

MMS Workshop, 14 Oct 2020

3D Simulation of electron scale turbulent currents in reconnection outflows

G. Lapenta (KULeuven, SSI Boulder)R. Dupuois, F. Pucci, J. Amaya (KULeuven)M. Goldman, D. Newman, S. Eriksson (CU Boulder)

Acknowledgments

3D reconnection leads to very non laminar outflows

Mi/me=256 $B_g=1/10$ Grid:1200x450x300 Resolution $\Delta x = d_e/2$ Resolution $\omega_{ce} \Delta t = 1/30$

Electron Current Density – Magnitude - Cuts

Electron Current Density – Magnitude – Volume rendering

Lapenta, G., et al. "Local regimes of turbulence in 3D magnetic reconnection." *The Astrophysical Journal* 888.2 (2020): 104.

KU LEUVEN

The conditions are turbulent and electron scale Z/d_i=7.5 currents are formed 14 Meridian plane: Front view

10

- The reconnection outflows drives the formation of electron currents down to the electron scales (electron gyroradius and electrons skin depth
- Reconnection there happens via electron processes leaving ions largely unaffected

Pucci, Francesco, et al. "Properties of turbulence in the reconnection exhaust: numerical simulations compared with observations." ApJ 841.1 (2017): 60.

Giovanni Lapenta, Virtual Seminar CIPS, Apr 3, 2020 **KU LEUVEN**

-2 -3

Lapenta, G., Pucci, F., Olshevsky, V., Servidio, S., Sorriso-Valvo, L., Newman, D., & Goldman, M. (2018). *Journal of Plasma Physics, 84*(1), 715840103.

KU LEUVEN

Gaussian Mixture Model (GMM): Different distributions

Dupuis, R., et al.(2020). ApJ, 889(1), 22.

KU LEUVEN

Effect on the definition of thermal energy

Thermal energy drop Pseudo ("false") thermal en.

6

• Fluid thermal energy:

$$E_{\text{thermal}} = \frac{1}{N_p} \sum_{i=1}^{3} \left[\sum_{p} (V_p - \langle V_p \rangle)^2 \right]_i, \text{ with } \langle V_p \rangle = \sum_{p} \frac{V_p}{N_p}.$$

• Multibeam thermal energy

$$E_{\text{thermal}}^{(K)} = \frac{1}{2} \sum_{i=1}^{3} \sum_{k=1}^{K} w_k^2 [\sigma_k^2]_i.$$

• Drop in thermal energy

$$E_{\rm drop} = rac{E_{
m thermal}^{(K)}}{E_{
m thermal}}.$$

• Pseudo ("false") thermal energy

$$E_{\rm dev}^{(K)} = \sum_{i=1}^{3} \left[\sum_{k=1}^{K} w_k(\boldsymbol{\mu}_k)^2 - \left(\sum_{k=1}^{K} w_k(\boldsymbol{\mu}_k) \right)^2 \right]_i.$$