

Zone plate EUV Solar Irradiance Monitor

James C. Bremer, Research Support Instruments, Inc.;
John F. Seely, Naval Research Laboratory;
Glenn E. Holland, Global Strategies Group North America, Inc.;
Yan Feng, Xradia, Inc.;
Benjawan Kjornrattanawanich, Artep, Inc.;
Leonid Goray, Russian Academy of Sciences

EUV Workshop, LASP, October 25-27, 2011
This work was supported by NASA project NNH09AK121
"Ultra-Stable Extreme Ultraviolet Solar Monitor Using Zone Plates"

Overview

- Solar EUV spectrum & upper atmospheric interaction
- EUV measurement requirements & techniques
- Zone plate (ZP) optical properties
- ZP-based solar EUV irradiance monitor architecture
- Advantages of ZP-based solar irradiance monitor
- EUV monitor development goals & spectral band selection
- ZP solar irradiance monitor design parameters
- EUV channel parameters & predicted performance
- EUV monitor development status
- Atmospheric sounding with an EUV sensor
- Conclusions & recommendations

Solar Extreme Ultraviolet (EUV) Spectrum & Upper Atmospheric Interaction

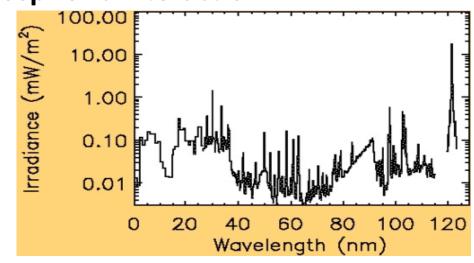
Solar EUV Spectrum

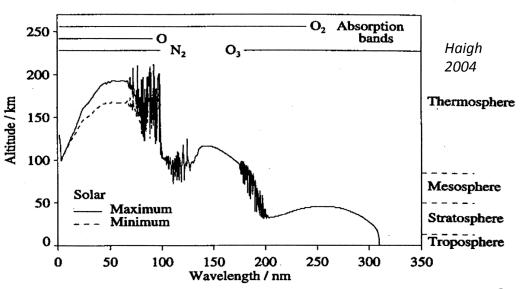
Much lower irradiance than NIR/visible/NUV

Dominated by bright emission lines from transition region, corona, flares, CME's

Highly variable: solar max/min \cong 10x; major flare/quiet Sun > 1000x at some λ 's

Upper Atmospheric Absorption (λ < 100 nm, altitude 100 - 200 km)


Produces ionosphere


Drives thermosphere's variation

Effects

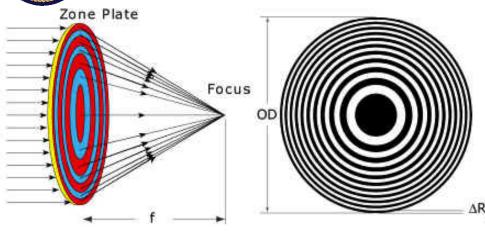
Disrupts RF & microwave communication & navigation

Increases drag on satellites in low-Earth orbits

EUV Measurement Requirements & Techniques

Requirements

- Measure total solar irradiance in several narrow EUV spectral bands
- Typical threshold sensitivities:
 10⁻⁶ -10⁻⁴ W/m²
- Extremely good long-λ (NIR/visible/ NUV) rejection
 - total solar irradiance = 1366 W/m²
- Long term stability in very contamination-sensitive spectral region
- Operational solar EUV monitoring on GOES-R satellites
 - 10% absolute accuracy
 - 10-yr operation after 5-yr on-orbit storage
 - Calibration with periodic sounding rocket flights


Techniques

- Thin (50-500 nm) metal film on mesh substrate and/or detector
 - Reflects/absorbs long-λ radiation
 - Semi-transparent in material-specific EUV band
 - Spectral selectivity often inadequate
 - Materials problems
- Linear transmission gratings (+ thin film filter)
 - Detector area > grating area
 - Passband varies with angle in dispersion direction across ~0.5° solar disk
 - Polarization sensitive
- Reflection gratings (+ thin film filter)
 - Specialized coatings for some EUV bands
 - Can focus radiation (Also used for telescopes)
 - Coatings extremely contamination & oxidation sensitive
 - Passband varies with angle in dispersion direction across ~0.5° solar disk
 - Polarization sensitive

