if1661_trr3.img
			frt00021bcb_07_de1661_ddr1.img
select input file	in the ENVI		frt00021bcb_07_if1661_trr3.img
dialog box that	nons un		
dialog box that	popo up		
Opens CRISM d	ata in ENVI		I
		Selection	
Available Bands][frt000094f6_07_if1661_trr	^3.img
Display windows	5		
			Filter
			_

Initial Display of image cube

 Any image cube is initially opened in ENVI in a cluster of 3 windows.

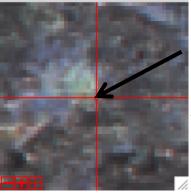
CRISM

- Scroll (shows full spatial extent)
- Image (full spatial resolution)
- Zoom (4x resolution subset)
- Red box in the Scroll window shows location of Image window; red box in the Image window shows location of Zoom window.
- HINT: For CRISM images, it is usually helpful to maximize the Image window, after which the Scroll window is no longer needed.

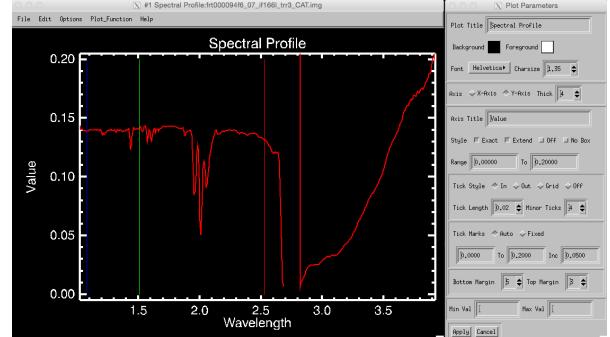


Scroll

Displaying a Spectrum



From the Image window menu, >Tools >Profiles >Z Profile (Spectrum)



🛑 😑 🔵 📉 #1 Zoom [...

CRISM

Z-profile extracted at Zoom _F window _v location.

Plot parameters can be set from Spectral Profile window, Options > Plot_Parameters

Colored vertical lines on spectral plot indicate RGB wavelength positions – can adjust, reload new combination in Image window.

Simple Image Processing and Summary Parameters

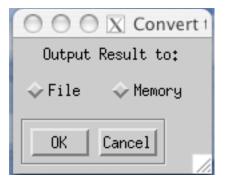
CAT: Convert PDS to CAT

CAT 7.3.1 File Basic	Too	ls				
Reload CAT config file						
Open CRISM File						
Convert Format: PDS to CAT						
Radiance to I/F						
ATP Corrections						
EPF Utilities 👂						
Spectral Analysis Utilities 돈						
Map Utilities 🔷 >						
Data Filtering 📃 🕨						
Miscellaneous Utilities 💿 🕨						
Apply CRISM Bad Bands						

• CRISM PDS data for IR channel:

- Spectrum stored long-to-short
- Last wavelength 65535 (CRISM invalid data code)
- Convert Format: PDS to CAT
 - Reverses order of IR spectrum
 - Replaces the 65535 wavelength with 4.0 microns
 Select CRISM file(s) to convert:

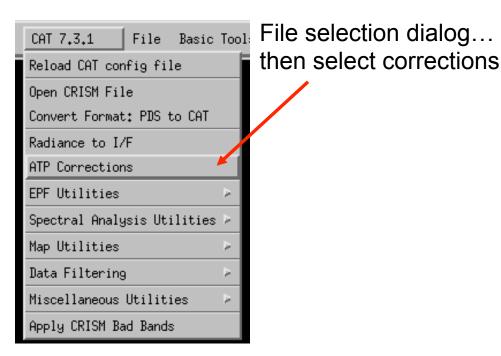
	hairah1/CRISM/data/	
ilter *.img;*.IHQ Directories •	Files frt000028a1_07_de1641_ddr1.img frt000028a1_07_if1641_trr3.img frt0000334d_07_de1651_ddr1.img frt0000334d_07_if1651_trr3.img	
Selection I		


CAT: File or Memory?

Common CAT question: Output to file or memory?

Select "File," then select an output path and, usually, filename via the ENVI dialog:

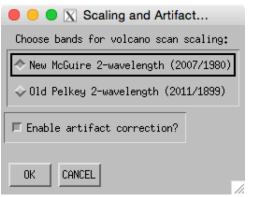
🔿 🔿 📉 Select Ouput Directory (file	names determined by
Directory	
/Users/morgamf1/project/crism/testdata/F	RT000028BA/į
Filter	Files
¥	·
Directories	
Selection	
I	
OK Filter	Cancel



OR...

Select "Memory" and computation proceeds, with output to Available Bands and Display window

CAT: Photometric & Atmospheric Corrections



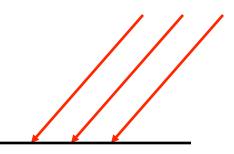
Then pick a volcano scan selection method...

	🛑 😑 💽 Choose how CAT picks atm transmission reference
	Empirically optimized for this observation
I	\rightsquigarrow Best match to bench temperature-derived spectral shift
I	\rightsquigarrow Pre-selected volcano scan optimum for thermal period
	↔ User-selected volcano scan
I	✤ Default volcano scan 61C4
ł	
	OK Cancel

● ● ● 🔣 ATP Corrections				
Photometric correction: Division by cos(i):				
🔷 0n				
∲ Off				
Choose atmospheric correction:				
♦ Division by scaled volcano observation.				
\diamond Empirical use of EPF.				
∲ None.				
OK CANCEL				

Then finally, select scaling wavelengths...

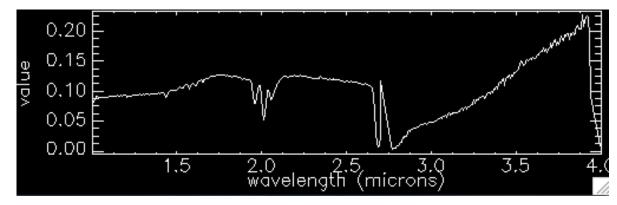
NASA



Photometric Correction...

First order correction to radiance for non-normal solar incidence:

Divide by cos(incidence angle)



Get incidence angle at aeroid from DDR (ancillary data file)

- Atmospheric Correction: Need to correct spectrum for absorption by CO₂
 - Volcano scan: special observation viewing nadir on traverse across Olympus Mons
 - Estimate atmospheric transmission = (base spectrum) / (summit spectrum)
 - Correct a scene spectrum by scaling the volcano scan transmission to match the scene at 2 wavelengths near the CO₂ 2micron band, then divide
 - One near absorption peak, one in wings
 - Adjusts for variable atmospheric optical depth- elevation, season...

