

Traceable Radiometric Calibration in the EUV/VUV Spectral Range using Synchrotron Radiation

Alexander Gottwald

Michael Kolbe, Christian Laubis Roman Klein, Reiner Thornagel Frank Scholze

UV and VUV Radiometry

EUV Radiometry Synchrotron Radiation Sources Radiometry with Synchrotron Radiation (dept.)

What you should expect from state-of-the-art ground based radiometric calibrations

in the wavelength range from 5 nm to 200 nm

Outline

- The basic principles: Traceability in Radiometry
- How to use Synchrotron Radiation
- How to make a precision measurement
- Limits
- Examples

Traceability

radiometric quantity, or unit

e.g. radiant power [W] radiant intensity [W sr⁻¹] spectral radiance [W m⁻¹ sr⁻¹ m⁻²] spectral irradiance [W m⁻¹ m⁻²]

Traceability

Source based radiometry

calculation by Schwinger's equation (1949)

spectral radiant intensity, spectral radiance

Detector based radiometry

Why synchrotron radiation ?

Synchrotron radiation is emitted when charged particles with relativistic energies

Wiggler / Undulatoren

typical source:

electron storage rings = (few) GeV particle accelerators

- bright > 10¹¹ photons/s/0.1%BW
- brilliant > 10²⁰ photons/s/mm²/mrad²/0.1%BW thus: directional emission
- "white" = broadband from IR to X-ray thus: tunable with monochromators also in the EUV and VUV range
- "clean" = UHV conditions, no debris
- emission is calculable from basic physical equations (Schwinger 1949): Thus an electron storage ring can be operated as primary source standard.

Synchrotron radiation available at PTB

Synchrotron radiation available at PTB

Main relative uncertainty contributions (*k*=1, in %)

source based calibration

Radiant intensity, D₂ Lamp 200 nm

detector based calibration

Spectral responsivity, Si photodiode, 13 nm

electron beam current, <i>I</i> electron energy, <i>W</i> mag. Induction, <i>B</i> eff. vertical source size, Σ_{γ} offset to orbit plane, Ψ total [storage ring]	0.5 0.012 0.0005 0.07 0.01 0.51	realisation	normalized heating power difference radiant conversion efficiency thermal non-equivalence electr. calibration total [electr. subst. radiometer]	0.1 0.03 0.012 0.002 0.11
non-linearity of detector stability within SR calibrations distance difference to AP higher diffraction orders stray light total [transfer monochromator]	0.3 2.2 0.21 0.5 0.5 2.4	dissemination	measured diode photocurrent electrometer calibration wavelength uncertainty spectral bandwidth higher diffraction orders diffuse scattered light angle of incidence total [beamline]	0.1 0.06 0.01 0.005 0.03 0.2 0.005 0.23
D2 source stability source alignment wavelength calibration residual polarization of source total [D2 Lamp]	 2.0 0.5 0.1 0.5 2.1 	calibration	detector non-uniform responsivity non-linearity temperature dependence polarisation total [detector]	0.2 0.12 0.05 0.10 0.26
total	3.2		total	0.37

Internal Validation

Reproducibility of calibrations: calibration history

- set of own secondary standard detectors as reference (~ 6 individuals, different types)
- regularly re-calibrated

systematic changes: not observed

AXUV100G 06-12 #5

Internal Validation

How it is assured that different realisations of an unit are equivalent ?

• **Direct** comparison of the primary standards

R. Klein, A. Gottwald, et al., *Radiometric comparison of the primary source standard 'Metrology Light Source' to a primary detector standard*, Metrologia **48**, 219 (2011)

External Validation

How to assure that realisations of an unit at different NMIs are equivalent?

formal : Mutual Recognition Agreement (MRA) through the International Committee for Weights and Measures (CIPM)

"National Metrology Institutes demonstrate the international equivalence of their measurement standards and the calibration and measurement certificates they issue."

External Validation

How to assure that realisations of an unit at different NMIs are equivalent?

formal : Mutual Recognition Agreement (MRA) through the International Committee for Weights and Measures (CIPM)

"National Metrology Institutes demonstrate the international equivalence of their measurement standards and the calibration and measurement certificates they issue."

