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3D reconnection leads to 
very non laminar outflows
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• The reconnection outflows drives the
formation of electron currents down to the 
electron scales (electron gyroradius and 
electrons skin depth

• Reconnection there happens via electron 
processes leaving ions largely unaffected
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presence of kinetic Alfvén waves, which might be favored in
this configuration since the y–z direction is oblique to the mean
field (about 85°; Gary & Nishimura 2004). If one assumes a
turbulent cascade of KAW-like fluctuations, decorrelating on a
timescale comparable to the linear KAW period (Howes
et al. 2008), scaling arguments predict that the magnetic energy
spectrum behaves like �k 7 3 while the electric-energy spectrum
flattens to �k 1 3 (both different from the spectra observed here).
However, the strong shear here can alter and decorrelate these
waves, favoring the other explanation. The second interpreta-
tion is more qualitative and follows simple dimensional
arguments. At scales smaller than the ion skin depth, the
electric field is dominated by the Hall term and, as described in
Matteini et al. (2017), the electric fluctuation behaves like

E
E_ ( )E

V
kd B,

A
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where VA is the characteristic Alfvén speed. If fluctuations
manifest an inertial range, then _ B( )P k kE E and _ B( )P k kB B.
From the above relation one gets simply that B B� � 2E B .
This relation is qualitatively observed in our case, as can be
seen from Figure 1. It is also worth remarking how the above
interpretation still holds in such an anisotropic and inhomoge-
neous system, where spectra need to be carefully extracted
removing large-scale background profiles and border effects.

2.2. Energy Exchange between Fields and Particles

The energy exchange between fields and particles is
governed by the term ·J E, where J is the total current sum
of proton and electron contributions and E is the electric field.
When � ·J EDl is positive, the energy is flowing from the
fields to the particles; when it is negative, energy is passing
from particles to fields. It is sometimes referred to as the
dissipative term, even though the energy transfer from the
magnetic field to particles is not always an irreversible process,
and so it does not strictly imply dissipation. Despite this fact,
for the purpose of our paper we will keep this definition, also
used elsewhere(Zenitani et al. 2011; Wan et al. 2012;
Olshevsky et al. 2015, 2016), and from now on we will use
Dl as a proxy for dissipation or more properly energy release

from the electromagnetic field (in the laboratory frame). A 2D
plot of Dl integrated in the z direction is shown in Figure 2.
Note that this differs from the similarly motivated dissipation
surrogate used previously in turbulence studies, e.g., Wan et al.
(2012), which computed maps of ·J E in the electron fluid
frame (Zenitani et al. 2011). As shown in other works, in
collisionless magnetic reconnection Dl is not concentrated only
around the first reconnection site(Lapenta et al. 2014, 2015).
In fact, it takes nonzero values in a wider region contained in
the outflows (panel (a)). Moreover, Dl is strongly inhomoge-
neous inside the outflows. In order to characterize this
inhomogeneity, we plotted Dl in the plane facing the outflows,
yz, at three different positions along x: d31 p, d34 p, and d37 p.
The largest values of Dl are found in the region where the
plasma ejected by reconnection encounters the ambient plasma
and is decelerated, near �x d31 p in the right outflow. Dl is
stronger in that position and decreases moving outward from
the first reconnection site in the outflow direction. Note that Dl
has in general both positive and negative values, but in the
considered region its average is always positive, indicating a
net flow of energy from fields to particles. As has been noticed
in previous studies conducted in the contest of MHD
(TanDokoro & Fujimoto 2005; Guo et al. 2014) or by means
of a kinetic model (Vapirev et al. 2013), the region of interface
between the low-density plasma ejected by magnetic reconnec-
tion and the high-density ambient plasma is unstable. Guo et al.
(2014) have interpreted that such instability has an interchange
instability where the deceleration existing between lighter and
denser plasma plays a role that is equivalent to gravity in the
Rayleigh–Taylor instability. Through a 3D MHD model of
magnetic reconnection the authors of this study related the
phenomenology of this instability to supra-arcade downflows
observed in active region coronae above post-eruption flare
arcades. It is worth noticing that, even though our study is
meant to apply to Earth’s magnetotail, the value of beta
considered in the present work, C _ 0.8 in the asymptotic
region, is comparable to C � 0.5 in Guo et al. (2014). For this
reason it is reasonable to compare our findings obtained using a
kinetic model to what was found for MHD. We observe a
similar phenomenology to what was found by Guo et al.

