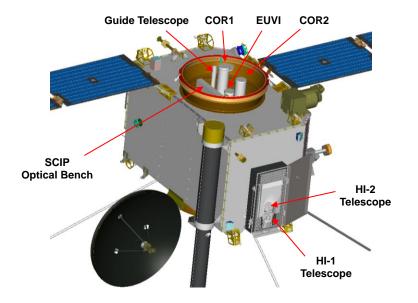
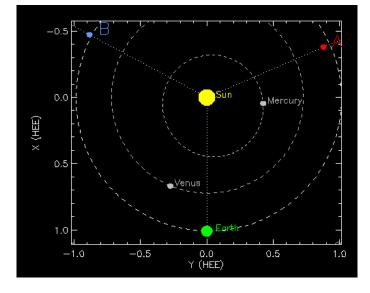
Long-Term Stability of the Photometric Calibration of the STEREO HI-1 Heliospheric Imagers

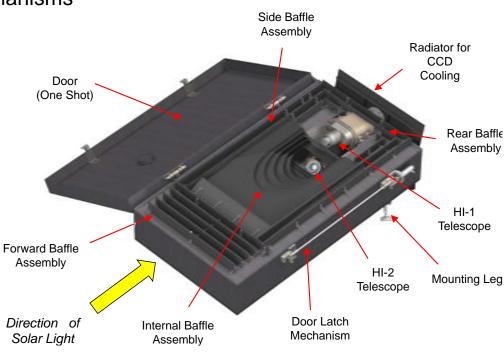

Chris Eyles RAL Space, Rutherford Appleton Laboratory, UK

Danielle Bewsher Jeremiah Horrocks Institute, University of Central Lancashire, UK


On-orbit Degradation of Solar and Space Weather Instruments Workshop Royal Observatory of Belgium, Thursday May 3rd 2012

The STEREO Mission

- SECCHI instrument suite (Howard et al, Space Sci Rev, 2008)
 - COR-1
 - COR-2
 - EUVI
 - <u>HI-1</u> and HI-2

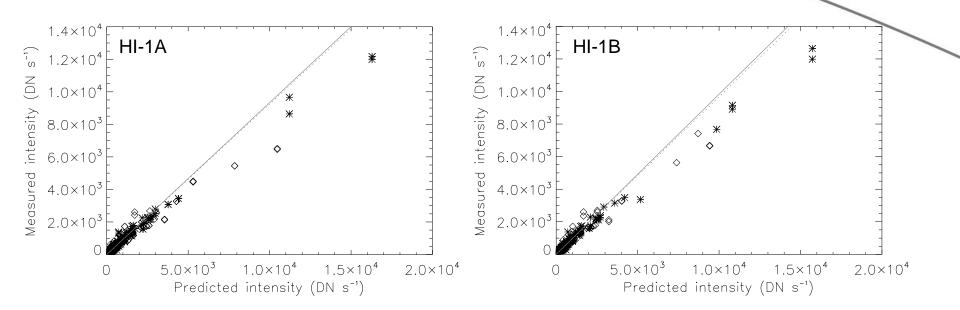

- ➤ Launch 26 Oct '06
- STEREO-A h'centric insertion 15 Dec '06
- STEREO-B h'centric insertion 21 Jan '07
- Science operations began Mar 2007

The Heliospheric Imagers

- 2 deeply-baffled white-light imagers
 - Conventional refracting optics using rad-hard glass
 - CCD cooled to < -70°C
 - Single-shot door / no other mechanisms

	HI-1	HI-2
Axis offset from Sun	14.0°	53.7°
FOV radius	20°	70°
Elongation range	4°-24°	18.7° – 88.7°
	$15 - 90 R_{o}$	$70 - 330 R_{o}$
CCD pixel size	35"	2'
Science image array	1024 x 1024	1024 x 1024
Image bin size	70''	4'
Spectral band-pass	630-730 nm	400-1000 nm
Summed image cadence	40 min	2 hr
Brightness sensitivity	$3 \ge 10^{-15} B_{o}$	$3 \ge 10^{-16} B_0$
Stray-light rejection	3 x 10 ⁻¹³ B _o	$10^{-14} \mathrm{B_o}$

Eyles et al, Solar Phys. 2009


Initial Photometric Calibration of HI-1*

- Used data up to Dec 2008
- ➢ Observed intensity of well-isolated stars with R magnitude ≤ 12 within 100 pixel radius of centre of FOV measured by aperture photometry
 - Stars used listed in NOMAD catalogue (Zacarius et al, 2004) and are of known spectral type
 - Measured intensity calculated from at least 18 observations
 - Variable stars eliminated (top 25% of standard deviations)
- Predicted intensities calculated by folding standard stellar spectrum (Pickles, 1998) for spectral type through optimum model of instrument response function
 - $C_{pred} = (A/G) \int (\lambda/hc) S(\lambda) T(\lambda) QE(\lambda) d\lambda$ (in DN s⁻¹) where A is aperture and G is camera electronics readout gain (e⁻ per DN)
 - Model of instrument response based on pre-flight calibration of filter responses, CCD manufacturer's QE data, glass transmission data, etc
- Plotted measured intensity versus predicted intensity for large population of stars