Source based radiometry

U. Arp, R. Klein, Z. Li, W. Paustian, M. Richter, P.-S. Shaw, and R. Thornagel: Synchrotron radiation-based bilateral intercomparison of ultraviolet source calibrations, Metrologia 48, 261 (2011) range: 200 nm – 350 nm NIST - PTB overall agreement < 5 %

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

External Validation

How to assure that realisations of an unit at different NMIs are equivalent?

formal: Mutual Recognition Agreement (MRA) through the International Committee for Weights and Measures (CIPM)

"National Metrology Institutes demonstrate the international equivalence of their measurement standards and the calibration and measurement certificates they issue."

Source based radiometry

U. Arp, R. Klein, Z. Li, W. Paustian, M. Richter, P.-S. Shaw, and R. Thornagel: Synchrotron radiation-based bilateral intercomparison of ultraviolet source calibrations, Metrologia 48, 261 (2011) range: 200 nm – 350 nm NIST - PTB overall agreement < 5 %

Detector based radiometry

F. Scholze, R. Vest and T. Saito: Report on the CCPR Pilot Comparison: Spectral Responsivity 10 nm to 20 nm, Metrologia 47, 02001 (2010)

NIST - NMIJ - PTB

overall agreement ~ 1-2 %

A. Gottwald, M. Richter, P.-S. Shaw, Z. Li, and U. Arp: Bilateral NIST–PTB comparison of spectral responsivity in *the* **VUV**, Metrologia **48**, 02001 (2011) overall agreement ~ 1-4 %

range 135 nm – 250 nm **NIST - PTB**

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Limits in disseminating radiometric scales

transfer source standards

	stability
>200 nm : D2 lamp, FEL lamp	~1%
>120 nm : D2 lamp MgF ₂ Window	>1%
< 120 nm HC (line spectrum)	>> 5 %

transfer detector standards

(photodiodes)
stability, uniformity depending on:
type wavelength irradiation storage
e.g.
Si PD with thin oxide (e.g. AXUV, S10043)
Si with metallic layer (e.g. SXUV)

B-doped Si (e.g. SPD-100UV) Schottky (SUV100)

stability issues due to:

- irradiation aging
- contamination

most critical range: 50 nm to 170 nm

Specific photodiode problems

Bor-doped Si PD (SPD100-UV): Doping profile (ion implant + diffusion) Si PD (AXUV100G): recent series (> ~ 2016): line structures in thin oxide layer (> 10 % 70 nm)

Example for ageing: Si photodiode

AXUV-100G photodiode 10 mm x 10 mm

Relative spectral responsivity map:

Example for ageing: Si photodiode

Calibration of spectrometers

- Iocated at PTB's Metrology Light Source (MLS) in Berlin-Adlershof
- clean room ISO class 5 specification
- UHV compatible vacuum vessel, lubricant-free
- instrumentation up to
 0.6 m x 0.6 m x 1.2 m (width x height x length)
 100 kg weight

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Examples for full-instrument calibration

- SolACES
- PROBA/LYRA II
- SPICE
- EUI

SolACES with Fraunhofer IPM Freiburg

detector based

According to ist auto-calibrating principle, no pre-flight radiometric calibration was requested.

however:

- filter transmission measurement
- AXUV photodiode characterisation
- full instrument test at 17 130 nm (240 nm)

2015: DIC spare measurements

(R. Schäfer)

- higher-order effects (double ionization) in ionisation chamber: yield measurement
- revision of uncertainty budget

PROBA2/LYRA with ROB

BenMoussa et al., A&A 508, 1085 (2009)

detector based

- development/test of detectors
- filter transmission calibration
- pre-flight at-wavelength calibration

SPICE with MPS / RAL

(R. Klein)

EUI with MPS / CSL

detector based

- FM at-wavelength calibration
 FSI 17.4 nm, 30.4 nm
 HRI_{EUV}, HRI_{Ly-α}
- FOV characterization

Halain et al., SPIE 10699H (2018)

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

What PTB can provide

Calibration & characterisation of

Conclusions

- 1. Radiometric scales in EUV and VUV are defined with standard uncertainties of ~ 1 %
- Radiometric scales can be disseminated /compared with standard uncertainties of few % only: limited by availability and stability/reproducibility of transfer standards. particularly: spectral range < 150 nm
- 3. Direct calibration of instruments at S.R. facility: source based against storage ring ("white" S.R.) as primary source standard detector based using secondary detector standards and monochromatized S.R.

special premise needed (design, optics, size, weight, ...) uncertainty typically then limited by the instrument itself

4. Referencing to the absolute radiometric scale: monitoring of aging processes (witness samples), ...

