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The Total Solar Irradiance Data Record

Total Solar Irradiance Database
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. Consistency is comforting;
but agreement is not accuracy.
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Define Requirements

e For a climate data record of TSI, need accurate measurements over
long (climate scale) time periods

— How accurate? How long?
* Must detect small changes above natural fluctuations

* Need estimates of expected variability
— Drives modeling capability
— Drives measurement stability and duration

 Patience...
— ...0Or a historical record...
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What Are the Time Scales of TSI Variability?

* 0.1-0.3% over a few days

— Short duration causes negligible climate
effect

* 0.1% over 11-year solar cycle
— Small but detectable effect on climate

* 0.05-0.3% over centuries
(unknown)

— Direct effect on climate (Maunder

Minimum and Europe’s Little Ice Age)

LASP, 25-27 Oct. 2011
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What Is Estimated Solar Variability ?
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TSI Estimates
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Solar Variability Drives Measurement Requirements

Historical TSI Reconstructions
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Solar Variability Drives Measurement Requirements
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TSI Requirements To Address Climate Needs

* TIM Performance Requirements

— Accuracy
— Stability
— Noise
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Four Radiometers
. Estimoted Degrodation
Track Degradation
Initial Offset 250.30 ppm
Net Degradation to Date 164.54 ppm
Ultimate Degradation 190.12 ppm
Degrodation 1/e Time = 1218.69 doys

RSS Differences = 9.588 ppm

Relotive Variation (Cone B — Cone A) [ppm)

09 Mcy 21 Sep 03 Feb 17 Jun
ol 2006 2008 2009
. Updated 11-Nov-2009

Ce

Detector
Head
Board

Vacuum Door Heat Sink

Shutter

Light Baffles Vacuum Shell
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TIM Innovations Enable Accuracies & Stabilities

 The Total Irradiance Monitor, first launched on NASA’s SORCE
mission in 2003, introduced several measurement innovations

Nt

Get new blood: Heritage and experience
don’t guarantee expertise

'J

od
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Community: So What Causes the Instrument Offsets?

Total Solar Irradiance Database

SOVA2

AN *, ERBS V-0508 . s

Sunspot Number
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2005 TSI Accuracy Workshop

Organizer: Jim Butler, NASA/GSFC
Location: NIST Gaithersburg, MD
Dates: 18-20 July 2005

Attendees
— Representatives of several TSI instruments
e ACRIMI, II, and llI
ERBS/ERBE
SORCE/TIM
VIRGO/PMO
VIRGO/DIARAD & SOLCON

— NIST, NASA

Approach

— Day 1: Accuracy (“the Day 1 Problem”)
— Day 2: Stability

— Day 3: Improved or current calibration facilities

Dick Willson: “We haven’t had a meeting like this in 20 years!”
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Group Therapy Plan

* Get everyone together at neutral
place (organized by NIST, NASA)

— Discuss instrument and calibration
details ad nauseam

— Make uncertainty budgets consistent
for comparisons

— Discuss dirty laundry with neutral
participants (“judges”) in audience

— Include diverse group (Eric Shirley,
theory, diffraction)

— Create test plans

e TP e ety kgt

b&camcam,p
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Monday, July 18
Sateilite Instrumment TSI Measurement Uncertainty Session: Session Lead-(G:. Kopp
8:30 am-8:45 amm Welcome and Meeting Charge J. Butler
G. Kopp
R. Willson
R. Helizon
G. Kopp
C. Frohlich
D. Crommelynck & S. Dewitte
R. Lee

G. Kopp

e Review Instrument Designs

— Are there systematic differences that could
cause TSI offsets?

e Review Calibrations & Uncertainties
— How accurately is each instrument calibrated?
— What were goals and actuals?

e |ntra-instrument Consistency

— Do intra-instrument cavity comparisons agree
with stated uncertainties?

Multiple Radiometers Should
Indicate Consistency With Stated
Uncertainties
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Summary of Instruments

Instrument Comments on Instruments

ERB (NIMBUS 7) 1 cavity; the best TSI measurement made when it started!

