Exploration of Spacecraft Environments with Mass Spectrometers

Experiences with ROSETTA, SOHO and others

Peter Bochsler Physikalisches Institut University of Bern Bern /Switzerland Bochsler@space.unibe.ch

EIT/SOHO October 15, 2019

Experiences...

Degradation...

Experiences...

Rosetta/ROSINA

To

Environment of the Rosetta Spacecraft

Carbo	ohydrate	es			PAH		N-H	Hydrazine	C-N	Oxygen N-O	
	C2	C ₃	C ₄	C₅			Ν	CN		0	NO
СН	C₂H	C₃H	C₄H	C₅H	C₅H		NH	CHN	C_2H_2N	ОН	CNO
CH ₂	C_2H_2	C_3H_2	C_4H_2	C_5H_2	C_6H_2		NH ₂	CH ₂ N	C_2H_3N	OH2	HCNO
CH₃	C₂H	C_3H_3	C_4H_3	C_5H_3	C_6H_3	C_7H_3	NH_3	CH ₃ N	C_2H_4N	ODH	H ₆ CNO
CH₄	C_2H_4	C_3H_4	C_4H_4	C_5H_4	C_6H_4	C_7H_4	N ₂	CH₃NH		¹⁸ OH ₂	NO2
	C_2H_5	C_3H_5	C_4H_5	C_4H_5	C_6H_5	C_7H_5		CH ₃ NH ₂	C_5H_4N	02	HNO ₂
	C_2H_6	C_3H_6	C_4H_6	C_5H_6		C_7H_6		CH ₃ N ₂ H	C_5H_5N		H ₄ NO ₂
		C_3H_7	C_4H_7	C_5H_7		C ₇ H ₇		CH ₃ N ₂ H ₂	C_5H_6N		CHNO ₂
		C ₃ H ₈	C_4H_8	C₅H ₈		C ₇ H ₈ , Toluen	e	CH ₃ N ₂ H ₃	C₅H ₇ N		CH ₃ NO ₂
			C_4H_9	C₅H ₉		C_8H_{10}			C_5H_8N		CH ₄ NO ₂
			C_4H_{10}	C_5H_{10}		C_9H_{12}					C ₂ H ₆ NO
				C_5H_{11}					$C_4H_4N_2$		H ₂ N ₂ O
				C_5H_{12}							C_2N_2O
								Halogens & Sulfur			C ₂ HN ₂ O
								F	Cl		$C_2H_2N_2C$
								FH	HCI		$C_2H_3N_2C$
								CF	CCI		$C_2H_5N_2O$
	Altwegg et al. (2014)							S	CCl ₂		$C_2H_6N_2C$
								N ₂ S			$C_2H_7N_2C$
								SO ₂			$C_2H_8N_2C$

Helium measured by COPS during the thruster pressurization test on September 9, 2010

Martin Rubin, Valeriy M. Tenishev, Kenneth C. Hansen, Michael R. Combi, Tamas I. Gombosi University of Michigan

Kathrin Altwegg University of Bern

thanks to: Andrea Accomazzo and ESA

Bieler et al. (2016) SPIE 9952

Advances in Astronautics Science and Technology (2018) 1:183–190 https://doi.org/10.1007/s42423-018-0026-0

ORIGINAL PAPER

Influence of Ultraviolet Irradiation on the Deposition of Spacecraft Molecular Contamination

Wei $Dai^1 \cdot Jiawen \ Qiu^2 \cdot Zicai \ Shen^3 \cdot Yanbin \ Yang^3$

Received: 27 March 2018 / Revised: 3 July 2018 / Accepted: 20 August 2018 / Published online: 7 January 2019 © Chinese Society of Astronautics 2019

- rate of deposition [g/cm²s] m↓d
- mass flux of contaminant m√i [g/cm²s]
- α sticking probability
- τ residence time [s]

 E_d desorption energy [J]

$$\dot{m}_{\rm d} = \alpha \dot{m}_i - \frac{m_{\rm d}}{\tau}$$

$$\alpha = \frac{1}{1 + \exp\left(\frac{T - T_{\rm C}}{\Delta T_{\rm C}}\right)}$$
$$\tau = \tau_0 \exp\left(\frac{E_{\rm d}}{RT}\right)$$

1

WEIDAI_RESULT_FIRST.GRF PB Oct. 4, 2019

Dai et al. (2018)

 CH_3 ISi = OI CH_3

CH₃ Si = O + hv CH_3

$$\begin{array}{ccc} CH_3 & CH_3 \\ I & I \\ Si = O + hv \longrightarrow Si - O \\ I & I \\ CH_3 & CH_3 \end{array}$$

$$\begin{array}{ccc} CH_3 & CH_3 \\ I & I \\ \cdot Si - O \cdot + \cdot Si - O \cdot \\ I & I \\ CH_3 & CH_3 \end{array}$$

$$\begin{array}{ccc} CH_3 & CH_3 \\ I & I \\ Si = O + hv \longrightarrow Si - O \\ I & I \\ CH_3 & CH_3 \end{array}$$

Comments:

- Simple evaporation from surface vs. diffusion of contaminant through polymer?
- Break-up and volatilization of contaminants?
- Mono- vs. multilayer adsorption?

Roussel et al. (2016) J. Spacecraft and Rockets 53

e<u>esa</u>

ONERA

CONCOntamination Modelling Outgassing & Vent Analysis

> The new ESA contamination modelling software

Examples □Test Spacecraft Ground experiment

The Physics

Contaminant sources Contaminant transport Surface contaminant Interactions Time integration

How to use COMOVA

General organisation Input parameters Pre/post-processing (external tools)

COMOVA: COntamination Modelling Outgassing & Vent Analysis

Roussel et al. (2016) Journal of Spacecraft and Rockets 53, 1159-1165

Ultima Thule (New Horizons) **Enigmatic Albedo Markings**

March 18, 2019 Planetologists are interested in modeling adsorption and re-evaporation of volatiles on complicated bodies under variable conditions of illumination

Crazy Ideas:

J.R (2018):

Replace cables by wave guides

- Clean Rooms: Manipulating experiments by robots
- Propulsion: Use inert gases
- Assembling complete missions by robots in space

UV Transmittance ???

Healthy Ideas: The foolproof solution

SEM on SOHO

April 16, 2013 Brussels

4

Seth Wieman et al. (2013)

STCE Solar EUV Irradiance Working Group

Monitoring Solar EUV-Output:

Including Frequent Calibration with Rocket Flights

Application:

EUV Output is important for understanding Sun-Interstellar Medium Interaction (Time constants of the order of months)

Comment:

Cross talk with other experiments and intercalibration are important and useful

Monitoring Solar EUV-Output:

Including Frequent Calibration with Rocket Flights Monitoring Solar EUV

EUV Output is important for understanding Sun - Interstellar Medium Interaction (Time constants of the order of months to decades) Long range time series of **Comment:**

intercalibration

are important and useful

Contract of users is informed But make sure that community of users is informed!