- Selecting scaling wavelengths: 2 options...
 - McGuire 2-wavelength (2007/1980) [recommended]
 - 2007 nm near absorption peak
 - 1980 nm in wing, but close to 2007 to reduce systematic error in presence of broad mineralogical absorptions near 2 microns
 - Pelkey 2-wavelength (2011/1899)
 - Original wavelengths in CAT
 - Closer match to OMEGA correction
 - Occasional artifacts from scaling errors caused by mineralogical abosrption affecting 2011 but not 1899

CAT: Data Filtering 1

- CIRRUS
 - Despiking (removing isolated noise spikes)
 - Destriping (removing elevated detector columns)

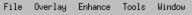
CAT 7.3.1 File Basic	Tools	Classification	Transf	orm Filter S	Spectral
Reload CAT config file					
Open CRISM File					
Convert Format: PDS to CAT					
Radiance to I/F					
ATP Corrections					
EPF Utilities	>				
Spectral Analysis Utilities	>				
Map Utilities	>				
Data Filtering	► CI	RRUS	Þ	Class Casatual	Cuba
Miscellaneous Utilities	► MR	O CRISM Remove Strip		Clean Spectral CIRRUS Help	cube
Apply CRISM Bad Bands		atten Summary Produc		CIKK03 Help	

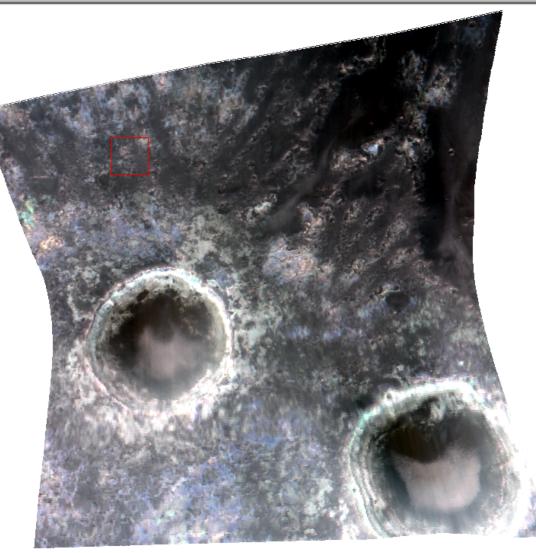
○ ○ ○ X idl
🗖 Destripe
Gaussian kernel size 30
Gaussian kernel sigma spatial 17
Gaussian kernel sigma spectral 🔰
🗖 Despike
threshold_input
OK CANCEL HELP

CAT: Data Filtering 2

MRO CRISM Remove Stripes

- Alternate stripe removal algorithm
- Generally, CIRRUS destripe preferred
- But, Remove Stripes offers control over multiplicative vs. additive correction


MRO CRISM REMOVE STRIPES: Caveat Emptor!					
Processing Options Orientation:	Output Result to 🐟 File 💠 Memory				
🗢 Column Stripes l 🔷 Row Stripes	Enter Output Filename Choose				
Normalization Statistic:	/Users/morgamf1/project/crism/testdata/F				
Normalization Operator:					
OK Cancel					



Map Utilities

🛑 😑 🔵 📉 #1 (R:Georef (Band 233:frt000094f6_07_if166l_trr3_CAT_corr_destripe_despike.img),G:Georef (Band 78:frt...

CAT 7.3.1 File Basic Tools Classification Trans Reload CAT config file Open CRISM File Convert Format: PDS to CAT Radiance to I/F ATP Corrections EPF Utilities Spectral Analysis Utilities 🕨 Map Utilities Þ. Project Single Cube Data Data Filtering LATLONINATOR Miscellaneous Utilities 2 Fix Old Tile Map Info Apply CRISM Bad Bands

19

CRISM

Summary Parameters

<u>Summary Parameters</u>: algebraic measures of the strengths and positions of possible mineral absorptions, and measures of the spectral continuum.

Journal of Geophysical Research: Planets

RESEARCH ARTICLE

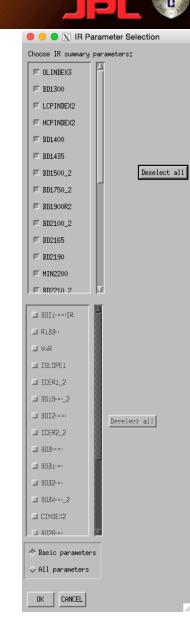
10.1002/2014JE004627

Key Points:

- A revised set of 60 CRISM summary products captures Mars' spectral diversity
- A library of 30 surface type spectra identified using CRISM is presented
- New "browse products" demonstrate surface spectral variability

Revised CRISM spectral parameters and summary products based on the currently detected mineral diversity on Mars

Christina E. Viviano-Beck¹, Frank P. Seelos¹, Scott L. Murchie¹, Eliezer G. Kahn¹, Kimberley D. Seelos¹, Howard W. Taylor¹, Kelly Taylor², Bethany L. Ehlmann^{3,4}, Sandra M. Wisemann⁵, John F. Mustard⁵, and M. Frank Morgan¹


¹Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA, ²Corning Inc., Corning, New York, USA, ³Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA, ⁴Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA, ⁵Geological Sciences, Brown University, Providence, Rhode Island, USA

Correspondence to

Spectral Analysis Utilities

CAT 7.3.1 File Basic To	ols Classification Transform	Filte	r Spectral
Reload CAT config file			
Open CRISM File			
Convert Format: PDS to CAT			
Radiance to I/F			
ATP Corrections			
EPF Utilities 🕞 👂			
Spectral Analysis Utilities 🖻	2014 Summary Products	Þ	VNIR Data
Map Utilities 🕞 👂	Old Summary Parameters - DEPRECAT	ED >	IR Data
Data Filtering 📃 👂	Run MGM on IR Data		Joined Data
Miscellaneous Utilities 💦 🕨	MRO CRISM Continuum Cube		
Apply CRISM Bad Bands	MRO CRISM Spectral Stats		

NASA

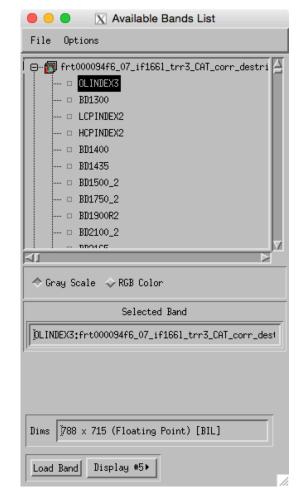
Summary Parameters

Table	Table 2. Updated Summary Products ^a						
#	Name	Status ^b	Parameter	Formulation	Kernel Width ^c	Rationale	Caveats
1	R770	\checkmark	0.77 μm reflectance	R770	R770: 5	Higher value more dusty or icy	Sensitive to slope effects, clouds
2	RBR	\checkmark	Red/blue ratio	R770/R440	R440: 5 R770: 5	Higher value indicates more npFeOx	Sensitive to dust in atmosphere
	BD530	x	0.53 μm band depth	$1 - \left(\frac{R530}{a * R716 + b * R440}\right)$	-	-	-
3	BD530_2	\checkmark	0.53 μm band depth	$1 - \left(\frac{R530}{a * R614 + b * R440}\right)$	R440: 5 R530: 5 R614: 5	Higher value has more fine-grained crystalline hematite	-
	SH600	x	0.6 μm shoulder height	$1 - \left(\frac{a * R530 + b * R709}{R600}\right)$	-	-	-
4	SH600_2	\checkmark	0.6 μm shoulder height	$1 - \left(\frac{a * R533 + b * R716}{R600}\right)$	R533: 5 R600: 5 R716: 3	Select ferric minerals (especially hematite and goethite) or compacted texture ^d	Sensitive to high opacity in atmosphere
5	SH770	\checkmark	0.77 μm shoulder height	$1 - \left(\frac{a * R716 + b * R860}{R775}\right)$	R716: 3 R775: 5 R860: 5	Select ferric minerals, less sensitive to LCP than SH600_2	Sensitive to high opacity in atmosphere
	BD640	x	0.64 μm band depth	$1 - \left(\frac{R648}{a * R600 + b * R709}\right)$	-	Select ferric minerals (especially maghemite)	Obscured by VNIR detector artifact
6	BD640_2	\checkmark	0.64 µm band depth	$1 - \left(\frac{R624}{a * R600 + b * R760}\right)$	R600: 5 R624: 3 R760: 5	Select ferric minerals (especially maghemite)	Obscured by VNIR detector artifact
	BD860	x	0.86 µm band depth	$1 - \left(\frac{\texttt{R860}}{\texttt{a*R800} + \texttt{b*R984}}\right)$	-	-	-
7	BD860_2	V	0.86 μm band depth	$1 - \left(\frac{R860}{a * R755 + b * R977}\right)$	R755: 5 R860: 5 R977: 5	Select crystalline ferric minerals (especially hematite)	-
	BD920	x	0.92 μm band depth	$1 - \left(\frac{R920}{a * R800 + b * R984}\right)$	-	-	-
8	BD920_2	\checkmark	0.92 µm band depth	$1 - \left(\frac{R920}{a * R807 + b * R984}\right)$	R807: 5 R920: 5 R984: 5	Crystalline ferric minerals and LCP	-
9	RPEAK1 *	V	Reflectance peak 1	Wavelength where first derivative = 0 of fifth-order polynomial fit to reflectances at all valid VNIR wavelengths	-	Fe mineralogy (<0.75 suggests olivine, ~0.75 pyroxene, and >0.8 dust)	-
10	BDI1000VIS	V	1 μm integrated band depth; VNIR wavelengths	Divide reflectances from R833 to R1023 by the modeled reflectance at RPEAK1, then integrate over (1 — normalized radiances) to get integrated band depth	-	Olivine, pyroxene, or Fe-bearing glass	-

