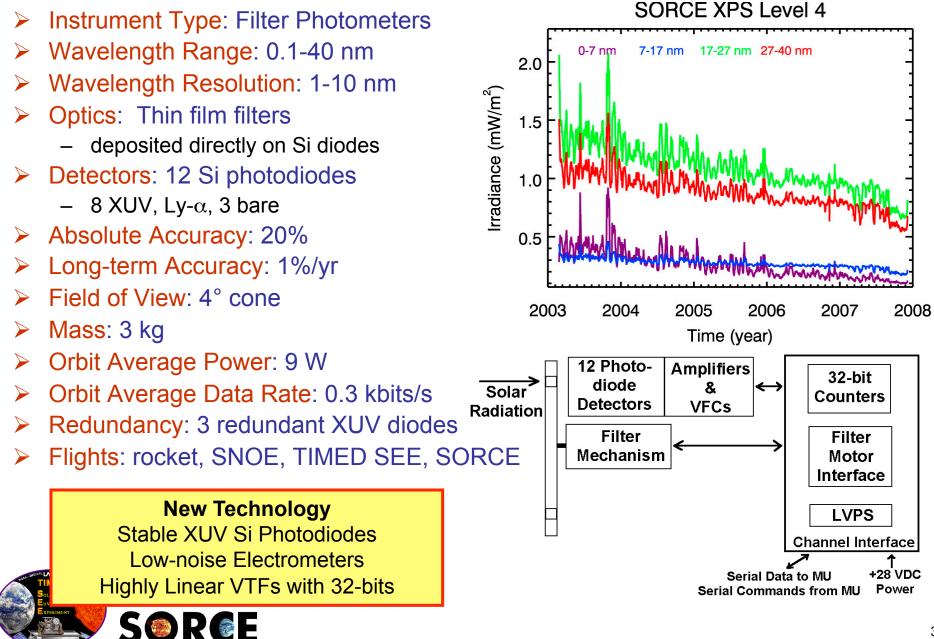
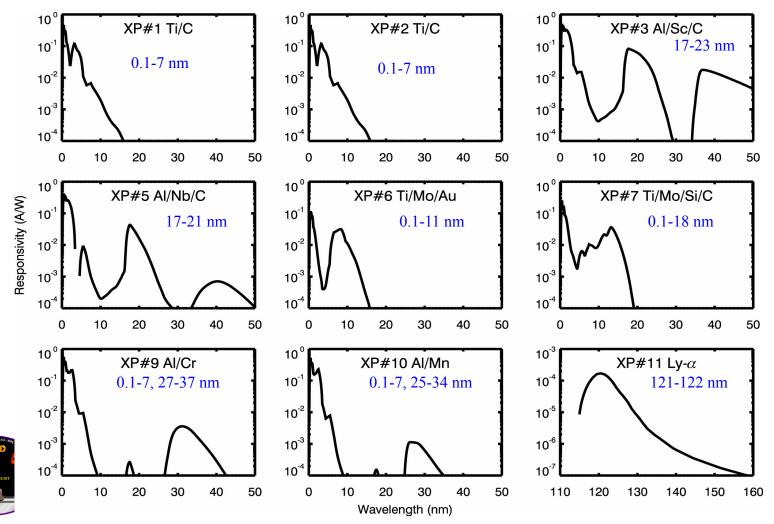

XUV Photometer System (XPS) Tom Woods

Sections:

