Calibration accuracy of Proba-3/ASPIICS white-light coronagraph

Sergei Shestov Royal Observatory of Belgium

Solar-Terrestrial Centre of Excellence SIDC, Royal Observatory of Belgium

White-light – easy spectral region

- No strong degradation of multi-layer structures & thin-film filters;
- No necessity of fancy radiation sources (synchrotron) and complicated experimental setups;
- Straightforward to create wide beam, filling the whole aperture, using of monochromatic light etc.;
- Relatively slow degradation known degradation of sensitivity (~0.5%/year);
- "Easy" model of coronal spectrum in white-light;

• Given all these simplifications, what accuracy of calibration we may expect?

Field of view 1.08-3 R₀

3 R⊙

EUV vs White-light imaging system

Photometric sensitivity

$$\boldsymbol{M} = \boldsymbol{B} \cdot \frac{\pi}{4} \left(\frac{D}{f}\right)^2 dx^2$$
$$\begin{bmatrix} \underline{\text{photons}} \\ pixel \ \text{s} \end{bmatrix} \begin{bmatrix} \underline{\text{photons}} \\ \text{s \ sr \ cm2} \end{bmatrix} [\text{sr}][\text{cm2}]$$

$$\begin{bmatrix} DN \end{bmatrix} \begin{bmatrix} m \\ photon \end{bmatrix} \begin{bmatrix} \frac{el}{photon} \end{bmatrix} \begin{bmatrix} \frac{DN}{el} \end{bmatrix}$$
$$N = B \cdot \frac{\pi}{4} \left(\frac{D}{f} \right)^2 dx^2 T(\lambda) t_{exp} q(\lambda) g + DC t_{exp} g + BIAS$$
$$\begin{bmatrix} \frac{el}{s} \end{bmatrix} \begin{bmatrix} s \end{bmatrix} \begin{bmatrix} \frac{DN}{el} \end{bmatrix} \quad [DN]$$

$$\boldsymbol{B} = \frac{\boldsymbol{N} - \boldsymbol{D}\boldsymbol{C}' \cdot \boldsymbol{t}_{exp} - \boldsymbol{B}\boldsymbol{I}\boldsymbol{A}\boldsymbol{S}'}{\boldsymbol{\kappa}} \quad -\boldsymbol{B}_{\mathrm{D}} - \boldsymbol{B}_{\mathrm{G}} - \boldsymbol{B}_{\mathrm{Sc}}$$

Photometric sensitivity

$$\boldsymbol{B} = \frac{\boldsymbol{N} - \boldsymbol{D}\boldsymbol{C}' \cdot \boldsymbol{t}_{exp} - \boldsymbol{B}\boldsymbol{I}\boldsymbol{A}\boldsymbol{S}'}{\boldsymbol{\kappa}} - \boldsymbol{B}_{\mathrm{D}} - \boldsymbol{B}_{\mathrm{G}} - \boldsymbol{B}_{\mathrm{Sc}}$$

$$\boldsymbol{\kappa} = \frac{\pi}{4} \left(\frac{D}{f}\right)^2 dx^2 T(\lambda) t_{exp} \boldsymbol{q}(\lambda) \boldsymbol{g}$$

- Vignetting (i.e. filter mesh, variation of T with FOV)
- Optical throughput
- Detector flat field and sensitivity
- *f*, *D*, *dx*

AIA diffraction pattern

pixels

Shestov: ASPIICS/Proba-3 coronagraph

Photometric sensitivity

$$\boldsymbol{B} = \frac{\boldsymbol{N} - \boldsymbol{D}\boldsymbol{C}' \cdot \boldsymbol{t}_{exp} - \boldsymbol{B}\boldsymbol{I}\boldsymbol{A}\boldsymbol{S}'}{\boldsymbol{\kappa}} - \boldsymbol{B}_{\mathrm{D}} - \boldsymbol{B}_{\mathrm{G}} - \boldsymbol{B}_{\mathrm{Sc}}$$

$$\boldsymbol{\kappa} = \frac{\pi}{4} \left(\frac{D}{f}\right)^2 dx^2 T(\lambda) t_{exp} \boldsymbol{q} (\lambda) \boldsymbol{g}$$

- Vignetting (i.e. filter mesh, variation of T with FOV)
- Optical throughput
- Detector flat field and sensitivity
- *f*, *D*, *dx*

LASCO C2: Gardès et al. 2013

(also Llebaria et al. 2006; Colaninno & Howard 2015 – different result)

LASCO C3: Thernisien et al. 2006 – ±6.7%

COR1 STEREO: Thompson and Reginald 2008

Table 3Comparison of the
preflight calibration factors(MSB s DN^{-1}) with those
determined from the Jupiter
observations.

Telescope	Preflight	Jupiter
COR1-A	7.10×10^{-11}	6.578×10^{-11}
COR1-B	5.95×10^{-11}	7.080×10^{-11}

Shestov: ASPIICS/Proba-3 coronagraph

Vingetting in external coronagraphs

LASCO C2 vignetting

ASPIICS

Spectral response

ASPIICS spectral response

Bessell, PASP 102, 1181 (1990)

Also: measuring star intensity can be tricky – either aperture method, or PSF fitting

Uncertainties in photometric sensitivity

$$B = \frac{N - DC' \cdot t_{exp} - BIAS'}{\kappa} - B_D - B_G - B_{Sc}$$
$$\Delta_{\Sigma} \qquad \Delta_P \qquad \Delta_D \quad \Delta_G \quad \Delta_{Sc}$$

Discussion

- Calibration accuracy can be inferred by applying different methods;
- Known coronagraphs discrepancy up to 10%;
- Calibration using stars is the most reliable; however requires a lot of observational time;
- Influence of stray light for coronal photometry;

Thank you!

Example for ASPIICS

Shestov: ASPIICS/Proba-3 coronagraph

APSIICS, wide-band filter, t_{exp}=10 s

APSIICS, wide-band filter, t_{exp}=0.1 s