Zone Plate (ZP) Optical Properties

Alternating opaque & transparent zones

Annular zones with radius α (zone #) $^{1/2}$

Focal length
$$f(\lambda,m) = (OD)(\Delta R_n) / m\lambda$$

 λ = wavelength

m = diffraction order

OD = ZP's diameter

 ΔR_n = outer zone width

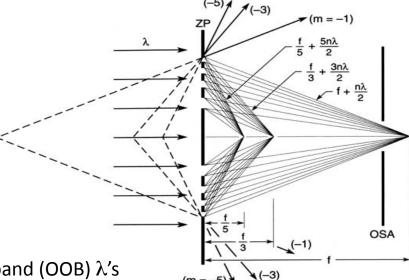
Fresnel ZP (FZP) transmission $\tau(m)$

$$\tau(0) = 0.25$$

$$\tau(m) = 1/(m\pi)^2$$
 m = ±1, ±3, ±5, --

$$\tau(m) = 0$$
 m = ±2, ±4, ±6, --

High-efficiency zone plate (HEZP)

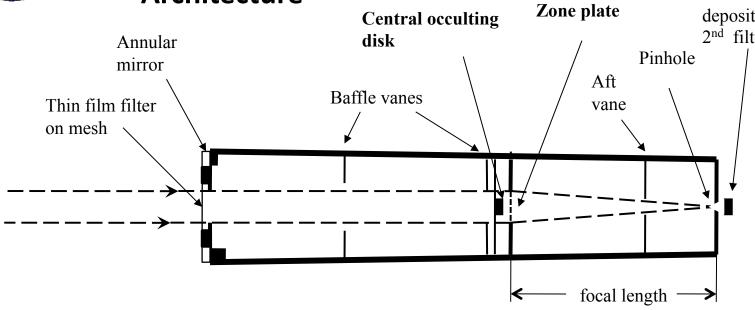

semi-transparent zones shift phase ~ 180°

$$\tau(+1) > 0.30$$
 at some λ 's

$$\tau(0) << 0.25$$

Pinhole order-sorting aperture (OSA) at $f(\lambda, +1)$

Central occulting disk blocks 0-order & out-of-band (OOB) λ 's


ZP-Based EUV Solar Irradiance Monitor Architecture

R.S.I RESEARCH SUPPORT INSTRUMENTS

Detector with deposited 2nd filter

Compo-	Thin film on mesh	Occulting	ZP on mesh	Pinhole	Detector w/	Annular
nent		disk	or membrane	aperture	filter	mirror
Function	Reflects & absorbs long-λ's & restricts EUV λ's	Blocks 0-order & OOB λ 's from pinhole	Disperses EUV radiation, focusing desired λ 's into pinhole	Passes in- band λ & blocks most long-λ & OOB EUV λ's	Blocks long- λ's, including fluorescence & restricts EUV λ's	Boresight reference for S/C alignment

Advantages of a ZP-Based EUV Solar Irradiance Monitor

- Spectrally selectivity
 - ZP's dispersion augments thin film filters to improve OOB- λ rejection
- In-band focusing into small pinhole
 - Permits small detector with low dark current
 - Blocks most OOB- λ radiation from reaching detector (especially long- λ radiation)
 - Blocks most contamination from reaching detector
- Circular symmetry
 - Spectral response ~ constant over 1° FOV
 - Polarization insensitive
- Two thin film filters
 - 1st filter heats rapidly to ~200 °C in full sunlight, but creates benign internal thermal environment (relatively contamination insensitive due to high T & dT/dt)
 - 2^{nd} filter on detector blocks long- λ radiation due to fluorescence
 - Dual filters allow use of incompatible materials & decrease degradation due to filter flaws
- No reflective optics
 - Less sensitive to contamination & oxidation than reflective EUV gratings & telescopes
- Compact
 - Much smaller volume & lower mass than grating-based monitor with equivalent performance

EUV Monitor Development Goals & Spectral Band Selection

Develop stable, compact, space-qualified solar EUV irradiance monitors Calibrate present & future solar EUV instruments on-orbit Strong emission lines coinciding with those used by imaging EUV telescopes Develop ZP on mesh substrate for use in 20-90 nm spectral region

Custom ZP's, 4 mm diameter, produced by Xradia, Inc.

