

EUV irradiance inter-calibration workshop

M. Dominique + LYRA team
October 2011, LASP

PROBA2 orbit:

- Heliosynchronous
- Polar
- Dawn-dusk
- □ 725 km altitude
- □ Duration of 100 min
- Occultation season:
 - □ Visible:October-February
 - Maximum duration 20 min per orbit

LYRA highlights

- 1: View-limiting aperture (Ø 8mm)
- 2: precision aperture (Ø 3mm)
- 3: filter
- 4: LEDs (λ 375 and 465 nm)
- 5: detector (Ø 4mm)

Details of LYRA channels

Channel	Filter label	Detector	Bandwidth	Purity
Unit 1				
1-1	Lyman- α [122XN]	MSM Diamond	120-123 nm	26%
1-2	Herzberg [220B]	PIN Diamond	190-222 nm	95%
1-3	Aluminium (158 nm)	MSM Diamond	$17\text{-}80~\mathrm{nm}~+<5~\mathrm{nm}$	96.8%
1-4	Zirconium (300 nm)	AXUV Si	6-20 nm + $<$ 2 nm	97%
Unit 2				
2-1	Lyman- α [122XN]	MSM Diamond	120-123 nm	25.7%
2-2	Herzberg [220B]	PIN Diamond	190-222 nm	95%
2-3	Aluminium (158 nm)	MSM Diamond	$17\text{-}80~\mathrm{nm}~+<5~\mathrm{nm}$	97.2%
2-4	Zirconium (141 nm)	MSM Diamond	6-20 nm + $<$ 2 nm	92.2%
Unit 3				
3-1	Lyman- α [122N+XN]	AXUV Si	120-123 nm	32.5~%
3-2	Herzberg [220B]	PIN Diamond	$190\text{-}222~\mathrm{nm}$	95%
3-3	Aluminium (158 nm)	AXUV Si	$17\text{-}80~\mathrm{nm}~+<5~\mathrm{nm}$	96.6%
3-4	Zirconium (300 nm)	AXUV Si	6-20 nm + $<$ 2 nm	95%

Operation: systematic campaigns

	Integra- tion time	Units	Cover status	LED status	Pointing	Occur- ence
Range	10ms → 10s	max. two at a time	open / close	off / 375nm / 465nm	0° (Sun) → 3°	
Nominal	50 ms	U2	open	off	Sun	N/A
Back-up A	50ms	U2+3	open	off	Sun	1 / 2weeks
Back-up B	50ms	U2+1	open	off	Sun	1 / 3months
Calibra- tion	50ms	1) U2+1 2) U2+3	close	off (DC) on (LED)	N/A	1/ 2weeks
Paving	50ms	-	open	off	From 0° to 3°	occasio- nal

Operation: occasional campaigns

- ☐ Scientific campaigns
 - ☐ Observation of flares: unit 2 and 3
 - ☐ Occultations in all three units
 - ☐ Eclipses in all three units
- Bake-out => no real effect so far

- Work still in progress ...
- Various aspects (to be) investigated:
- □ Degradation due to contaminant layer
- ☐ Dark current evolution (detector degradation)
- □ Response to LED signal acquisition (detector spectral evolution)
- □ An alternative way to probe the spectral evolution (detector + filter): occultations
- □ Flat-field evolution

- Work still in progress ...
- Various aspects (to be) investigated:
- □ Degradation due to contaminant layer
- □ Dark current evolution (detector degradation)
- □ Response to LED signal acquisition (detector spectral evolution)
- □ An alternative way to probe the spectral evolution (detector + filter): occultations
- □ Flat-field evolution

Degradation of unit 2

Degradation of units 1 and 3

- Work still in progress ...
- Various aspects (to be) investigated:
- □ Degradation due to contaminant layer
- □ Dark current evolution (detector degradation)
- □ Response to LED signal acquisition (detector spectral evolution)
- □ An alternative way to probe the spectral evolution (detector + filter): occultations
- □ Flat-field evolution

Variations correlated with temperature evolution

Dark current in Lyman alpha

A. De Groof

- Work still in progress ...
- Various aspects (to be) investigated:
- □ Degradation due to contaminant layer
- ☐ Dark current evolution (detector degradation)
- ☐ Response to LED signal acquisition (detector spectral evolution)
- □ An alternative way to probe the spectral evolution (detector + filter): occultations
- □ Flat-field evolution

- □ Very little change over the mission.
- □ Bimodal appearance is due to systematic difference between first and second measurements during each

M. Snow

Low detector degradation, if any

- Work still in progress ...
- Various aspects (to be) investigated:
- □ Degradation due to contaminant layer
- ☐ Dark current evolution (detector degradation)
- □ Response to LED signal acquisition (detector spectral evolution)
- □ An alternative way to probe the spectral evolution (detector + filter): occultations
- □ Flat-field evolution

Probing the evolution of bandpasses: occultations

- Work still in progress ...
- Various aspects (to be) investigated:
- □ Degradation due to contaminant layer
- ☐ Dark current evolution (detector degradation)
- ☐ Response to LED signal acquisition (detector spectral evolution)
- □ An alternative way to probe the spectral evolution (detector + filter): occultations
- □ Flat-field evolution

Flat-field evolution

Non-solar features in LYRA data

- 1. LAR: four times an orbit
- 2. SAA affects more Si detectors independently of their bandpass

Non-solar features in LYRA data

- 1. Occultation: from mid-October to mid-February
- 2. Auroral perturbation
 - Only when Kp > 3
 - Only affects Al and Zr channels independently of the detector type
 - Does not affects SWAP (though observing in the same wavelength range)

Position on the orbit

Time (h) on 2010-11-30

Data products

Product	File extension on LYRA website	Format	Characteristics	
	*_lev1_std(bst).fits	FITS	unprocessed solar irradiance, in counts/ms	
Level 1	$*_lev1_cal(bca).fits$	unprocessed calibration data,		
engineering data	$*_lev1_met.fits$	FITS	in counts/ms ancillary data: temperature, pointing	
Level 2 basic science dat Level 3 averaged science	Data products and quicklook viewer on http://proba2.sidc.be (outliers) irradiance, over 1 min,			
Level 4 A quicklooks	*.png	image	daily plot of calibrated data for all Lyra channels	
Level 4 B quicklooks	*.png	image	3-days Goes-like plot of calibrated data in Aluminium and Zirconium channels	
Level 5 flare list	html	text file	List of flares with links to Lyra and Goes flux profiles	

Collaborations

P.N.Lebedev Physical Institute of the Russian Academy of Science