ACRIM I 3-cavity; darks are modeled (corroborated w/ measurement); passive thermal; TRW aperture
calibration questionable; on-board V & I monitors; specular black paint; front-to-back cavities;
internal precision apertures

ACRIM 11 3-cavity; darks are modeled (corroborated w/ measurement); passive thermal; JPL Metrology
Lab aperture calibration; questionable calibrations; extended cone tips; on-board V & [
monitors; specular black paint; front-to-back cavities; internal precision apertures

ACRIM 111 3-cavity; darks are modeled (corroborated w/ measurement); passive thermal; JPL aperture
calibration (OMIS II); on-board V & I monitors; specular black paint; front-to-back cavities;
internal precision apertures

ERBE 1 cavity; bi-weekly 3-min TSI measurements; dark measurements; large thermal variations
during operations; lacks several correction factors (servo not settled before shutter transition);
13-bit resolution; specular black paint; front-to-back cavities; internal precision aperture

VIRGO-PMO 2-cavity; darks are modeled; good passive thermal stability at L1; low-frequency ‘shutter’; on-
board V & I monitors; front-to-back cavities; internal precision apertures

VIRGO-DIARAD 2-cavity; darks are modeled; good passive thermal stability at L1; poor inter-cavity agreement on
SOHO; on-board V & I monitors; diffuse black paint; side-by-side cavities; internal precision

apertures

TIM 4-cavity; frequent dark measurements; active thermal control; aperture and shutter at front; pulse
width modulation ESR heating; V & R are references; pulse width non-linearities corrected from
ground TIMs; diffuse black NiP; side-by-side cavities
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Instrument

Summary of Instruments

Precision
Aperture
Position

Black
Type

Active
Therm
Control

Comments

ERB

internal

specular

no

ACRIM I

cones, front
to back

internal

specular

ACRIM I

cones, front
to back

internal

specular

ACRIM III

cones, front
to back

internal

specular

ERBE

cones, front
to back

internal

specular

one 3-min meas
every 2 wks

VIRGO-PMO

inverted
cones, front
to back

internal

specular

passive at
L1

low-freq. shutter

VIRGO-
DIARAD

cylinders,
side by side

internal

passive at
L1

TIM

LASP, 25-27 Oct. 2011
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Reviewed Uncertainties (in Different Languages)

T T T L T
S.l. Uncertainty of the ACR Type 4

SORCE/TIM

Correction Value [ppm] Worst Case
Distance to Sun, Earth & S/C 33,537 . 0.1
Doppler Velocity 57 . 0.7
Shutter Waveform 100 . 1.0
Aperture 1,000,000 652
Cone Reflectance 250 108
Equivalence Ratio, ZH/ZR 7, AC 46
Servo Gain 16,129 . 0.0
Standard Volt + DAC 1,000,000
Pulse Width Linearity 1,000,000
Standard Ohm + Leads 1,000,000
Dark Signal 2,693
Scattered Light & IR 100 Total
Measurement Repeatability (Noise) . . Lead \ Uncertainty
Total RSS ) / (net)

Conductance (Plc

B

Total
Uncertainty (rms)

|
|
|
!
1
\
|
|
|
|

KA =-0D~=003C

\ Primary Aperture Area (Ac)

|
Cavity heating power (Pe) 1L
T

[
\
|

|
600 1366

Solar Irradiance (W/m2)

Uncertainty of the PMO6V WRR/SI traceability @ 1400W/m2
Component Value u c (u*c)r2
Area N/A
Pclosed 45 mW 0.0000045 5.00E+04 0.050625
Popen 17 mW 0.0000017 5.00E+04 0.007225
CNE 5.00E-04 1.40E+03 0.49
CR N/A 7.00E-05 1.40E+03 Area 0.000425
CSt N/A 1.00E-04 1.40E+03
CLH N/A 3.00E-05 1.40E+03 Thermal efficiency 0.000130
CApH N/A 5.00E-04 1.40E+03
Cdiff N/A 1.00E-04 1.40E+03 Eectrical. Power 0.000150
WRR-Factor 6.00E-04 1.40E+03 0.7056
WRR/SI 9.00E-04 1.40E+03 1.5876 Cavity absorption 0.000030
2.84105
Uncertainty abs 1.6855 W/m2 Total 0.000735
Uncertainty rel 1685.5 ppm
95% Uncertainty 3371.1 ppm RSS 0.000470

Relative
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Check Internal Instrument Consistency

e Level 1 VIRGO data demonstrate level of variations of individual
channels

Consistency is comforting;
but agreement is not accuracy.