- Fe IX-XII band (17.1-19.5 nm):
 - Includes numerous strong coronal emission lines ($T \approx 0.5 \times 10^6 \text{ K} 2.0 \times 10^6 \text{ K}$)
 - HEZP with Mo zones on Si_3N_4 membrane substrate ($\lambda_{max} \approx 19.5$ nm)
 - Al filters determine short- λ cut-off (λ_{min} = 17.1 nm)
- He II band (30.4 nm)
 - Dominant solar EUV spectral line, emitted by transition region ($T \approx 60,000 \text{ K}$)
 - Si₃N₄ zones on open mesh substrate (no membrane)
 - Broadband Al filters (λ_{min} = 17.1 nm to λ_{max} > 40 nm)
 - ZP's dispersion and pinhole aperture define spectral band

ZP Solar Irradiance Monitor Design Parameters

• Focal length, f_{LC} , and diameter, δ_{LC} , of circle of least confusion for a finite bandwidth λ_{min} to λ_{max} = focal length at $\lambda_0 = (\lambda_{min} + \lambda_{max})/2$:

$$f_{LC} = 2(OD)(\Delta R_n) / (\lambda_{min} + \lambda_{max})$$

$$\delta_{LC} = OD[(\lambda_{min} - \lambda_{max}) / (\lambda_{min} + \lambda_{max})]$$

• Diameter, δ_{FOV} , of FOV, θ , in focal plane:

$$\delta_{FOV} = f_{LC}\theta = 2(OD)(\Delta R_n)\theta / (\lambda_{min} + \lambda_{max})$$

• Diameter of pinhole, δ , required to capture all radiation within FOV from λ_{min} to λ_{max} :

$$\delta = OD[(\lambda_{min} - \lambda_{max}) + 2(\Delta R_n)\theta] / (\lambda_{min} + \lambda_{max})$$

• Minimum occulting disk diameter, d, to block m = 0 radiation from pinhole:

d >
$$\delta$$
 + 2(OD)(ΔR_n) θ / (λ_{min} + λ_{max}) = OD[(λ_{min} - λ_{max}) + 4(ΔR_n) θ] / (λ_{min} + λ_{max})

• FWHM wavelengths, λ_+ , λ_- (in absence of spectral filtering by thin films):

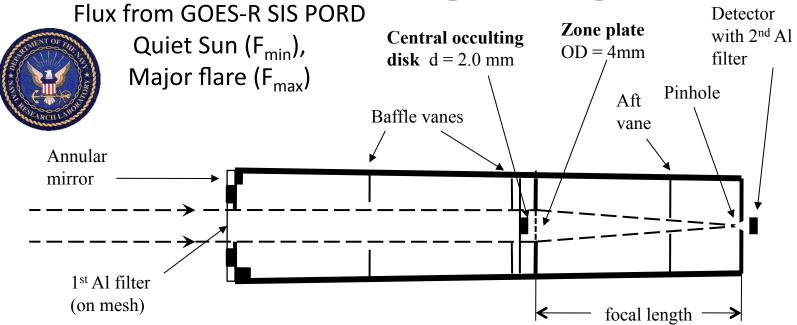
$$\lambda_{+}, \lambda_{-} = \lambda_{0} \{1 \pm \delta / [2/(OD^{2} + d^{2}]^{1/2}\}$$

FOV: $\theta = 0.01745$ (1°) includes photosphere & transition region (~0.6°) & tolerance (±0.2°)

D = 4 mm, d = 2 mm, spider leg width = 0.3 mm for both channels:

Unocculted area = $\pi/4(4^2-2^2)-4(1)(0.3)=8.22 \text{ mm}^2$

Effective area, Aeff, = $(8.22 \text{ mm}^2)^* \tau_1^* \tau_7 (+1)^* \tau_2$

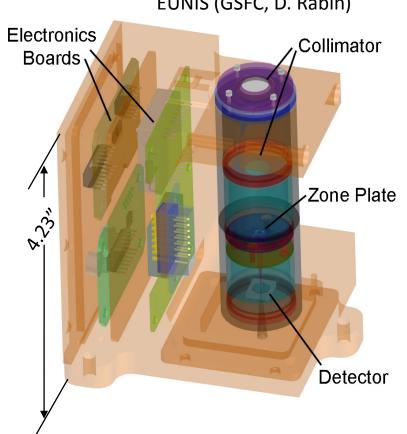

where τ_1 , τ_2 = filter transmissions, $\tau_7(+1)$ = ZP efficiency @ m = +1 (w/substrate)

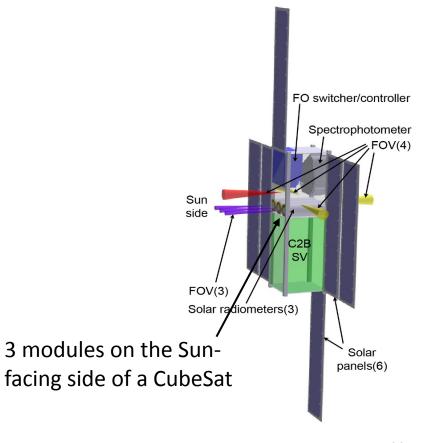
EUV Channel Parameters & Predicted Performance

Channel	$\lambda_{\rm o}$	ΔR_n	f	δ	FWHM	A _{eff}	Res	F_{min}	I_{min}	F_{max}	I_{max}
	(nm)	(nm)	(mm)	(mm)	(nm)	(mm^2)	(A/W)	(W/m^2)	(pA)	(W/m^2)	(pA)
Fe IX-	18.3	100	21.85	0.64	17.1-19.5	0.23	0.25	3.0E-5	1.7	1.3E-2	730
XII											
He II	30.4	190	25.00	0.44	26.2-34.6	0.40	0.22	1.1E-4	9.7	2.4E-2	2110

J. Bremer, J. Seely, G. Holland, & Y. Feng, "Zone plate EUV Solar Irradiance Monitor", Proc. SPIE, 7438, 743810-1-8, (2009).

ZP Radiometer Module


Potential Platforms


Sounding rockets

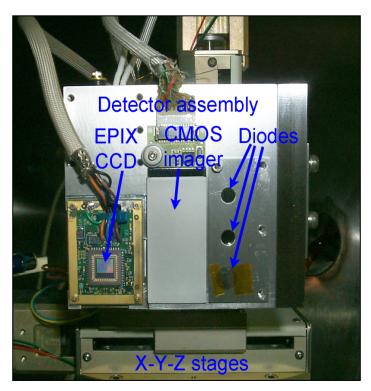
VERIS (NRL, C. Korendyke) EUNIS (GSFC, D. Rabin)

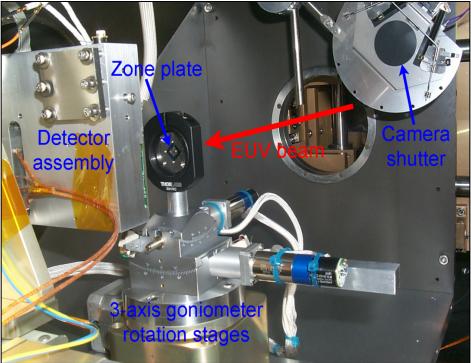
CubeSats Solar Array Drives

(e.g., GOES solar payloads)

EUV Monitor Development Status

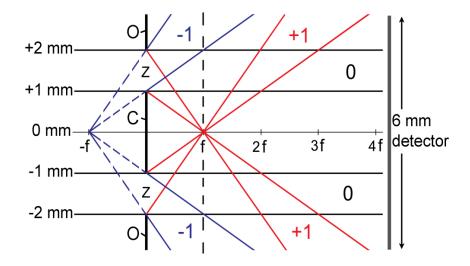
- Thin film Al filters, both on mesh supports and directly deposited on EUV detectors, have extensive space flight heritage.
- Custom Fe IX-XII and He II channel ZP's have been fabricated, mounted & integrated with occulting disks by Xradia, Inc., delivered to NRL, and tested.
- Measurements of ZP's at the National Synchrotron Light Source have verified their optical properties.
- The ZP with Mo zones on a Si₃N₄ substrate has passed a vibration test that indicates it can survive launch loads
- We plan to fly the Fe IX-XII channel solar irradiance monitor (and possibly also the He II channel) as a secondary payload on the NRL's VERIS sounding rocket.