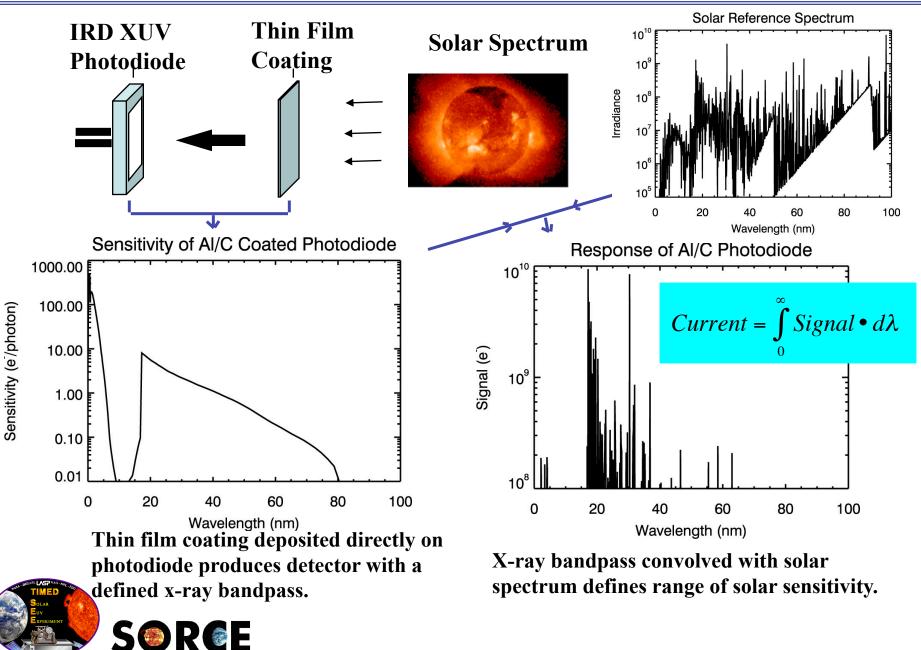
- Instrument Overview
 - Photodiode / Filters
 - Measurement Technique
 - □ Filter Wheel Mechanism / Anomaly
 - Data Products
 - Lessons Learned
- Calibrations
 - Pre-flight calibrations
 - □ In-flight calibrations
- **Comparisons to SDO EVE**
 - □ Broadband (direct) comparison to ESP
 - □ Spectral (model) comparison to MEGS



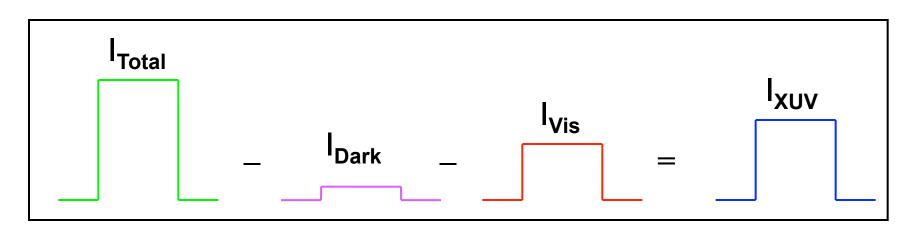
XPS Instrument Overview



Overview of XUV Photometer System (XPS)

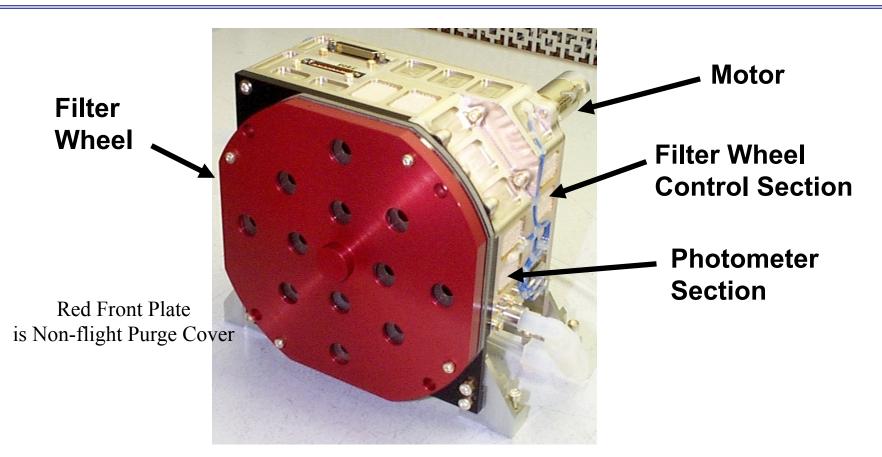


XPS Wavelength Coverage / Resolution


- Designed / selected filter coatings for specific broad bands
 - 0.1-7 nm, 7-17 nm, 17-24 nm, 24-34 nm, 121.5 nm
- TIMED SEE XPS and SORCE XPS are essentially the same
 - 12 photometers: 8 XUV, 1 Lyman- α , 3 bare (visible) diodes