* Bewsher et al, Solar Phys. **264**, 433, 2010

Initial Photometric Calibration Results

- Fitted a straight line $I = \mu P$, where μ is a correction factor to give the calibrated response
 - Outliers at high intensities (due to saturation effects) have negligible effect on overall fit and value of μ
 - μ values close to 1.0
 - No significant difference in µ with spectral type confirming validity of model of instrument spectral response

Initial Photometric Calibration Results (cont)

	Number of stars	µ value
HI-1A	903	0.93
HI-1B	541	0.99

- Residual deviation from 1.00 due to unknown systematics, e.g.
 - Absolute value of optics/filter transmission
 - Absolute value of CCD QE
 - Camera electronics readout gain
 - etc
- Also derived an improved large-scale flat-field correction from measured/ predicted response for stars crossing each pixel of image then averaging and smoothing.

Stability of HI-1 Photometric Calibration*

- Initial photometric calibration used data from Jan 2007 to Dec 2008
- Repeated the analysis for each complete orbit of STEREO spacecraft

	Orbit 1	Orbit 2	Orbit 3	Orbit 4	End Orbit 4
HI-1A	28 Mar 07	28 Feb 08	6 Feb 09	17 Jan 10	26 Dec 10
HI-1B	28 Mar 07	14 Apr 08	8 May 09	1 Jun 10	24Jun 11

	Orbit 1	Orbit 2	Orbit 3	Orbit 4	Overall
HI-1A	0.926	0.933	0.927	0.930	0.929
# stars	430	418	433	424	1705
HI-1B	0.998	0.987	0.989	0.993	0.991
# stars	387	384	455	417	1643

Conclude that long-term stability of photometric response of HI-1 is better than 1%.

^{*} Bewsher et al, Solar Phys. **276**, 491, 2012

Validity and Stability Flat-Field Correction

Repeated the analysis for different regions of the FOV after applying the flat-field correction for HI-1A:

FOV Region	Orbit 1	Orbit 2	Orbit 3	Orbit 4	Overall
0 – 100	0.925	0.933	0.927	0.931	0.929
0 – 500	0.938	0.940	0.935	0.931	0.936
All	0.935	0.940	0.936	0.930	0.935
100 – 300	0.934	0.939	0.941	0.931	0.939
300 – 500	0.940	0.942	0.936	0.932	0.937
> 500	0.944	0.950	0.946	0.943	0.946

- > Value of μ varies by $\leq 1\%$ across 4 orbits for each FOV case
- > Value of μ varies by < 2% between the different FOV cases
- Some indication that increases from centre of FOV to outer regions

Validity and Stability Flat-Field Correction

Results for HI-1B:

FOV Region	Orbit 1	Orbit 2	Orbit 3	Orbit 4	Overall
0 – 100	0.998	0.986	0.988	0.993	0.991
0 – 500	1.002	1.001	1.001	0.997	1.000
All	0.999	1.000	0.994	0.992	0.996
100 – 300	1.011	1.014	1.014	1.009	1.012
300 – 500	1.001	0.998	1.002	0.997	0.999
> 500	1.004	1.004	0.999	0.999	1.001

- > Value of μ varies by $\leq 1\%$ across 4 orbits for each FOV case
- > Value of μ varies by \leq 3% between the different FOV cases
- \blacktriangleright No indication that μ increases from centre of FOV to outer regions

Conclusions

- From the start of mission science operations until the end of the complete orbit (26 Dec 2010 and 24 June 2011 for STEREO A and B, respectively) the photometric response of the HI-1 instruments has remained stable to 1% or better.
 - Thernisien et al (2006) found LASCO-C3 degraded by 3.5% over 8 years of operation
 - Llebaria et al (2006) found LASCO-C2 degraded by 0.7% per year
- ➤ Value of µ varies by ≤ 3% between the different FOV cases, with ≤1% change over 4 orbits
- Updated overall values for µ and conversion to Mean Solar Brightness (folding through response a standard solar spectrum – Neckel and Labs, 1984)

	Initial µ value	Updated µ value	Initial B _o per (DN s ⁻¹ pix ⁻¹)	Updated B _o per (DN s ⁻¹ pix ⁻¹)
HI-1A	0.93	0.94	8.99 x 10 ⁻¹⁴	8.89 x 10 ⁻¹⁴
HI-1B	0.99	1.00	9.04 x 10 ⁻¹⁴	8.86 x 10 ⁻¹⁴