NASA

CAT: Data Filtering 3

Flatten Summary Products

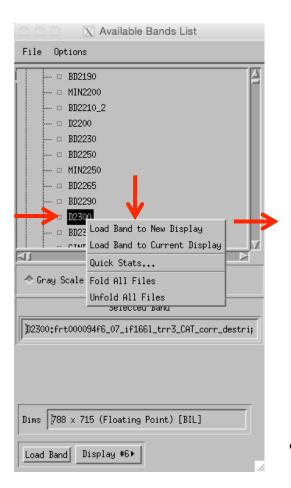

 Removes banding along lines in summary product images

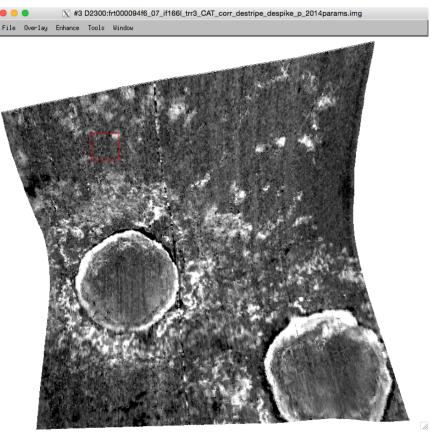
CAT 7.3.1 File Basic	Too	ls Classification Trar	sfor
Reload CAT config file			
Open CRISM File			
Convert Format: PDS to CAT			
Radiance to I/F			
ATP Corrections			
EPF Utilities	×.		
Spectral Analysis Utilities	×		
Map Utilities	×.		
Data Filtering	Þ	CIRRUS	A
Miscellaneous Utilities	Þ	MRO CRISM Remove Stripes	
Apply CRISM Bad Bands		Flatten Summary Products	

All parameters displayed in Available Bands List for summary parameter file.

 \bigcirc

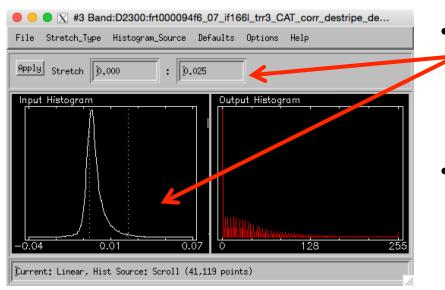
CRISM




NASO

Single Band Display

 Load the D2300 parameter: from Available Bands List, right click on D2300 and select Load Band to New Display

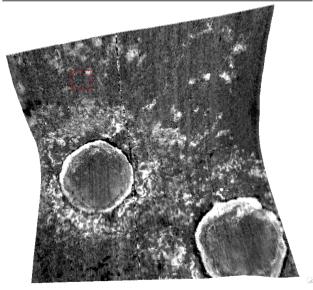


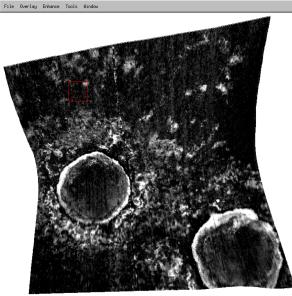
 Default Linear 2% stretch includes unrealistic parameter values less than zero

CRISM

- For most band depth and similar measures of absorption,
 - Zero is the minimum realistic value
 - The 99th percentile is typically a good maximum, although there is a empirically-determined "minimum maximum" that varies by parameter (e.g., 0.02 for D2300)
- From Image window, go to >Enhance >Interactive Stretching

- Type min and max values or slide
 dashed bars until at correct percentile values (will display along bottom)
- If needed, modify the histogram binning and range under >Options
 >Histogram Parameters




D2300 Display Comparison

X #3 D2300:frt000094f6_07_if166I_trr3_CAT_corr_destripe_despike_p_2014params.img

O
 W1 D2300:frt000094f6_07_if166[_trr3_CAT_corr_destripe_despike_p_2014params.img
 File Overlaw Enhance Tools Window

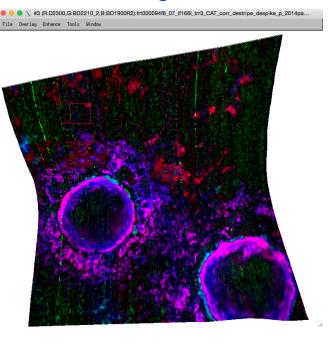
X #3 D2300:frt000094f6_07_if166I_trr3_CAT_corr_destripe_despike_p_2014params.img

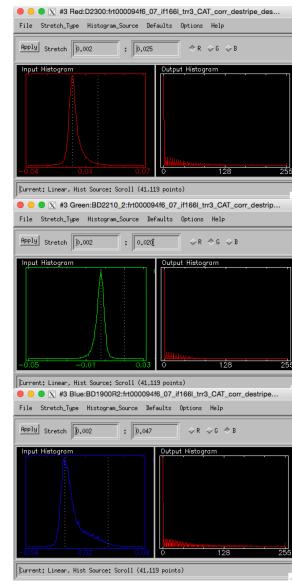
. . .