Level 1 Data (all 4 channels) Level 2 Data (VIRGO)

1996 2001

1997 1998 1999 2000 2002 2003
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Summary of Stated Instrument Accuracies

ateo avity
TSI Value Uncertainty Variations _
Instrument [W/mA2] [ppm] o [ppm] |Comments

ERB (NIMBUS 7) 1371.9 5000 -

ACRIM |
ACRIM || apertures? cone tips?
ACRIM Il
ERBE | 1365.2 | 833 | - [|lacks several corrections
VIRGO DIARAD 5.7 W/mA2 difference
VIRGO-PMO
VIRGO-DIARAD 5.7 W/mA2 cavity difference
DIARAD-like | 13664 | 600 | 1612  [SOVA, SOLCON, DIARAD
SORCE/TIM

e Uncertainties are 1-o0
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Instrument

SORCE TIM

Correction

Value [ppm] o [ppm]

Instrument

ACRIM 1II

Translate to a Common Language

Aperture

1,000,000 30

Correction

Value [ppm]

o [ppm]

Diffraction

452 47

Aperture

1,000,000

280

Cone Reflectance

170 54

Diffraction

1,200

120

Non-Equivalence, ZH/ZR - 1

7, AC 23

Cone Reflectance

500

200

Standard Volt + DAC

1,000,000 186

Non-Equivalence, ZH/ZR - 1

Standard Ohm + Leads

1,000,000 17

Standard Volt + DAC

1,000,000

101

Servo Gain

16,129 0.0

Standard Ohm + Leads

1,000,000

Dark Signal

2,693 10.0

Servo Gain

Scattered Light & IR

100 25

Dark Signal

Shutter Waveform

100 1.0

Scattered Light & IR

Distance to Sun, Earth & S/C

33,537 0.1

Shutter Waveform

Doppler Velocity

57 0.7

Distance to Sun, Earth & S/C

Pointing

10.0

Doppler Velocity

Measurement Repeatability

1.5

Pointing

Total RSS

205.5

Measurement Repeatability

Cone Agreement Accuracy

Instrument

301

PMO

Total RSS

Correction

Value [ppm] o [ppm]

Cone Agreement Accuracy

Instrument

DIA

Aperture

1,000,000 501

Correction

Value [ppm]

Diffraction

100

Aperture

1,000,000

Cone Reflectance

330 70

Diffraction

Non-Equivalence, ZH/ZR - 1

2,900 500

Cone Reflectance

250

Standard Volt + DAC

1,000,000

Non-Equivalence, ZH/ZR - 1

0

Standard Ohm + Leads

1,000,000 30

Standard Volt + DAC

1,000,000

Servo Gain

Standard Ohm + Leads

1,000,000

Dark Signal

Servo Gain

329

Scattered Light & IR

Dark Signal

Shutter Waveform

Scattered Light & IR

Distance to Sun, Earth & S/C

Shutter Waveform

Doppler Velocity

Distance to Sun, Earth & S/C

Pointing

Doppler Velocity

Measurement Repeatability

Pointing

Total RSS

Measurement Repeatability

Cone Agreement Accuracy

LASP, 25-27 Oct. 2011
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What Do Models Show?

NRL TSI Regression Model

R? = 0.9227

1980

1985 1990 1995 2000 2005
Faculae

Bt

Sunspots

2010

1980
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SFO TSI Regression Model

R? = 0.9425

1 1 Il L

1990 1995 2000 2005
Ca K Photometric Sum

1980

1985 1990 1995 2000

2005
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CERES and TIM Are Improving Radiative Balance Understanding

(1-0 uncertainties)

TIM: 340.3 W/m?
Oceans: 0.85 W/m?

Expand beyond your instruments Earth Sph: 0.16 W/m?

Terminator: 0.3 W/m?

values from Loeb et al., 2008

102\ Reflected Solar Incoming Outgoing
Radiation Solar Longwave

101.9W m? Radiation Radiation
341.3Wm? 238.5Wm?
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Clouds and ,
Atmospheric
Atmosphere ’ f 40 1o

3 Emitted by Window

\ Atmosphere
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169

78 Atmosphere

17 .. f ‘
> G§\ ' 333

336 Back

396

S hea L

transpiration ‘Rac iation  Absort

Surface
Net absorbed
R from T, , Fasullo, and Kiehl

[
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=) Radiation
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—

Thermals Epo- S
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Possible Causes of Differences in Absolute Values

Underestimated Uncertainties: Is this simply the state of the art in these radiometric
measurements, with all uncertainties being underestimated?

Apertures: Measurements from different facilities have greater variations than stated aperture
measurement uncertainties.