Figure 1. Power spectra of magnetic (blue bullets) and electric (open red
circles) fields as a function of the perpendicular k-vector (with respect to the
reconnecting field direction). Spectra have been reduced along kx. The dotted-
dashed red line and dashed blue line indicate the behavior of the observations
for the magnetic (r �k 8 3) and electric spectra (∝k−1), respectively.

Figure 2. Energy exchange � ·J EDl (a) in the xy plane averaged in the z
direction, and in the yz plane at (b) �x d31 p, (c) �x d34 p, and (d)
�x d37 p. The x-line is located at �x d20 p. The three boxes in panel (a) are

the ones used for the statistical analysis presented in Section 2.2.
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The conditions are turbulent and electron scale 
currents are formed
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Electron energization leads to 
non Maxwellian distributions
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Gaussian Mixture Model (GMM): Different distributions

Figure 4. Electron velocity distribution for the double Harris sheet case at t=20,000. Each row corresponds to one of the five red rectangles depicted in Figure 2.
Three 2D marginal distributions are presented: vP−v⊥1, vP−v⊥2, and v⊥1−v⊥2. The white ellipses illustrate the different Gaussians of the mixtures in each distribution.
The transparency is determined by the weight of each Gaussian: no transparency for a weight of 1 and a full transparency for a zero weight. The red ellipses give the
mean and variance for a single distribution.
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Determination of the number of Gaussians:

Ø Akaike information criterion (AIC): 2k - 2 ln(L) 

Ø Bayesian information criterion (BIC): ln(n)k - 2 ln(L), 

k = number of Gaussians; L = likelihood 

Electron velocity distributions
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• Fluid thermal energy:

• Multibeam thermal energy

• Drop in thermal energy

• Pseudo (“false”) thermal energy

Effect on the definition of thermal energy

(BIC; Anderson 2002):

( )
( ) ( ) ( )

� �
� �

k L
n k L

AIC 2 2 ln
BIC ln 2 ln , 13

where k is the number of parameters to estimate in the model
and L the likelihood. In cases of weighted particles, the number
of particles n corresponds to the weighted number of particles.
BIC penalizes the model complexity more than AIC. However,
AIC and BIC performances depend on the nature of the data
generating the model: sample size, complexity of the model,
whether the true model is contained in the model set or not, etc.
(Anderson 2002). As data from simulations may be noisy and
the number of particles is significant, BIC has been preferred in
this work to automatically select the number of components of
the mixture. Special attention should be paid to the number of
particles n, which can be arbitrarily large for PIC simulations.
On the one hand, a very small number of particles would lead
to noisy distributions and a BIC parameter with a weak
penalization for complex models. In this case, some compo-
nents may only fit noise. On the other hand, a very large
number of particles may overpenalize models with several
components. From the authors’ experience, typical numbers of
particles between 1000 and 10,000 seem to be acceptable. It
may be interesting to compare these numbers of particles with
missions such as MMS or Cluster.