Default Stretch (-0.007 to 0.021)

Optimized Stretch, Grayscale (0.0 to 0.027)

Optimized Stretch, Rainbow Color Ramp (0.0 to 0.027)


To apply color ramp, go to >Tools
 >Color Mapping > ENVI Color Tables



RGB Display and Stretch

- Load PHY from Available Bands List: >Select RGB Color >click on D2300, BD2210_2, and BD1900R2 to fill in RGB fields >New Display from dropdown >Load RGB
- Optimize stretch of each band from Image window: >Enhance
 Interactive Stretching

PHY Browse Product Result:

D2300

Min: 0.002 (distribution peak) Max: 0.025 (99th percentile)

BD2210_2

Min: 0.002 (distribution peak) Max: 0.020 ("minimum maximum")

BD1900R2

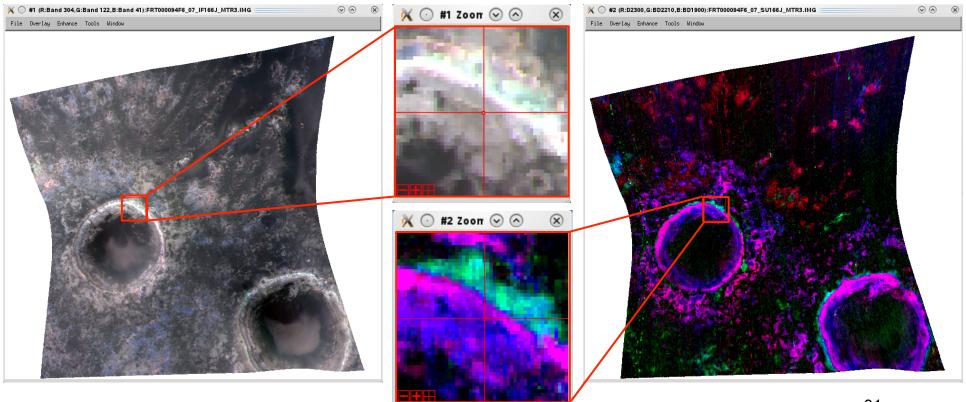
Min: 0.002 (distribution peak) Max: 0.047 (99th percentile)

FEM

- **R**: BD530_2
- G: SH600_2
- B: BDI1000VIS

MAF R: OLINDEX3 G: LCPINDEX2 B: HCPINDEX2 HYD R: SINDEX2 G: BD2100_2 B: BD1900_2

CRISM



From Table 3, Viviano-Beck, et al. (2014)

		IR Browse Products
IRA	R1300	From "IR albedo." Shows photometrically corrected I/F at 1330 nm and may be used to correlate spectral
	R1300	variations with morphology.
	R1300	
FAL	R2529	From "false color." An enhanced infrared false color representation of the scene. The wavelengths
	R1506	chosen highlight differences between key mineral groups. Red/orange colors are usually
	R1080	characteristic of olivine-rich material, blue/green colors often indicate clay, green colors may indicate carbonate, and gray/brown colors often indicate basaltic material.
MAF	OLINDEX3	From "mafic mineralogy." Shows information related to mafic mineralogy. Olivine and Fe-phyllosilicate
LCPINI	LCPINDEX2	share a 1.0–1.7 μ m bowl-shaped absorption and will appear red in the MAF browse product. Low-
	HCPINDEX2	and high-Ca pyroxene display additional \sim 2.0 μ m absorptions and appear green/cyan and blue/ magenta, respectively.
HYD	SINDEX2	From "hydrated mineralogy." Shows information related to bound water in minerals. Polyhydrated
	BD2100_2	sulfates have strong 1.9 μ m and 2.4 μ m absorption bands, and thus appear magenta in the HYD
	BD1900_2	browse product. Monohydrated sulfates have a strong 2.1 µm absorption and a weak 2.4 µm absorption band, and thus appear yellow/green in the HYD browse product. Blue colors are indicative of other hydrated minerals (such as clays, hydrated silica, carbonate, or zeolite).
PHY	D2300	From "phyllosilicates." Shows information related to hydroxylated minerals including phyllosilicates. Fe/
	D2200	Mg-OH bearing minerals (e.g., Fe/Mg-phyllosilicates) will appear red, or magenta when hydrated. Al/
	BD1900r2	Si-OH bearing minerals (e.g., Al-phyllosilicates or hydrated silica) will appear green, or cyan when hydrated. Blue colors are indicative of other hydrated minerals (such as sulfates, hydrated silica, carbonate, or water ice).

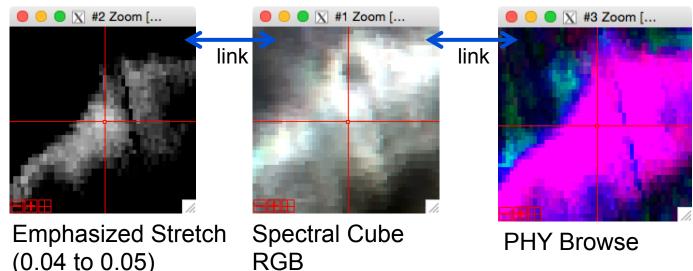
CRISM Linking Spectral and Summary Parameter Cubes

- From <u>either</u> Image window, >Tools >Link then one of
 - >Link Displays for pixel-location based link (requires exactly same size images; allows blinking and transparency), -OR-
 - >Geographic Link for map projected link (can be different spatial coverage or resolutions)

Spectral Analysis

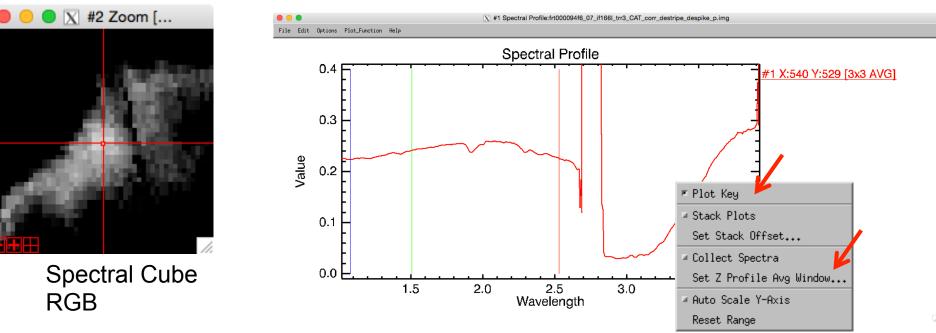
Spectral Analysis Methods

PL P

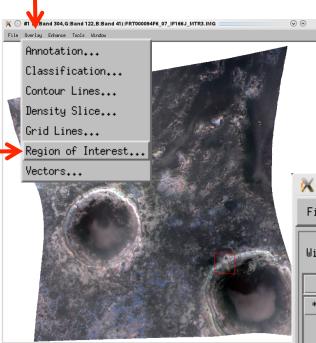

- In general, there are 3 steps to spectral analysis:
 - 1. Locate interesting material(s)
 - Summary parameters are a good start
 - 2. Collect best possible spectra (scene "endmembers")
 - Pixel average, Region of Interest (ROI), etc.
 - 3. Interpret endmember spectra
 - E.g., comparison to laboratory mineral spectra
- This is what ENVI is designed to do...
 - There are many analysis tools/options available within the ENVI software environment.
 - Not all of them work well with CRISM data.

CRISM Pixel-based Endmember Extraction (1/2)

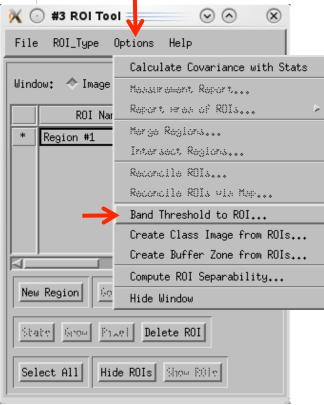
• As an example, let's find an endmember spectrum for the D2300-bearing material in FRT000094F6.