— Does not account for 0.3% TSI difference
— Does not explain inter-cavity variations within single instrument

1 AU: 149.59787066 x 10° km (SORCE value)
Darks: Uncertainties in dark corrections are large.

— These are large corrections, depend on FOV, and vary with temperature.

— Darks are not measured regularly on several instruments.

TIM Linearity: Non-linearities were only measured on ground units. The TIM uses pulse width
modulation while other radiometers are DC.

— Very unlikely to have 0.3% difference

Scatter Prior to Limiting Aperture: Instruments with oversized (non-limiting) aperture near front of
instrument allow much more sunlight into instrument. (The TIM precision aperture and shutter are
at the front of the instrument, so this is a difference.)

— Scatter will increase the signal through the limiting aperture.
Diffraction: This is a 0.12% effect in ACRIM and is not made

Aperture Heating: Uncertainties in heating due to different aperture materials, conduction,
mounting, emissivities

Experimentalists are optimistic
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Things To Do

Uncertainties are higher than stated and difference isn’t unexpected.

— The best comparisons are currently being done in space, and ground-based
comparisons are not needed as differences are simply due to large uncertainties.

Complete aperture comparison measurements
— Get ACRIM apertures included in NIST aperture comparison

Power comparison

— NPL power trap comparison

— NIST power cryo comparison

— 0.05% accuracy

Consider a PMOD World Radiation Reference or a JPL Table Mountain
Observatory inter-comparison

— These are not absolute measurements, merely relative comparisons

NASA’s Glory program is creating a cryo radiometer facility to compare TSI
instruments on an absolute scale

LASP, 25-27 Oct. 2011 TSI Lessons Learned Greg Kopp - p. 25




NIST Aperture Comparisen-Saga

The dog ate my homework

Ratio Lab/NIST Area Measurement
1.008
L
1.006
. 1.004
-
[}
Z 1.002 : -
Qo | L =
S : by 1 3 3 s 0
° 4 A
E =]
e 0998 I I RMIB Aperture Measurement Differences
0.996 L | = RMIB i 800 T T T T 1 :
: - NASA JPL - .
0994 1 ANASA Langley |_ [ Average Offsets |
+ WRC 600 NPL: 230 ppm |
0.932 T T T T L ¥ JPL: 542 ppm *x
0 2 4 6 8 i * x i
Aperture E i i
& 400 =
.(7, E -
z S % X 1
g 200 _— % —_
g B -
s ol % 4 % l .
s °f T T T -
>
-200H NIST -
- NPL 1
-l JPL .
-400 1 1 1 1 1 1

PREMOS 1S PREMOS 2S SOVIM 3S SOVIM 4SS SOVIM 5S  SOVIM 6S
Aperture
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TIM Optical Power Comparisons at NIST

e NIST and LASP completed optical power comparisons between a
trap diode transfer standard and a ground-based TIM

Brewster TSI
vacuum

instrument

window
stabilized \ r B
laser \ L

beamsplitter

(0.2%) ~.
AN B

trap diode

Follow tests planned
(even if others don’t)
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TSI Radiometer Facility (TRF) Measures Irradiance

The TRF

Improves the calibration accuracy of future TSI instruments,
Establishes a new ground-based radiometric irradiance reference gtandard, and

Provides a means of comparing existing ground-based TSI insd ts against
this standard under flight-like operating conditions. |

at solar power levels
in vacuum

at desired accuracies

Kopp et al., SPIE 2007
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Build Needed Facilities

* The facility is designed to allow a TSI instrument or the cryogenic
radiometer to sample exactly the same beam

— Beam is not displaced, instruments are placed at the same location in a
stationary beam

Top-view of optical path: TSI instrument in beam

Ml
LIRS
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Build Needed Facilities

* The facility is designed to allow a TSI instrument or the cryogenic
radiometer to sample exactly the same beam

— Beam is not displaced, instruments are placed at the same location in a
stationary beam

Top-view of optical path: Cryogenic Radiometer in beam

‘\“{ N \ a
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Follow-Up Workshop — 2010

Discuss improvements in instrument calibrations, particularly
newly possible end-to-end validations and diagnostics being done
on TSI Radiometer Facility, since the 2005 TSI Accuracy Workshop

Plan future calibration methods of improving TSI record

Get instrument people together alone.
Lock the door.
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So What Causes the Instrument Offsets?