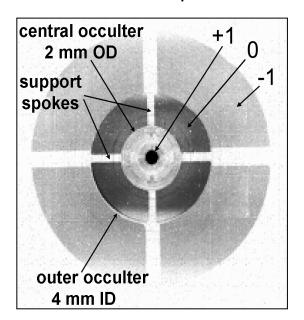



Measurement apparatus in calibration chamber at X24C Beamline

Detector assembly

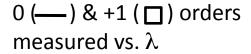
ZP assembly on 3-axis mount

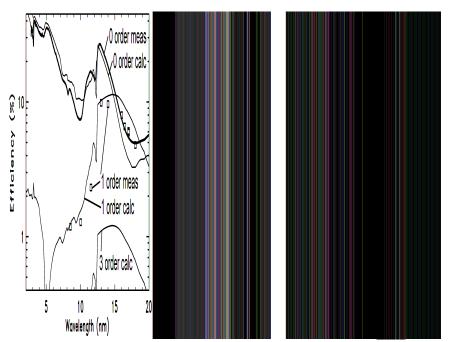

J. Seely, B. Kjornrattanawanich, L. Goray, Y. Feng, & J. Bremer, "Characterization of zone plate properties using monochromatic synchrotron radiation in the 2 to 20 nm wavelength range, *Applied Optics*, **Vol. 50**, No.18, pp 3015-3020, (20 June, 2011).

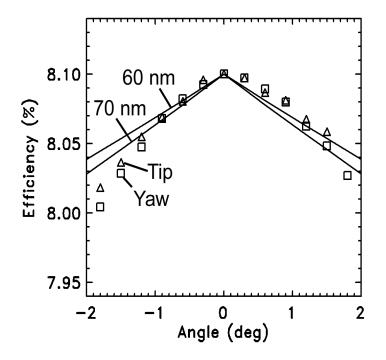

Measurements at Beamline X24C 4 mm ZP with 2 mm occulting disk Mo zones on Si₃N₄ membrane (Fe IX-XII)



+1 (converging) & -1 (diverging) orders

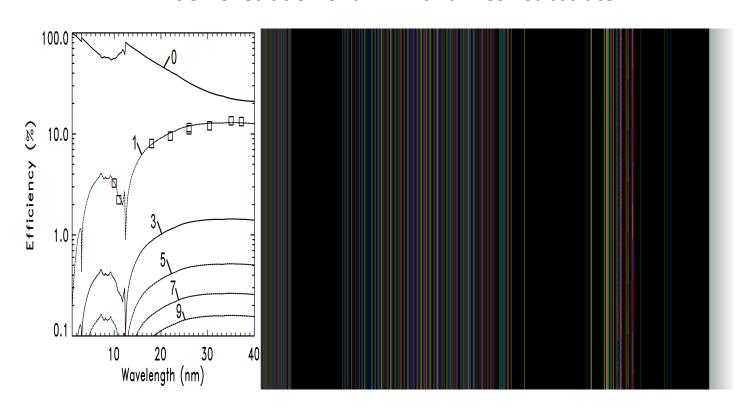

Diffraction pattern image in +1 order focal plane



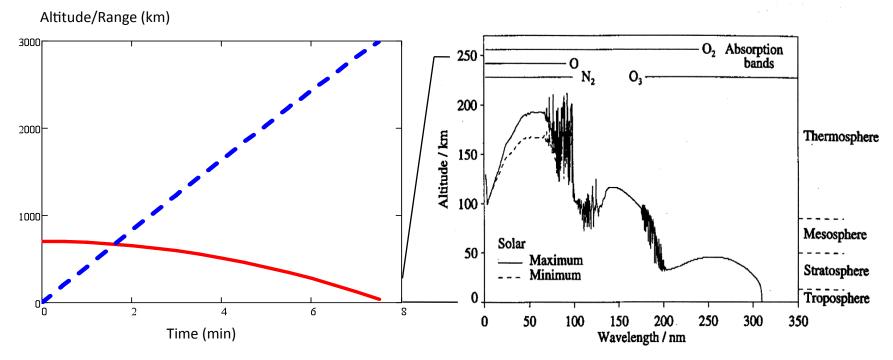


Calculations with PCGRATE code

Efficiency vs. field angle



Measured and Calculated Efficiencies of Si₃N₄ zones on mesh substrate (He II) as functions of wavelength & field angle