- Load D2300 as single band and stretch to emphasize highest realistic D2300 values.
- Link D2300 with corrected TRDR spectral cube and PHY browse (optional, but useful)

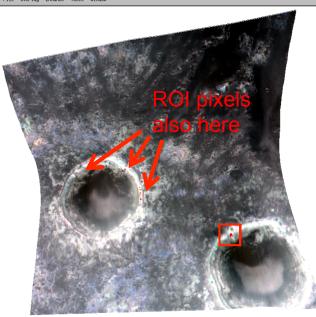

CRISM Pixel-based Endmember Extraction

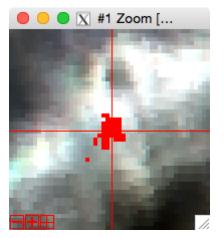
- From the linked spectral cube Image window, extract a Z-profile (Spectrum)
- · In the spectral plot window
 - Go to >Edit >Plot Parameters to adjust y-axis (65535 values skew the range)
 - Right click anywhere to view Plot Key and set Z-profile Avg Window to 3x3 pixels
 - Preserve this spectrum for later use under >Options >New Window: with Plots...



NAS

CRISM ROI-based Endmember Extraction (1/3)

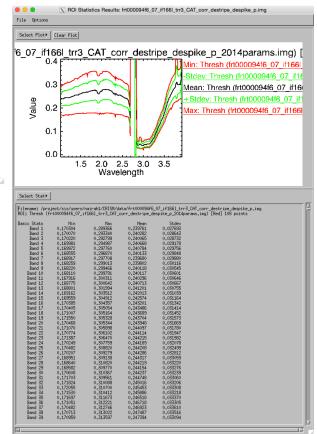

- Create a Region of Interest (ROI) from the highest D2300 values throughout the scene
- In the spectral cube Image window, go to >Overlay >Region of Interest



- In the ROI Tool, >Options >Band Threshold to ROI
- Select the D2300 band from the summary parameter file
- Type in min and max values of 0.04 and 0.05, respectively
- Should get a result of 108 pixels
- May want to refine threshold range to get fewer pixels 36

CRISM ROI-based Endmember Extraction (2/3)

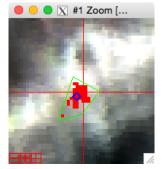
Image: State of the state of



- The ROI appears as red pixels in the displayed window
- In the ROI Tool, calculate the average of the pixels by clicking >Stats

٠

•


- Right click within the Stats Results plot area to adjust Plot Parameters and view Plot Key
- Click and drag the Mean spectrum to the previouslycreated spectral plot containing the pixel-based endmember spectrum

CRISM ROI-based Endmember Extraction (3/3)

• A third method would be to define a polygon ROI...

	XC) #1 10 Tool	\odot	0
	File	ROI_Type Options	Help	
	Wind	ow: 💠 Image 💠 Scro	011 🔷 Zoom 🗇	Off
		ROI Name	Color	
		Thresh (FRT000094F6_	Red	19
	*	Region #2	Green	0
⋺	Neu	Region Goto Dele	ete Part	
	Sta	ats Grow Pixel De	lete ROI	
	Sel	ect All Hide ROIs	Show ROIs	

- In the ROI Tool, select >ROI_Type >Polygon
- Create New Region and select Zoom as the active window

Calculate statistics on the polygon-ROI as before

Calculate Covariance with Stats

Measurement Report... Report Area of ROIs...

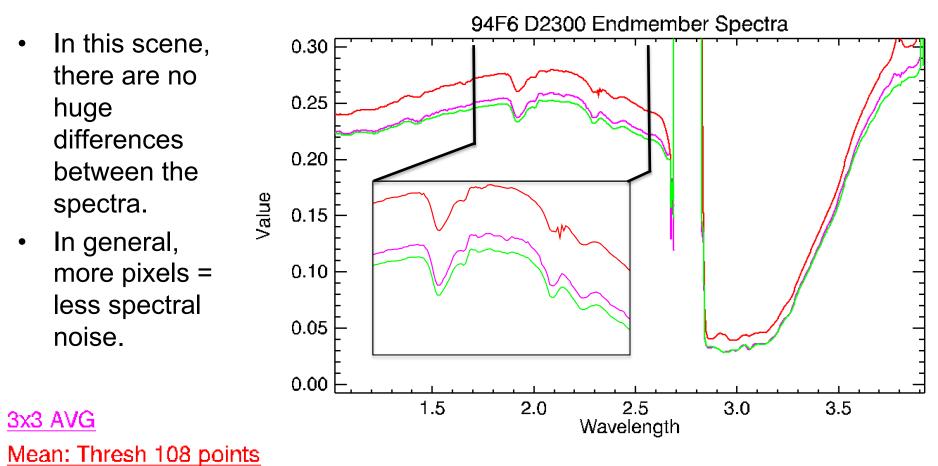
Reconcile ROIs via Map... Band Threshold to ROI...

Create Class Image from ROIs...

Merge Regions... Intersect Regions... Reconcile ROIs...

- The polygon ROI can be used alone or (e.g.) to spatially constrain the band threshold ROI: >ROI Tool > Options
 - >Intersect

Regions

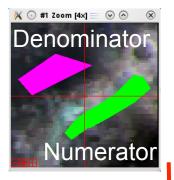

38

right click to finalize

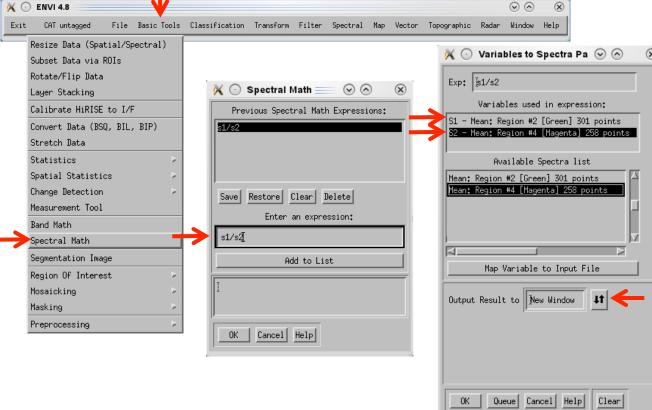
CRISM Example Endmember Spectra – D2300

 Three D2300 spectra were extracted using the methods discussed in previous slides: 1) 3x3 pixel average, 2) band threshold, and 3) polygon.

Mean: Polygon 105 points

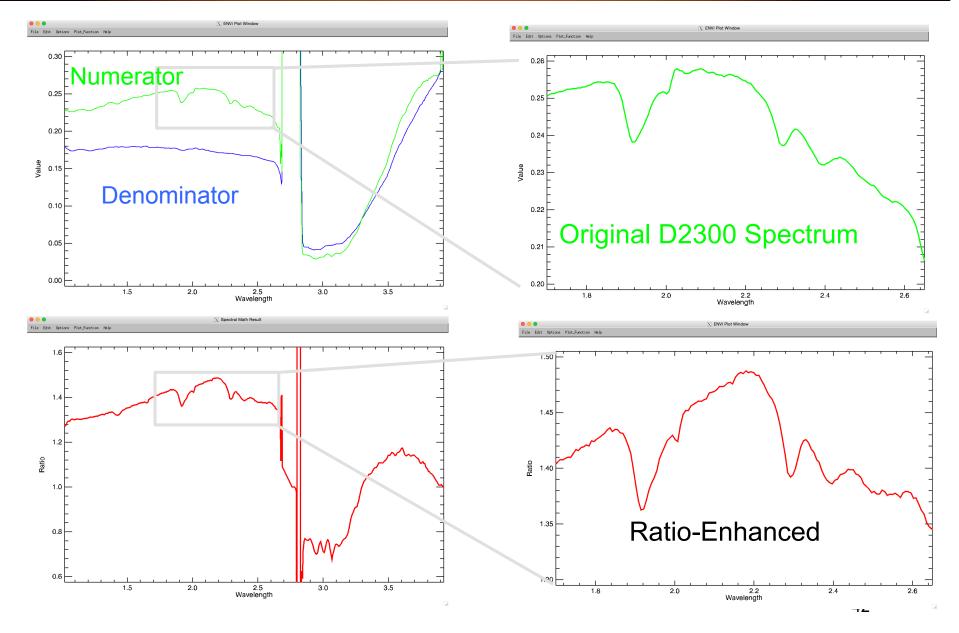


- There are two widely accepted ways to enhance spectral features to aid with interpretation:
 - Ratio to a spectrally neutral area in the same scene
 - Continuum removal
- Benefit to using a ratio is that you may cancel out detector noise or spikes
- However, if your denominator spectrum is not truly neutral you may introduce unintended spectral shape, e.g., from:
 - Broad features from mafics like olivine or pyroxene
 - Spectral slope
 - VNIR variability from ferric oxide-related features
- Continuum removal is not recommended over the entire CRISM wavelength range, either
 - Best results when focused on relatively narrow range bracketing the feature(s) of interest



