

EUI Cleanliness and Calibration Concepts

Udo Schühle

→ SOLAR ORBITER FACTSHEET

→ MISSION

To study the Sun up close and from high latitudes, providing the first images of the Sun's poles and investigating the heliosphere

→ PARTNERSHIPS

eesa 🔊

Solar Orbiter is an **ESA** mission with strong **NASA** participation

→ SPACECRAFT

Launch mass: 1800 kg Science payload mass: 209 kg Body: 2.5 m x 3.1 m x 2.7 m Total length with solar arrays deployed: 18 m Solar panels: 6, each 2.1 x 1.2 m Payload power: 180 W Instrument boom: 4.4 m 3 x radio and plasma waves antennas: 6.5 m each

→ JOURNEY TO SPACE

Multiple **gravity assists with Venus** will increase Solar Orbiter's inclination out of the plane of the Solar System by 24° (nominal mission) to 33° (extended mission)

Solar Orbiter will make a **close approach** of the Sun **every six months**. Its distance from the

Sun varies from within the orbit of Mercury to

close to the orbit of Earth

→ SCIENCE INSTRUMENTS

EPD: Energetic Particle Detector PI: Javier Rodríguez-Pacheco, University of Alcalá, Spain EUI: Extreme Ultraviolet Imager PI: Pierre Rochus, Centre Spatial de Liège, Belgium MAG: Magnetometer PI: Tim Horbury, Imperial College London, UK Metis: Coronagraph PI: Marco Romoli, INAF – University of Florence, Italy **PHI:** Polarimetric and Helioseismic Imager PI: Sami Solanki, Max-Planck-Institut für Sonnensystemforschung, Germany **RPW:** Radio and Plasma Waves PI: Milan Maksimovic, LESIA, Observatoire de Paris, France **SoloHI:** Heliospheric Imager PI: Russell A. Howard, US Naval Research Laboratory, Washington, D.C., USA SPICE: Spectral Imaging of the Coronal Environment European-led facility instrument Operations PI: Frédéric Auchère, Institut d'Astrophysique Spatiale, Orsay, France **STIX:** X-ray Spectrometer/Telescope PI: Säm Krucker, FHNW, Windisch, Switzerland SWA: Solar Wind Plasma Analyser PI: Christopher Owen, Mullard Space Science Laboratory, UK

Solar Orbiter S/C instruments

Solar Orbiter Remote Sensing Instruments

Spacecraft structure

4 quadrants with small venting holes

In-flight contamination modelling

4.1.43 Contamination results for EUI_EXT_HW_PY

During the considered mission time, the target 'EUI_EXT_HW_PY' is subject to temperatures ranging from 273 K to 304 K with an average of 279 K. The EOL value for the total contamination (black dotted line) for this timespan is 20 577 ng/cm² with a maximum value of 45 708 ng/cm² occurring after 3 days, i.e., during the Pre-NMP. The main source material at the EOL is SOLO_Harness_int.

Figure 213: Contamination on EUI_EXT_HW_PY.

Instrument overview

EUI Functional Diagramme

EUI Calibration Concept

- Calibration of subsystems
- Calibration of the flight instrument
- ==> collaboration with PTB (Berlin)

Calibration of EUI subsystems

EUI Calibrations of Subsystems		
		FSI, HRI-EUV, HRI-Lya
Filters		Entrance filter + Focal filter
	Spectral Transmission	
	Uniformity at peak lambda	
Mirrors		Coating witness mirrors
	Spectral Reflectance	
	Uniformity at design lambda	
Detectors		QM, FM, FS
	Spectral Response	
	Out-of-band Response	
	Uniformity of Response	

Calibration with white light synchrotron radiation

- Primary source standard, calculable precise intensity
- special operation of electron storage ring
- Continuous wavelength spectrum

Relative response of FSI

Relative response of HRI EUV

Relative response of HRI Lya

EUI Cleanliness Concept

- keep degradation at a minimum
- keep calibration stability

==> design for cleanliness

EUI doors design

- New door design
 - Simpler mechanism \rightarrow no sealing
 - Labyrinths sized for depressurization and purging \rightarrow purge rate increased to ensure positive ΔP during purge
 - NB: Interface with bench structure with GoreTex ring

EUI design

• Purge computation results

EUI purge system design

- Purge inlet interface
 - SS-400-1-4 to S/C
 - OBS external pipes for flow distribution to three channels

Purge inlet filter and distribution

- Inlet particle filter ≥ 0.4 µm
- Teflon tubing
- Flow-rate adjustment with set-screws
- Total mean flow-rate = 2.56 liter/hr
 - ▶ $HRI_{EUV} \rightarrow 0.64$ liter/hr
 - → HRI_{Ly-α} → 1.28 liter/hr
 - ▶ FSI \rightarrow 2 x 0.32 liter/hr

Purge inlet & outlets

- purge interface Swagelock stainless steel model
 - EUI agrees to use SS-400-1-4 (smallest)
 - Only one inlet for the three channels and a dedicated piping system under bench (Swagelok/Festo parts)
 - \rightarrow Total flow rate is 12 80 l/h for the only inlet)

Distribution of purge gas

•HRI_{EUV}

•HRI_{Ly- α}

•FSI.1

•FSI.2

Set screws to adjust individual flow rate

EUI venting

Launch

- External pressure
 - 1 to 0 bar with peak of 6200 Pa/s
- Venting holes
 - 2 / 4 labyrinths in HRI / FSI channel
 - 2 mm² venting cross-section per litre volume 2 outlet per channel (drilled in dedicated inserts)