XPS Measurement Approach - Filter Photometer

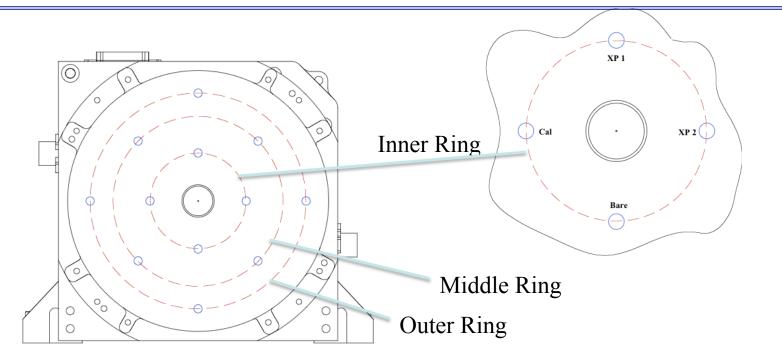
XUV Photometer Signal Contributions



- I_{Total} : integrated signal across all wavelengths that pass through the coating
- I_{Dark} : dark signal related mostly to DC offset of charge amplifiers and also to thermal noise of the Si photodiodes
- I_{Vis} : signal from long wavelength red-leaks and minor pinholes in thin-film metal coatings
 - To measure I_{Vis} a fused silica window is placed in front of the photometer, absorbing XUV wavelengths. $I_{VisMeasured}$ results.
 - $I_{VisMeasured}$ requires a window transmission correction to get I_{Vis}

 $I_{Vis} = I_{VisMeasured} / T_{Vis Fused Silica Window}$

XPS Has One Mechanism


A filter wheel mechanism is used to measure separately the XUV, dark, and visible signals for the XPS photometers.

- Filter Wheel has 8 positions
- Each diode has 5 dark, 1 open (XUV), and 2 windows (visible)

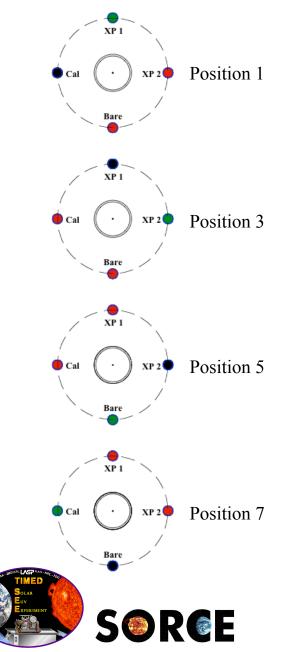
Aperture Layout

- 3 concentric rings of photometers, 4 photometers per ring, total of 12
- > Each ring consists of a set of photometers with:
 - 2 primary XUV photodiodes
 - 1 bare photodiode
 - 1 redundant (calibration) XUV photodiode