Ratioing (1/2)

- Numerator: let's use the D2300 spectrum with the least noise the average from the green polygon ROI.
- Denominator: Create a similar-sized polygon in the nearby spectrally bland dark material and calculate its average spectrum



- From the ENVI main menu, go to >Basic Tools > Spectral Math
 - Enter the expression: s1/s2
 - Map the numerator (s1) and denominator (s2) to the Available Spectra List
 - Output to New Window

Ratioing (2/2)

- In >Edit >Plot Parameters, subset the x-axis range to bracket the feature of interest
- Then choose Plot_Function > Continuum Removed as the display method
- You will likely have to rescale the y-axis in the continuum removed-plot

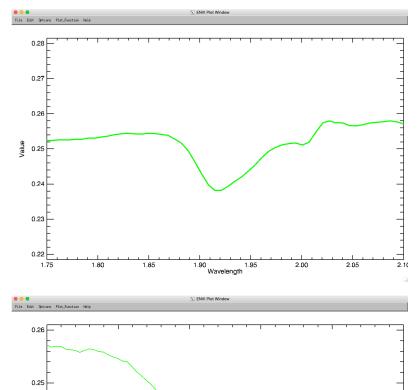
anne 0.24

0.23

0.22

2.1

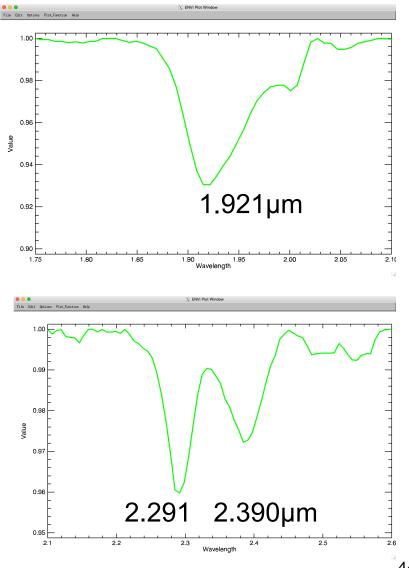
2.2


2.3

Wavelength

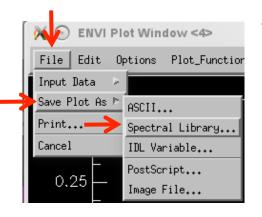
2.4

Continuum Removal (2/2)


Normal

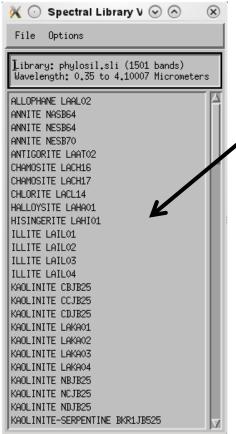
2.5

2.6

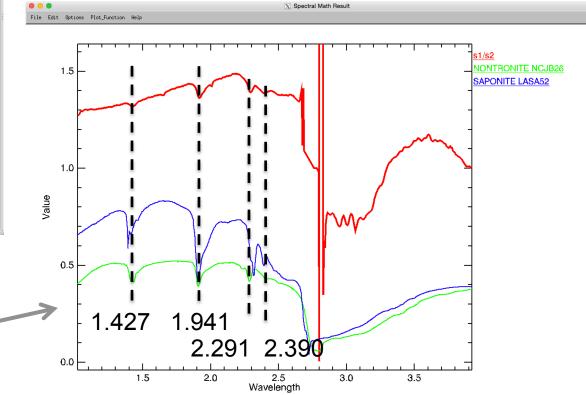

Continuum Removed

NASA

Spectral Libraries


- Save spectra as ENVI spectral libraries (*.sli), or export as ASCII text file
 - From a spectral plot window, >File >Save Plot As > Spectral Library
 - HINT: Line colors are not preserved; make sure you rename the spectra appropriately

	× 🖸	ENVI 4.8												\odot	\otimes
	Exit	CAT untagged	File	Basic Tools	Classification	Transform	Filter	Spect	tral	Мар	Vector	Topographic	Radar	Window	Help
									SPEAR	Tools		×			
	Т	- rotriov	~ 2	covod	librory	orvic	\ \\		Tanget	t Detec	tion Wiza	ard			
•	IC	o retriev	ea	Saveu	library		5VV •	\rightarrow			praries		Spectral	Library Vi	ewer
	а	reference	e s	pectra	l library	,				ral Sli		~	Spectral	Library Re	sampling
	G			poolid	in instary					otation		2	Spectral	Library Bu	ilder
		- From	the	FN\/I	main m	enu				-	y Index al Visuali	zer b			
										ng Meth		.201			
		>Spec	tral	> Spe	ectral Li	brarie	es				Analysis	Þ			
									Vegeta	ation 9	òuppressio	n			
		> She	Clia	I LIDIA	ry View	er			SAM Ta	arget F	inder wit	:h BandMax			
		Colori	. * ~						RX And	omaly I)etection				
		- Select	S	n me, o	or open	new					urglass Wi				
			1	I. 191	le 44						ectral Ho	ourglass			
•	Ct	RISM sp	ecti	rai libra	ary: http	D://				ral Ana Range	-				
	ao	o.pds.na	202	aovin	niccione	Imrol	1				orr Iber Extra	rtion			
	ye	o.pus.n	asa	.yov/II	113310113					ral Mat					
	sp	ectral_li	bra	ry.htm							ampling				

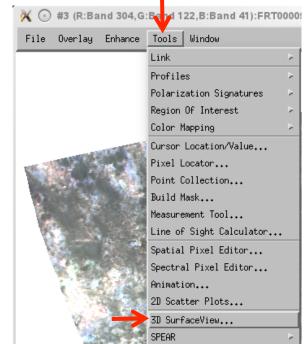

Interpretation

Diagnostic bands match best with nontronite.

- Compare the enhanced spectra to laboratory reference spectra to locate the best mineralogic match(es).
- For the D2300 endmember example, open a library containing phyllosilicate spectra and load candidate
- reference spectra to examine absorption band positions in detail...

- Common sense rules apply to spectral interpretation:
 - All major absorption features in the spectrum of the proposed reference mineral should be present or otherwise accounted for
 - Relative strengths and shapes of spectral features of the proposed reference mineral should be replicated in the CRISM spectrum
- Even a single CRISM pixel (~20m) is unlikely to comprise a single pure mineral, i.e.,
 - Spatial mixing is likely
 - Intimate mixtures can also occur
 - Geochemically intermediate phases are also possible
- So, simple explanations are usually best, but complexity happens. It's real geology, after all!

