

MEGS – ESP Comparison through August 2012

Seth R. Wieman, Darrell L. Judge, Leonid V. Didkovsky Univ. of Southern Calif.; Space Sciences Center; SHS-274; UPC; Los Angeles, CA 90089

> EVE Calibration Workshop Yosemite Lodge, Cliff/Falls Room Tuesday, Oct. 30, 2012

Instruments

 MEGS – Multiple EUV grating Spectrograph:
 MEGS-A: grazing incidence grating spectrograph for 5 nm to 37 nm range MEGS-B: double normal-incidence grating spectrograph for 35 nm to 105 nm

ESP – EUV Spectrophotometer has 9 Si photodiodes behind a transmission grating:
ESP#1: 33.3-40.04 nm bandpass
ESP#2: 22.28-28.78 nm bandpass
ESP#3: dark photometer to measure particle background
ESP#4, 5, 6, & 7: 0.1-7 nm bandpass
ESP#8: 16.64-21.5 nm bandpass
ESP#9: 27.16-33.8 nm bandpass

Comparisons

- 1. Daily average irradiance ratios: ESP band/ integrated EVE spectra
- 2. Comparison of solar rotation variability: RMS of irradiance time series minus 81 day smoothed irradiance shown on slide
- 3. Long term trends of 1. and 2. based on linear fit to ratio time series
- 4. ESP/MEGS irradiance ratios for solar flare conditions

Solar rotation variability - example

Plots show how the ESP and MEGS solar rotation variability is compared: Top: 81 day rm (blue) is subtracted from daily average irrad. time series (red - only ESP is shown here)

Middle: Residuals from above subtraction show modulation due to solar rotation for ESP(red) and MEGS (blue) Bottom: RMS over an 81 day window is calculated and compared in the bottom plot on slides 5-8

UNIVERSITY OF SOUTHERN

EVE Science Workshop 2012

Channel 9: 27.16-33.8 nm EVE Version 3

Some downward drift in the ESP/ MEGS ratio for Channel 9

10/30/12

UNIVERSITY OF SOUTHERN CALIFORNIA

5

Channel 8: 16.64-21.5 nm EVE Version 3

Channel 2: 22.28-28.78 nm EVE Version 3

7

Channel 1: 33.3-40.04 nm EVE Version 3

10/30/12

EVE Science Workshop 2012

Mean ratio		Channel			
		1	2	8	9
EVE Version	2	0.445	0.965	1.061	1.009
	3	0.844	0.963	1.041	1.059

Slope (yr ⁻¹)						
		1	2	8	9	
EVE Version	2	-1.97E-01	-3.98E-02	-3.05E-03	4.43E-02	
	3	1.85E-02	7.71E-03	1.09E-02	-5.05E-02	

Mean RMS ratio		Channel				
		1	2	8	9	
EVE Version	2	1.368	0.948	1.102	1.149	
	3	1.188	0.964	1.043	1.065	

Slope (yr-1)

		1	2	8	9
EVE Version	2	6.01E-02	8.63E-03	-1.29E-02	1.45E-01
	3	3.10E-01	1.63E-02	2.05E-02	-5.11E-02

T

UNIVERSITY OF SOUTHERN CALIFORNIA

ESP/MEGS ratios during flares Ch. 9

Flare peaks starts later and lasts longer in in the ESP profile, indicating a possible difference between ESP bandpass and MEGS spectrum integration limits

UNIVERSITY OF SOUTHERN

CALIFORNIA

ESP/MEGS ratios during flares Ch. 8

EVE MEGS Comparison: 2012023-10000.0 sec to 20000.0 sec (0.000) (0.0ESP channel 8: 16.6-21.5 nm EVE band: 16.6-21.5 nm 7.5×10⁻⁴ 1.2×10^{4} 1.8×10^{4} 1.4×10^{4} 1.6×10⁴ 1.2 ratio: ESP/MEGS 0.0 1.0 60

1.2×10⁴ 1.4×10⁴ 1.6×10⁴

Second of Day

10/30/12

0.8

UNIVERSITY OF SOUTHERN

CALIFORNIA

EVE Science Workshop 2012

 1.8×10^{4}

ESP/MEGS ratios during flares Ch 2

1.2 $SB_{W} = 0.9$ 0.8 1.2×10^4 1.4×10^4 1.6×10^4 1.8×10^4

UNIVERSITY OF SOUTHERN

CALIFORNIA

Conclusions

- ESP/MEGS daily average irradiance values agree within ~6% averaged over the SDO mission with the exception of the Ch1: 33.3-40.04 nm band for which ESP is known to have a substandard photodiode detector with large, temperature sensitive dark currents.
- Some minor (~5% year) divergence in ESP vs. MEGS sensitivity to solar rotation variability is apparent in the ESP Ch 9: 27.16-33.8 nm bandpass, probably correctable through updates of the degradation models used in data processing.
- EVE Version 3 has resulted in better general agreement and lower rate of divergence between ESP and MEGS compared to Version 2 with the exception of ESP Channel 9
- Greater than average ESP-MEGS discrepancies are seen during flares. Also, time difference in time profile peaks suggests possible need for further refinement of ESP bandpass definitions.

Backup Slides

Channel 9: 26.7-33.8 nm EVE Version 2

10/30/12

EVE Science Workshop 2012

15

10/30/12

Channel 8: 14.5-21.5 nm EVE Version 2

10/30/12

Channel 2: 22.2-29.2 nm EVE Version 2

Channel 1: 33.0-40.3 nm EVE Version 2

UNIVERSITY OF SOUTHERN CALIFORNIA

EVE Science Workshop 2012