XPS Filter Wheel Positions / Operations

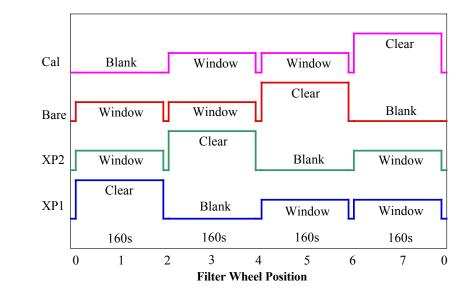
Filter wheel has 8 positions

Each photometer has 5 dark, 1 light, 2 FS windows


XP	Filter	Filter Wheel Position							
No.	Coating	0	1	2	3	4	5	6	7
1	Ti/C	FS-1	Dark	Dark	Dark	FS-2	Dark	Clear	Dark
2	Ti/C	Dark	Dark	FS-2	Dark	Clear	Dark	FS-1	Dark
3	Al/Sc/C	FS-2	Dark	Clear	Dark	FS-1	Dark	Dark	Dark
4	None	Clear	Dark	FS-1	Dark	Dark	Dark	FS-2	Dark
5	Al/Nb/C	FS-2	Dark	Clear	Dark	FS-1	Dark	Dark	Dark
6	Ti/Mo/ Au	Clear	Dark	FS-1	Dark	Dark	Dark	FS-2	Dark
7	Ti/Mo/Si/ C	FS-1	Dark	Dark	Dark	FS-2	Dark	Clear	Dark
8	None	Dark	Dark	FS-2	Dark	Clear	Dark	FS-1	Dark
9	Al/Cr	Clear	Dark	FS-1	Dark	Dark	Dark	FS-2	Dark
10	Al/Mn	FS-1	Dark	Dark	Dark	FS-2	Dark	Clear	Dark
11	Ly-a	Dark	Dark	FS-2	Dark	Clear	Dark	FS-1	Dark
12	None	FS-2	Dark	Clear	Dark	FS-1	Dark	Dark	Dark

Post-Anomaly is Position 6

Filter Wheel Operation



On the rotating Filter Wheel, each ring has

- – 1 Clear aperture
 - - 2 Fused silica windows
 - – 1 Blank (additional 4 positions also blank)

These cycle past each of the photometer

apertures during one revolution of filter wheel

TIMED SEE: Filter wheel rotated each orbit SORCE: Filter wheel rotated around every 5 minutes

XPS Flights and Current Status

- 12 rocket flights since 1992
 - prototype TIMED SEE XPS used since 1997
- SNOE version of XPS: 1998-2000
- TIMED SEE XPS: Jan. 2002 present
 - XPS filter wheel anomaly in July 2002
 - Stuck in position 6 operations have continued on in this position
 - Suspect issue is due to vespel part in mechanism detent system
- SORCE XPS: Mar. 2003 present
 - XPS filter wheel anomaly in Dec. 2005
 - Stuck in position 0 but started to work 2 days later continues to work OK
 - New XPS operations approach started in 2006 with 1-minute cadence in position 6 and monthly calibrations that use the filter wheel

XPS Data Products

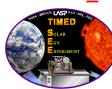
Level 0b/1: raw data First # is for TIMED SEE, Second # is SORCE
 Level 1/2: irradiance data

- simple algorithm: Irradiance = XUV_Signal * Factor
- but complicated to understand for broad bands..

Level 2/3: daily average of Level 1 irradiances

- Level 4: spectral model that matches Level 1
 - next slide

Level 3: insertion of XPS Level 4 data into 1-nm bins for composite spectra on TIMED SEE and SORCE


XPS Level 1/2 Simple Irradiance Algorithm

Irradiance = Signal * Factor

- "Signal" is first corrected for dark and visible contributions
- "Factor" has many parameters
- Visible Signal is based on in-flight measurements
 - Transmission is measured by the "visible" diodes

"Reference Spectrum" is required

- One factor is the ratio of the total signal to the signal over a limited band. Band width is adjusted so this factor is close to 1.
- Another factor is average transmission value over the band.