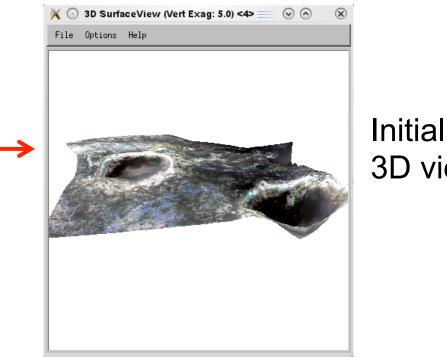
VISUALIZATION



3-D Rendering (1/3)

- 3-D visualization can be helpful for understanding relationships between different units.
- First, open the DDR cube (frt000094f6_07_de166l_ddr1.img) and load the Elevation band

 - Note the approximate elevation range under >Enhance >Interactive Stretching
- Load and stretch the band or RGB composite that you want to view in 3D
- From the Image window, go to >Tools
 >3D Surface View

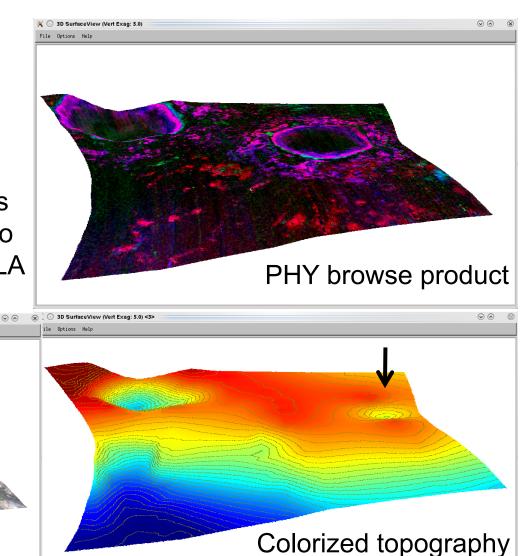


3-D Rendering (2/3)

🔆 🕟 3D SurfaceView Input Parameters 📀 🔗 🛛 🛞	
DEM Resolution	
🗆 64 🖃 128 🖃 256 🖃 512 🗭 Full 💷 Other	
Resampling: 🔷 Nearest Neighbor 🗢 Aggregate	
DEM min plot value	
DEM max plot value	
Vertical Exaggeration	
Image Resolution	
◆ Full	
High Resolution Texture Mapping Dn	
Spatial Subset	
OK Cancel Help	

- In the 3D SurfaceView Input dialog
 - Indicate Full DEM Resolution
 - Type in min and max elevation values that bracket the actual range
 - Indicate Full Image Resolution

CRISM


🔆 💮 3D SurfaceView (Vert Exag: 5.0) <2>

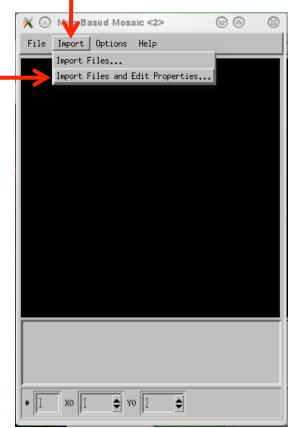
File Options Help

3-D Rendering (3/3)

- Use mouse buttons to navigate, or use >Options >Surface Controls
- Perspective view here is looking south (5x vertical exaggeration)
- Note that the lowest point for the western crater (right side, arrows) is offset from the crater's center due to sparseness of the interpolated MOLA tracks

TAN browse product

20m contours


- Mosaicking multiple CRISM cubes together allows broader geographic context for inferred mineralogy.
 - Can mosaic map-projected spectral, summary parameter, or DDR cubes

Mosaicking (2/4)

- In the Mosaic dialog box, go to >Import >Import Files and Edit Properties
 - Select the two cubes you wish to mosaic
- For each file, indicate a Data Ignore Value of 65535 and default RGB bands at 230, 75, and 10.

●
Background See Through
Data Value to Ignore 65535
Feathering
Feathering Distance 🚺 🚖
Cutline Feathering
Select Cutline Annotation File
Ĭ
Mosaic Display RGB
Red 230 🖨 Green 75 🖨 Blue 10 🖨
Linear Stretch 2.0%
Color Balancing 🐟 No 💠 Fixed 💠 Adjust
OK Cancel Clear

Mosaicking (3/4)

CRISM X Mosaic 1248 x 810 (Mars Sphere-Based Equirectangular [D_Unknown]) File Import Options Help #1 frt0000c875_07_if1641_trr3_CAT_corr_p.img [Red] 165535.

To adjust layering order or edit display properties, right click on filename here

🔷 YO JI. 🗢

To save, go to >File >Apply

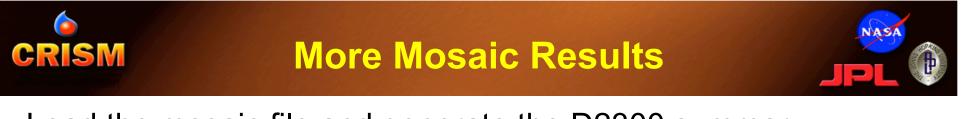
A Contractory Macaia Parameter

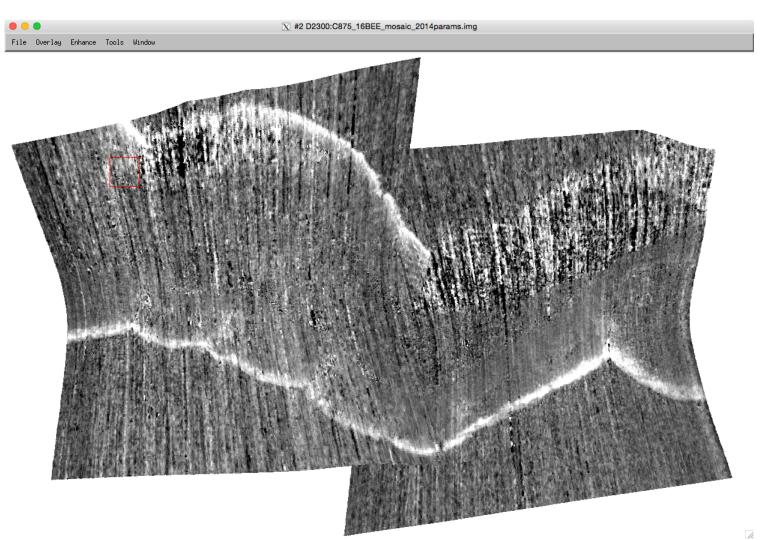
 Indicate filename and include a background value of 65535.

Output X Pixel Size
Output Y Pixel Size
Resampling Nearest Neighbor 🗵
Output Result to 🐟 File 💠 Memory
Enter Output Filename Choose
C875_16BEE_mosaic.img
Background Value 65535
OK Queue Cancel

CRISM

Mosaicking (4/4)


- Load a mosaic just like
 International Stress Stre
- Go to >File >Edit ENVI Header >Edit Attributes
 to set Data Ignore
 Value (65535) and
 reapply band names if
 desired

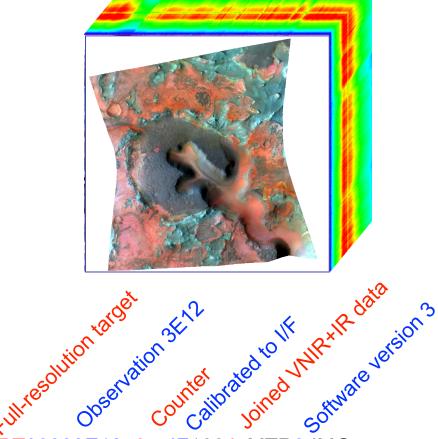

X #1 (R:Mosaic (Band 230),G:Mosaic (Band 75),B:Mosaic (Band 10)):C875_16BEE_mosaic.img

 Difficult to avoid seams in mosaic due to varying atmospheric/ illumination/geometric conditions.

