XPS Calibrations

XPS Calibration Overview

Pre-flight Calibrations

- Selection of filter diodes without pinholes
- Responsivity calibrations (PTB BESSY, NIST SURF-III) with 5-15% accuracy
- Electronics gain calibration: linearity check and as function of temperature

> In-flight Calibrations

- Rocket underflight calibrations using prototype XPS (about once per year)
 - NIST SURF-III used for the rocket XPS calibrations
- Redundant channel calibrations (initially once a day, now once a month on SORCE)

XPS Diode Calibration History

- > TIMED XPS diodes calibrated at PTB BESSY in 1998 (Frank Scholze)
 - reference diode used with monochromator and synchrotron source
 - calibrations are between 1 and 25 nm
 - TIMED launched in Dec. 2001
- ➤ SORCE XPS diodes calibrated at NIST SURF-III in 2001 (Rob Vest)
 - reference diode used with monochromator and synchrotron source (BL-9)
 - calibrations are between 5 and 50 nm
 - SORCE launched in Jan. 2003
- Rocket XPS diodes calibrated at NIST SURF-III in 2003 (Tom Woods)
 - direct use of synchrotron source (BL-2) with multiple beam energies
 - calibrations are over all wavelengths, but results primarily over the 0-34 nm range
 - Annual underflight calibration rockets: Feb. 2002, Aug. 2003; next: Oct. 2004
- ➤ TIMED SEE Version 7+ data and SORCE XPS Version 5+ data are based on the 2003 rocket XPS calibration

Two Batches of Diodes Calibrated

Batch 1 (1998-TIMED)

Filter Coating	Thickness (Å) Specification	Thickness (Å) from BL-2
Ti - C	5000 / 500	3875 / 500
Ti-Zr-Au	200/2000/1000	-
Ti-Pd	2000 / 1000	1628 / 791
Al-Sc-C	2000/1000/500	-
Al-Nb-C	2500/500/500	2089/392/473
Al-Cr	2000 / 1000	-
Al-Mn	2000 / 1000	-

Batch 2 (2000-SORCE)

Filter Coating	Thickness (Å) Specification	Thickness (Å) from BL-2
Used Batch #1 Ti-C		
Ti-Mo-Au	400/2000/1000	452/1113/741
Ti-Mo-Si- C	400/2000/1000/ 500	341/1313/1035/ 461
Al-Sc-C	2700/500/500	1791/500/250
Used Batch #1 Al-Nb-C		
Al-Cr	2700 / 1000	1750 / 1114
Al-Mn	2700 / 1000	1750 / 1447

Ti-C Photodiode Calibration

- All Ti-C diodes are from Batch 1 and are expected to be similar
- Factor of 2 differences at some wavelengths
 - BESSY has good agreement4 nm, lower 4-12 nm,higher >12 nm
 - SURF BL-9 and BL-2 results agree

Al-Nb-C Photodiode Calibration

- All Al-Nb-C diodes are from Batch 1 and are expected to be similar
- Large differences at some wavelengths
 - BESSY has good agreement3 nm, lower 3-17 nm and>21 nm
 - SURF BL-9 and BL-2 results agree < 10 nm and > 23 nm
 - SURF BL-2 is higher 17-21 nm

10

20

Wavelength (nm)

30

40

50

24

Ti-Mo-Au Photodiode Calibration

- ➤ Ti-Mo-Au diodes are from Batch 2 and are expected to be similar
- None of these diodes were calibrated at BESSY
- ➤ Good agreement between SURF BL-9 and BL-2 results
 - BL-2 result is higher 10-14 nm

Ti-Mo-Si-C Photodiode Calibration

- ➤ Ti-Mo-Si-C diodes are from Batch 2 and are expected to be similar
- None of these diodes were calibrated at BESSY
- ➤ BL-2 results are higher than SURF BL-9 results

