Introduction to the Extreme Ultraviolet Imager (EUI) telescopes onboard Solar Orbiter

Jean-Philippe Halain <u>iphalain@ulg.ac.be</u> (Centre Spatial de Liège) for EUI team

Solar Orbiter

EUI instrument

- EUI is composed of three channels
 - EUV full-sun (FSI) and high resolution (HRI_{EUV}) imagers
 - Ly-a high resolution (HRI_{Lya}) imager

Channel	Parameter	Values
FSI	Passbands FOV Resolution (2 px) Cadence	17.4 nm & 30.4 nm 3.8 arcdeg (⇔ 2 Sun Ø) 9 arcsec (⇔ 1800 km, 3k ² px) 600 s
HRI _{EUV}	Passbands FOV Resolution (2 px) Cadence	17.4 nm 0.28 arcdeg (⇔ 15% Sun Ø) 1 arcsec (⇔ 200 km, 2k ² px) ≥ 1 s
HRI _{Lya}	Passband FOV Resolution (2 px) Cadence	121.6 nm 0.28 arcdeg (⇔ 15% Sun Ø) 1 arcsec (⇔ 200 km, $2k^2 px$) ≤ 1 s

EUI consortium overview

EUI design overview

Heritage

- PROBA2-SWAP \rightarrow HRI optical design, detector & filters
- HERSCHEL Rocket \rightarrow FSI optical design
- SOHO-EIT, STEREO-EUVI \rightarrow EUV multilayers mirror coatings
- Passive thermo-mechanical design
 - No active control, passive detector cooling
 - Low CTE optical bench
 - Heat rejection entrance baffles
- Compact
 - Small entrance apertures
 - Three channels on a single optical bench
- Low telemetry
 - Compression and on-board data processing/selection

EUI design overview

High Resolution Imager

EUI functional diagram

Optical bench system (OBS)

Common electronic box (CEB)

EUI units and sub-systems

Full Sun Imager

High Resolution Imagers

EUI observation sequence

- Synoptic (FSI channel)
- Nominal science windows (3 x 10 days per orbit)

Mission lifetime

- Lifetime ~ 15 years
 - 0.5 year of instrument AIT
 - 2.5 years of S/C AIT
 - 2 years of possible launch delay
 - 7 years of nominal space mission duration
 - 3 years of extended mission in space after launch
- Orbit down to 0.28 AU
 - Radiation level
 - Micrometeorite

Potential ageing and degradation

- Entrance baffles \rightarrow increased absorbed heat
- Entrance filters \rightarrow pinholes (straylight)
- Mirror coating \rightarrow spectral range
- Detectors \rightarrow decrease SNR, image artifacts
- Electronics (FEE and CEB) → potential loss of functionalities

Design impacts

- Redundancies
 - EUV filters (filter wheel)
- Cleanliness
 - Internal doors
 - Purging and venting
 - Material selection
 - MoS₂ in mechanism
 - O Bake out from parts to unit level
- Electronics
 - Outside optical cavity (except FEE)
 - Annealing heaters
 - Calibration LED
 - Radiation hard components
 - Heat shield doors

Calibration

- On-ground calibration
 - End-to-end response and characterization
 - Prepare for in-flight calibration
- In-flight calibration
 - Before each observation period
 - Set of images
 - Dark images (dark current and image offset)
 - Over-exposed images (saturation behavior)
 - Smeared images and LED images (flat field)
 - High-cadence sequences (noise statistics)
 - Image correction
 - On-board pre-compression calibration
 - On-ground post-decompression calibration

Conclusions

- Design has evolved for 6 years
 - Ageing and degradation aspects are taken into account in the design
 - Successful PDR in March 2012
 - All key technologies (detector, mirror coating, filters, baffles) are at TRL5
 - Phase C has started with industrial sub-contracts
- STM model in February 2013