 Load the mosaic file and generate the D2300 summary parameter:

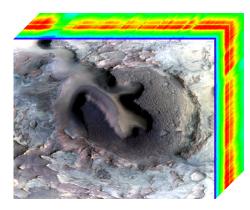
CRISM

What is an MTRDR?


- 1) An image cube of I/F from a TRR3 for a targeted observation's central swath, with additional processing:
 - The best current correction for atmospheric gases
 - Lambertian photometric correction
 - First-order empirical normalization of atmospheric opacity to the nearest-nadir geometry
 - Residual cross-track optical distortions ("spectral smile") fitted and normalized
 - VNIR data reprojected to IR data in sensor space
 - "Bad bands" removed
 - Map projected to a global standard (equirectangular, rolling center latitude of projection)
- 2) An image cube of spectral indices ("summary products") derived from these corrected, normalized data
- 3) An image cube of map-projected geometric information from the DDRs
- Our current, best, "whole image" correction to what an idealized version of CRISM would see if it only pointed an nadir

MTRDR Nomenclature

- FRT = Class Type
 - FRT (Full Resolution Targeted Observation)
 - HRL (Half Resolution Long Targeted Observation)
 - HRS (Half Resolution Short Targeted Observation)
- 00003E12 = 8-digit hexadecimal Observation ID
- 07 = Hex counter for image within observation
- IF166 = Processing, internal command macro used
 - IFnnn I/F / Macro#
 - SUnnn Summary products / Macro#
 - DEnnn Derived data / Macro#
- J = Sensor ID
 - J for joined (for IF and SU)
 - L for IR (for DE)
- MTR3 = MTRDR, calibration version = 3
- IMG = file extension
 - IMG for binary image data
 - LBL for detached ASCII PDS label



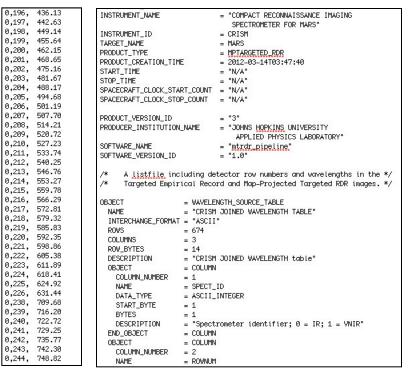
FRT00003E12_07_IF166J_MTR3.IMG The file name describes the type of data, an overview of the processing, and gives the unique ID and counter

We're Also Delivering a non-Map Projected Version of the Corrected Data

CRISM

Multiband image of corrected I/F; VNIR re-projected to IR; "bad bands" STILL PRESENT

SPACECRAFT_ID	= nku
INSTRUMENT_NAME	= "COMPACT RECONNAISSANCE IMAGING
	SPECTROMETER FOR MARS"
INSTRUMENT_ID	= CRISM
TARGET_NAME	= MARS
PRODUCT_TYPE	= MPTARGETED_RDR
PRODUCT_CREATION_TIME	= 2010-11-21T17:44:07
START_TIME	= 2008-08-21T17:20:57.794
STOP_TIME	= 2008-08-21T17:22:57.529
SPACECRAFT_CLOCK_START_COUNT	= "4/0903806478.04596"
SPACECRAFT_CLOCK_STOP_COUNT	= "4/0903806597.52710"
ORBIT_NUMBER	= "NULL"
OBSERVATION_TYPE	= "FRT"
OBSERVATION_ID	= 16#0000C202#
MR0:OBSERVATION_NUMBER	= 16#07#
MR0:ACTIVITY_ID	= "IF165"
MR0:SENSOR_ID	= "J"
MR0:DETECTOR_TEMPERATURE MR0:OPTICAL_BENCH_TEMPERATURE MR0:SPECTROMETER_HOUSING_TEMP MR0:SPHERE_TEMPERATURE	= -52.930 = -76.728 = -52.672 = 0.718
	= 3


Detached PDS label describing the source files, corrections performed

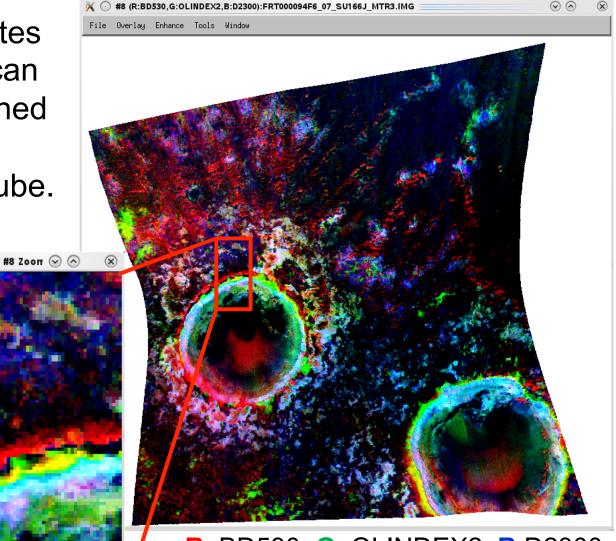
TER = Targeted Empirically-corrected Data Record

- FRT = Class Type
 - FRT (Full Resolution Targeted Observation)
 - HRL (Half Resolution Long Targeted)
 - HRS (Half Resolution Short Targeted)
- 00003E12 = 8-digit hexadecimal Observation ID
- 07 = Hex counter within observation
- IF166 = Processing, internal macro used
 - IFnnn I/F / Macro#
- J = Sensor ID
 - J for joined
- TER3 = TER, calibration version = 3
- **IMG** = file extension
 - IMG for binary image data
 - LBL for detached ASCII PDS label

CRISM Each Type of I/F File is Accompanied by a Table of Wavelengths Present

ASCII table of image band numbers and wavelengths Detached PDS label describing the table

- FRT = Class Type
 - FRT (Full Resolution Targeted Observation)
 - HRL (Half Resolution Long Targeted)
 - HRS (Half Resolution Short Targeted)
- 00003E12 = 8-digit hexadecimal Observation ID
- 07 = Hex counter within observation
- **IF166** = Processing, internal macro used
 - IFnnn I/F / Macro#
- **J** = Sensor ID
 - J for joined
- TER3 = Product type and calibration version
 - TER, calibration version = 3
 - MTR, calibration version = 3
- **TAB**= file extension
 - TAB for table of wavelengths
 - LBL for detached ASCII PDS label


FRT00003E12_07_WV166J_TER3.TAB

NASA

CRISM

Custom Composites

- Custom RGB composites and browse products can take advantage the joined nature of the MTRDR summary parameter cube.
- Example at right shows ferric, ferrous, and clay variability.
- MANY color units to follow-up on!!

R: BD530 G: OLINDEX2 B:D2300

QUESTIONS?

Please also visit the PDS forum: http://geoweb.rsl.wustl.edu/ community/index.php?/ forum/20-mrocrism-data-users-workshop-2012/