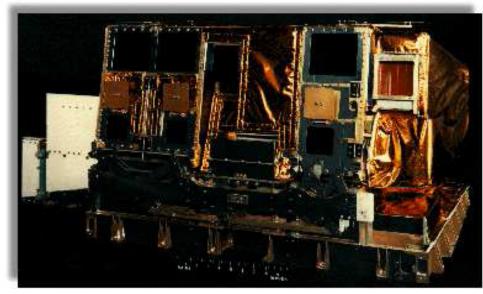

1st demonstration of a ZP with a mesh substrate

Atmospheric Limb Sounding with an EUV Sensor

Tangent altitude () and range to tangent () as functions of time during local sunset for a 705 km / 1:30 orbit

Solar disk subtends ~28 km altitude at limb

Limb extinction of EUV while transmitting longer- λ 's measures sensor's response to out-of-band background radiation


Extinction vs. tangent altitude measures themosphere

During sunrise, outer filter is heated by visible light before exposure to vacuum UV

Remote Atmospheric and Ionospheric Detection System (RAIDS)

- Scientific measurement objectives
 - Temperature of lower thermosphere (100-200 km)
 - Composition and chemistry of lower thermosphere & ionosphere
 - Initial excitation source of OII 83.4 nm emission
- Suite of 3 photometers, 3 spectrometers, 2 spectrographs
 - Measures airglow from Earth's limb: 90-350 km tangent altitude
 - 50-874 nm spectral range
- Collaborative effort of NRL Space Science Division, Aerospace Corp., & RSI
- Now deployed on the ISS

Conclusions & Recommendations

- Total solar EUV irradiance monitors based on ZP's have important performance advantages over alternatives: EUV spectral selectivity, long-λ rejection, circular symmetry, long-term stability
- They are easy to accommodate on spacecraft: low mass, compact envelope, low power, low data rate, relaxed pointing requirements
- Potential satellite platforms
 - Secondary payloads on solar-pointing missions or on solar array drives (like GOES SIS)
 - NanoSats like CubeSats (max. envelope = 10x10x34 cm)
- In low-Earth orbit, measurements during eclipse improve long- λ background subtraction & provide limb-extinction profiles
- All components except the ZP's have substantial space flight heritage
- The ZP's optical properties have been verified by measurements at the NSLS & the mechanical properties of the Fe IX-XII channel ZP have been verified by vibration test
- We plan to space qualify the ZP's and to fly one or two ZP EUV irradiance monitors as a secondary payload on the VERIS sounding rocket mission in the near future
- ZP-based monitors with channels at 17.1 nm, 19.5 nm, 30.4 nm, etc. can calibrate EUV instruments with the same spectral bands, including the SUVI and EUVS on GOES-R
- Mesh supported ZP's can be used in conjunction with appropriate thin film filters to measure the solar irradiance in the 20-90 nm spectral range

Acknowledgements

- This work was sponsored by NASA grant NNH09AK121.
- James C. Bremer was employed by Alliant Techsystems, Inc. when this work was initiated.
- Glenn E. Holland is now at the Center for Nanoscale Science and Technology, National Institute of Standards and Technology.
- We would like to thank Dr. Clarence Korendyke of the Naval Research
 Laboratory for providing us with an opportunity to fly a ZP-based sensor
 as a secondary payload on the VERIS sounding rocket.
- We would like to thank the following people for their assistance:
 - Dr. Charles Brown, NRL
 - Dr. Uri Feldman, NRL
 - Dr. Michael Kowalski, NRL
 - Dr. Michael Fesser, Xradia, Inc.
 - Mr. Alan Lyon, Xradia, Inc.