Summary of Comparisons

Generalization of Differences

- BESSY is lower in the 3-10 nm range: exceptions are the Ti-Pd and Ti-Zr-Au diodes
- SURF BL-2 method is higher in the 17-35 nm range

Possible Causes for Differences

- Photodiode sensitivity could change with time, e.g. filter oxidation
 - Rocket XPS calibrated on SURF BL-2 in May 2003 and Jan. 2004 showed no degradation
 - · Photodiodes stable now, but could have changed early in life
- SURF BL-2 method has larger errors at longer wavelengths (>17 nm) because sensitivity is much lower than peak sensitivity at short wavelength
- Filter transmission model (Henke material constants) could have wavelength dependent errors and would affect SURF BL-2 results
- BESSY and SURF BL-9 monochromator corrections for scattered light and higher orders are possibly more problematic where the sensitivity is low (orders of magnitude weaker than peak sensitivity)

Average is Used for XPS Data Processing

> XPS has three different pre-flight calibrations

- NIST SURF BL-9 (monochromator + reference detector)
- PTB BESSY (monochromator + reference detector)
- NIST SURF BL-2 (direct synchrotron source: primary std)

- Updated XPS calibration in 2006 by merging best of these results
 - Previously used single calibration set in data processing
 - Example shown for XP#5 (Al/Nb/C)

Irradiance Accuracy is about 15%

- Reponsivity accuracy is primary contribution to irradiance accuracy
- > XP#1, #2, and #7 are used in XPS Level 4 processing
- XP#5 and #10 have higher than expected visible light signals and are not included in the public XPS data products

SORCE XPS Degradation Results

- Degradation tracked in-flight by using weekly on-board redundant channel calibrations, overlapping measurements by TIMED SEE and SORCE SOLSTICE, and annual calibration rocket flights
- \triangleright Degradation Results (note goal is 1%/year for σ_{LT}):

Small for XUV channels before 2007 Moderate after 2007 (higher exposure rate) σ_{LT} = 1.1%/5 yr = 0.2%/yr

Moderate for Ly- α filter (XP#11) Exponential decay down to 0.62 σ_{LT} = 4.5%/3 yr = 1.5%/yr

Additional In-flight Calibrations (trending)

- Visible Light Trend: Small time and temperature dependency
- Dark (background) Trend: Small time and temperature dependency

Example shown for XP#1 (Ti/C)

Visible Light Current

- Time trend of 0.1%/year
- Temp. trend very small

Dark Current

- Time trend of 0.2%/year
- Temp. trend of 0.1%/°C

Summary of XPS Calibrations

- ➤ The differences between BESSY, SURF BL-9, and SURF BL-2 are still not fully understood
- ➤ The XP#1 (0.1-7 nm) channels on both TIMED SEE and SORCE are the primary references for XPS
 - Best agreement for different BESSY and SURF calibrations
 - Has shown no degradation over 10 years for TIMED SEE XP#1
 - Has only single band and so is not very sensitive to spectral changes (such as flares)
 - Is used for scaling CHIANTI spectra for Level 4 product
 - Scales very well with the GOES XRS (X-ray) and thus is useful as proxy for the solar X-ray

XPS Comparisons to SDO EVE

XPS compared to SDO EVE MEGS

XPS Level 4 spectral model has reasonable good agreement with the EVE MEGS spectra when XPS Level 4 is integrated over broad bands

XPS compared to SDO EVE ESP Quad

- XPS and ESP Quad agree for lower levels of solar rotation but not for the peaks - this might mean a difference in effective bandpass ???
- ➤ TIMED SEE XPS (3% duty cycle) and SORCE XPS (70% duty cycle) agree, so XPS ESP difference is not expected to be a difference if including flares

What are the spectral bands for XPS & ESP?

 \rightarrow XPS #1 = Ti/C (3875 / 500 Å)

ESP Quad = Al/Ti/C (1500/2840/380 Å)

6