EUI design update

Flow

- New door design
 - Door labyrinth sizing
 - 2 venting outlet in the bench
 - door labyrinth \Leftrightarrow one additional venting outlet \dot{Flow}
 - CFD analysis
 - \rightarrow Limited ΔP around entrance filters (< 2 mbar) during launch and purging
 - \rightarrow Overpressure (0.001 mbar) during purging (compromise with launch venting)
 - \rightarrow Few hours to fill cavity with N₂ (> 80% in 10 hours)

Door labyrinth head loss coefficient

computation

Filter labyrinth head loss coefficient computation

Venting outlet head loss coefficient computation

EUI venting simulation

- Launch
 - Impact on filters
 - ΔP around filter wheel and entrance filter << 1 mbar

Venting of CFRP structure panels

Venting of CFRP structure panels

Venting – External panels

- venting inserts on outer faces
- perforated Kapton tape on open side faces
- venting of internal panels through top panel

MLI venting

EULOBS MLI

= 2 layers of Mylar \rightarrow no micro-perforation \rightarrow venting by bottom part, around unit), as per on STM

CFRP housing structure

EUI purging requirements

- EID-B requirements
 - The prime contractor shall ensure after EUI delivery almost continuous purging of the EUI structural housing with clean and dry nitrogen gas until launch.
 - The longest duration **without purging shall be limited to 30 minutes per any 24 hours**, except during the vacuum tests sequences. ==> was extended to 60 minutes by Prime request.
 - The Prime Contractor shall purge EUI, after delivery, with gas quality grade 5.0, i.e., 99.999% vol N2, <3 ppm O2, <5 ppm H2O, < 0.5 ppm hydrocarbons. Synthetic air of the same quality may be used. Before delivery, gas quality used will be Grade 6.0 (or BIP 5.2) ==> was changed to MIL-PRF Grade C quality by prime.
 - The purging flow rate shall be in the range 12 80 l/h. ==> was implemented by flow restrictive capillary.
 - The maximum purge pressure spike shall be 0.003 bar. ==> changed to 30 mbar/minute
 - The purge shall be maintained with a log of all purge interruptions.
 - During AIV of the spacecraft and on the launcher inside the fairing a gas supply is required to sustain a flow rate in the range 12 80 l/h.
 - The Prime Contractor shall ensure that after re-pressurisation of vacuum chamber, the clean gas is supplied through the purge inlet connector on the spacecraft. ==> changed to a slight overpressure to be maintained.

NB: during vacuum chamber repressurization, the purging system can be used but shall not be the only source of re-pressurization. If used, the purge flow shall be controlled to have a maximum of 0.5 l/h. ==> changed to 12 l/h.

- The spacecraft test plan shall not include a specific opening of the internal EUI-OBS doors, except when under vacuum. ==> changed to never opening.
- Purging during flight to the launcher to be maintained
 Purging on the launcher to be maintained

EUI cleanliness monitoring

- Particular and molecular witness samples
 - Will follow the unit all along its AIT activity
 - Allows cleanliness monitoring (after assembly, vibration, vacuum/bakeout tests...)
 - Some witness samples also on S/C MY panel during AIT
- Types of witness samples
 - Particular:
 - PFO
 - Monitored @CSL
 - Molecular:
 - Metallic witness plates (ECSS Q-70-05C indirect method)
 - Monitored by FTIR @CSL

EUI vacuum tests

Vacuum thermal bake out

- Bake out with monitoring by RGA, witness plates and
- Temperature-controlled Quarz- Crystal Microbalance TQCM
- with SUCCESS CRITERION:
 - monitor the TQCM frequency f / Hz
 - until rate of change of frequency f" /Hz/h/h is < 1%

Bake out analysis

EUI FM – Cameras Bakeout RP-CSL-SOEUI-17047 issue 1 - revision 0 page 11

8.2. TQCM criteria

The TQCM record over the bakeout is show in next figure.

Figure 8-2: EUI FM cameras bakeout - TQCM frequency record

The deviation of linearity (f''/f') success criterion is shown in next figure, and is lower than 1% at end of bakeout.

Figure 8-3: EUI FM cameras bakeout -Alin(1/h) using fitted TQCM data

- Inner ('primary box') and outer ('external box') containers
 - OBS wrapped in clean anti-static bag, and fixed on a transport plate in the primary box
 - Primary box on a damping system in the external container
 - External box equipped with purging system for primary box (same inlet interface SS-400-1-4 than in OBS)

Primary box

- It can be use in clean room class 100.
- It is equipped with a breathing valve, a desiccant box and a humidity indicator to provide the ambient environment.
- The breathing value regulates the pressure inside the primary box at ± 17 mbar.

Secondary box

- It an be use in clean room class 100.000.
- It is equipped with monitoring of humidity, temperature and pressure.

Outer container

With STM unit

Purging during flight to the launcher to be maintained

- was major concern because of re-pressurization of airplane during decent.
- Antonov aircraft takes 10 minutes decent phase. makes 100 mbar over-pressure possible inside container.

Purging on the launcher to be maintained

Acknowledgements

- Solar Orbiter Mission: ESA
- Spacecraft: Airbus D&S
- EUI instrument: CSL, MSSL, IAS, PMOD/ WRC, MPS