TotolI S|0|O.r Ilrrclndl?n?elDoltolbolse None Of these
instruments have been
validated end-to-end for
irradiance to desired
accuracies

SOVA2

KRV 1
v2 (L

S hetldS o e "
R ] . e

 ERBS V-0508 . i il

.‘.-.“.l‘ oy = ‘h
T o P T,
2010

G. Kopp, 18 Jul. 2011

Sunspot Number
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Diffraction & Scatter Erroneously Increase Signal

All instruments except the TIM put primary aperture close to the cavity

Sunlight Sunlight “It’s not enough to show that

you're right — you have to
show why others are wrong.”

) .
Bew-Limitidl Precision George Lawrence’s advisor

Aperture Aperture

all other TSI TIM geometry
instrument geometries

Failure to correct Failure to correct
for light diffracted for light diffracted

into cavity out of cavity
erroneously erroneously

increases signal decreases signal

LASP, 25-27 Oct. 2011 TSI Lessons Learned Greg Kopp - p. 33




Diffraction & Scatter Erroneously Increase Signal

All instruments except the TIM put primary aperture close to the cavity

Expanding TRF beam from filling

precision aperture while Sunlight Sunlight
underfilling view-limiting aperture

to overfilling view-limiting aperture

causes increase in signal due to

scatter and diffraction from front

. . . . View-Limiting Precision
and interior sections of instrument

Aperture Aperture

all other TSI TIM geometry
instrument geometries

iew-Limiting
Aperture .
' Social aspects are even

more impressive!
PREMOS-1 0.10%
PREMOS-3 0.04%
VIRGO 0.15%
ACRIM-3 0.51%
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TRF Corrections Now Applied by ACRIM Team ...

Total Solar Irradiance Database
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... And PREMOS Data Are Recently Available

Total Solar Irradiance Database
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Roger Helizon (ACRIM): “Now | see why you didn’t want to come to
Table Mountain: This is the way to do these experiments!”
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“Evolution” of Physical ‘Constants’
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Fig. 3. Recommended values for fundamental constants; 1952-1973.
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“A New Value for the Solar Constant Is Determined”

Value [W/
Measurement

Ground extrapolations (Johnson, 1954) 1369
B-57 jet (2 flights, July-Aug. 1966) 1358
B-57 jet (4 flights, March 1967) 1360
CV-990 jet (Oct. 1967) 1362
X-15 rocket (Oct. 1967) 1361

from “New Value for the Solar Constant of Radiation,” by A.J. Drummond,
J.R. Hickey, W.J. Scholes, and E.G. Laue, Nature, 218, #5138, April 1968.
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Desired Stabilities Not Yet Achieved

* There remain significant differences between existing instruments

TSI Data for Comparisons a2 ]
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Desired Stabilities Not Yet Achieved

* There are significant differences between instrument data versions

ACRIM3 TSI Data

VIRGO V6.2 to V6.1 Differences
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How Good Are Resulting Composites?

* Trend detection between solar minima is currently marginal

PMOD Composite Irradiance
1 1 I

IRMB Composite Irradiance
I I 1
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Are We There Yet?

Total Solar Irradiance Database
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Fundamental Solar Irradiance Science Questions

What is the value of the TSI on an absolute scale?

— Relevant for radiation balance

How variable is the Sun over decades/centuries?
— Relevant for climate change and historical perspective

What solar activities cause irradiance fluctuations?
— Relevant for understanding solar physics and solar proxies

How sensitive is the Earth’s climate to solar variability?

— Relevant for quantifying effects of climate change

Keep perspective
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Lessons

“Consistency is comforting; but agreement is not accuracy.”

Define requirements based on science, not capability

Get new blood: Heritage and experience don’t guarantee expertise

Get everyone together at neutral place (organized by NIST, NASA)
Discuss instrument and calibration details ad nauseam and create test plans
Make uncertainty budgets consistent for comparisons

Discuss dirty laundry with neutral participants (“judges”) in audience
Include diverse group (Eric Shirley, theory, diffraction)

Expand beyond your instruments
Follow tests planned (even if others don’t)

“It’s not enough to show that you’re right — you have to show why others are wrong.”

Build new facilities after getting inputs
Start with broad external community (NASA, NIST, ESA, ...) driving to get things going
Then get instrument people together alone. Lock the door.

— Discuss instrument and calibration details (ad nauseam)?
Bring teams together to work in pairs for 1-2 weeks
Retirements help

— Always be open to new ideas (don’t let stagnation be you!)
Be open, honest, and respectful in front of and behind people

“You’re not done. You’re never done.”

Keep pprﬁpprﬁVP
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Now I’m Eager to Listen and Learn — Good Luck!
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