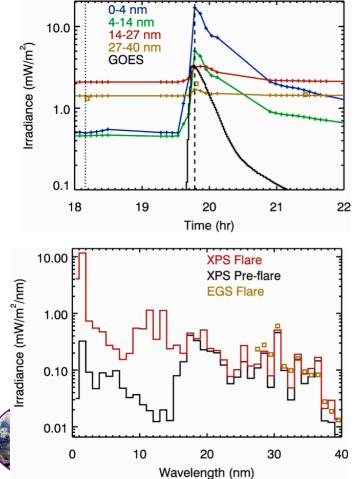
"Reference Spectrum" is average of solar cycle Min and Max (NRLSSI)

$$E_{i} = \frac{\left(I_{i,total} - I_{i,dark} - I_{i,visible}\right)}{f_{i,E_{total}} \bullet < T_{i,xuv} > \bullet A_{i} \bullet f_{i,xuv_{fov}}} \bullet k_{E} \bullet f_{Degrade}$$

$$I_{i,visible} = \frac{\left(I_{i,window} - I_{i,dark}\right)}{T_{window}} \bullet \frac{f_{i,clr_fov}(\alpha_{xuv},\beta_{xuv})}{f_{i,vis_fov}(\alpha_{window},\beta_{window})}$$
$$T_{window} = \frac{\left(I_{b,window} - I_{b,dark}\right)}{\left(I_{b,window} - I_{b,dark}\right)} \bullet \frac{f_{b,clr_fov}(\alpha_{clear},\beta_{clear})}{f_{b,clr_fov}(\alpha_{clear},\beta_{clear})}$$

$$T_{window} = \frac{(I_{b,clear} - I_{b,dark})}{(I_{b,clear} - I_{b,dark})} \bullet \frac{f_{b,clear} - f_{b,dark}}{f_{b,vis_{b}} (\alpha_{window}, \beta_{window})}$$

$$f_{i,E_total} = \frac{\int_{0}^{\infty} T \cdot E \cdot d\lambda}{\int_{\lambda_{1}}^{\lambda_{2}} T \cdot E \cdot d\lambda}$$
$$\left\langle T_{i,xuv} \right\rangle = \frac{\int_{\lambda_{1}}^{\lambda_{2}} T \cdot E \cdot d\lambda}{\int_{\lambda_{1}}^{\lambda_{2}} E \cdot d\lambda}$$

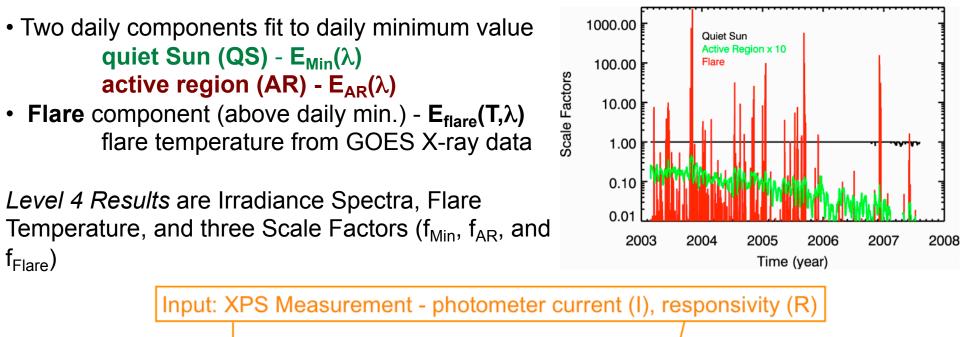

This works fine for non-flare data.

13

Motivation for Level 4 Spectral Model

Improve the XUV irradiance during flare events

Provide higher spectral resolution than the broad bands of the XPS



Example flare time series and spectra.

In the top panel, the time series of the large X28 flare on 4 November 2003 is shown for several bands from the new XPS Level 4 product, along with the GOES 0.1-0.8 nm X-ray measurement. As for this example, the 0-4 nm band is often the dominant emissions during a flare but is a minor contribution at other times.

In the bottom panel, the spectrum near the peak of the flare (dashed line in top panel) is compared to the pre-flare spectrum (dotted line in top panel). The majority of the irradiance increase is shorter than 15 nm. The XPS Level 4 model results are in reasonably good agreement with the SEE EGS spectral measurements at longer than 27 nm.

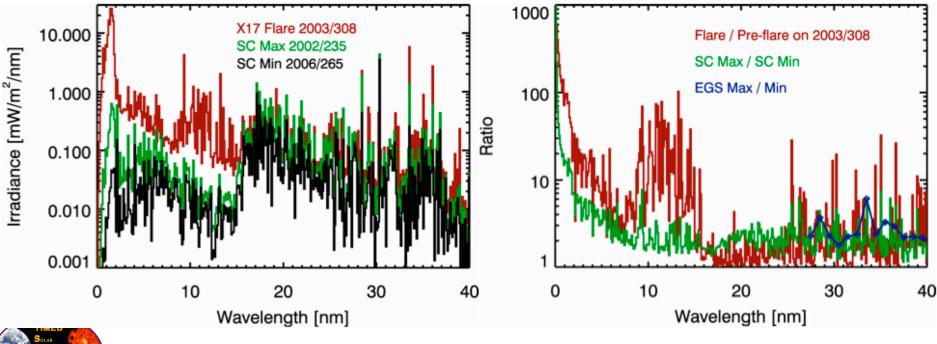
XPS Level 4 Spectral Model uses CHIANTI Spectra

$$I_{measure} = I_{day_min} + I_{flare}$$

$$I_{day_min} = f_{Min} \cdot \int_{0}^{\infty} R(\lambda) \cdot E_{Min}(\lambda) \cdot d\lambda + f_{AR} \cdot \int_{0}^{\infty} R(\lambda) \cdot E_{AR}(\lambda) \cdot d\lambda$$

$$(HIANTI Spectral Models)$$

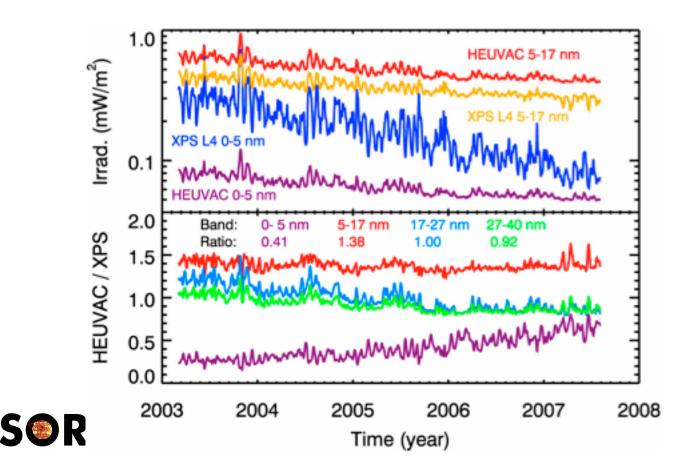
$$(Dere \ et \ al., 1997; Landi \ et \ al., 2006)$$


$$(E_{L4}(\lambda) = f_{Min} \cdot E_{Min}(\lambda) + f_{AR} \cdot E_{AR}(\lambda) + f_{Flare} \cdot E_{Flare}(T, \lambda)$$

$$(Output: XPS Level 4 Irradiance Spectra (0.1 nm resolution))$$

$$(flare Temperature (T), 3 scale factors$$

Example Solar Flare Variation


- Variations for the large flares are larger than solar cycle variations
- Flare variations dominate shortward of 15 nm
- Level 4 active region scale factor represents the fractional disk covered by active regions

Comparison of XPS Level 4 to HEUVAC Model

- > HEUVAC model is by Richards et al. [2006]
- The top panel shows the irradiances for the 0-5 nm and 5-17 nm bands as they differ the most.
- The bottom panels shows the ratio of HEUVAC to XPS Level 4 bands.

Lessons Learned from XPS Instrument

Calibration (accuracy) Lesson

- Use multiple calibration techniques / references to achieve best accuracy
- Spectral Resolution Lesson
 - Easier to interpret results with higher spectral resolution
 - i.e., data processing results can be dependent on spectral models when working with broad band photometers
- Filter Wheel Mechanism Lessons
 - Better to use direct drive, or at least few gears
 - Motor control should have forward/reverse direction and, if possible, redundant winding
 - Braycote (wet) lubrication better for gears (versus dry lub)