Nevertheless, the physical meaning of the number of
components K and the parameters associated with each
Gaussian must be analyzed carefully as they must not be
necessarily interpreted as specific beams or electron popula-
tions. Indeed, if the data show complex shapes or are not near
Gaussian, the number of components K does not correspond to
the number of different populations (Ivezić et al. 2014). For
instance, a flat-top distribution is approximated by several
Gaussians, but each component is needed to approach the
broad mode of the distribution. A Kappa distribution can also
be represented by a central Gaussian centered around the mode
plus another Gaussian with a very large width to fit the wide
tail, thus two Gaussians are needed for a single population.
Moreover, as presented previously, BIC is sensitive to various
parameters: the data themselves and the sample size. For
instance, if the source of the data does not change but the
number of samples increased, the resulting number of
components may also change. However, BIC is still an efficient
criterion for providing a statistical analysis based on the
underlying properties of the data. It can help detect important
variations in the distribution. Another strategy consists of
fixing the number of components to a high value in order to
improve the fit for very complex distributions, which can show
poor results for a small number of components. In this case,
GMM is very close to a nonparametric density estimation
method, such as KDE. Such strategy is illustrated in
Appendix C.

4.3. Thermal Energy Variation

As the particle distributions are approximated by sums of
Gaussians instead of a single Maxwellian, it is interesting to
analyze the variation of the thermal velocity for these two
representations. The thermal energy for a single velocity
distribution is given by its variance. The straight measure of

thermal energy based on the moment of the whole distribution is
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The variance (σ2)(K ) for K multiple Maxwellians is given by
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The first term can be interpreted as the mixture of the variances
and is related to the thermal energy per unit mass of the
mixture. Therefore, it is written as the thermal energy (per unit
mass) of the K multiple Maxwellians:
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The thermal energy ratio Edrop is derived to compute the
reduction in thermal speed for the particles, aiming to
distinguish heating from accelerating particles into beams. It
measures the ratio between the mixture of the variance and the
variance of the velocity distribution:
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This metric is defined to always be below 1. Low values
indicate that the thermal energy of the mixture is much smaller
than the thermal velocity computed directly from the definition,
suggesting that the second-order moment of the overall
distribution is not a good indicator of the conditions present.
An extreme example is that of two cold beams which
individually have zero thermal spread and only a relative mean
velocity but when taken together appear as a broad thermal
spread. This measure identifies these conditions, spotting
distributions characterized by interpenetrating beams.
The last two terms ofEquation (15) can be read as the

deviation of each mean compared to the overall mixture mean:
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This deviation is always positive as it corresponds to a
weighted variance. This is the thermal energy of the center of
all beams, measuring the distance between them. A second
metric Edev, called the thermal velocity deviation, defines the
ratio between the velocity deviation for the mixture and the
classical thermal velocity of the distribution:

( )
( )
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E
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dev
dev

thermal

This strictly positive quantity allows the different mixtures to
be interpreted. High values mean the components are widely
separated and presumably have a distinct identity and perhaps
origin (Eastwood et al. 2015). Small values point to mixtures
of components close to each other and perhaps carry less
meaningful separation.
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(BIC; Anderson 2002):
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k L
n k L

AIC 2 2 ln
BIC ln 2 ln , 13

where k is the number of parameters to estimate in the model
and L the likelihood. In cases of weighted particles, the number
of particles n corresponds to the weighted number of particles.
BIC penalizes the model complexity more than AIC. However,
AIC and BIC performances depend on the nature of the data
generating the model: sample size, complexity of the model,
whether the true model is contained in the model set or not, etc.
(Anderson 2002). As data from simulations may be noisy and
the number of particles is significant, BIC has been preferred in
this work to automatically select the number of components of
the mixture. Special attention should be paid to the number of
particles n, which can be arbitrarily large for PIC simulations.
On the one hand, a very small number of particles would lead
to noisy distributions and a BIC parameter with a weak
penalization for complex models. In this case, some compo-
nents may only fit noise. On the other hand, a very large
number of particles may overpenalize models with several
components. From the authors’ experience, typical numbers of
particles between 1000 and 10,000 seem to be acceptable. It
may be interesting to compare these numbers of particles with
missions such as MMS or Cluster.

Nevertheless, the physical meaning of the number of
components K and the parameters associated with each
Gaussian must be analyzed carefully as they must not be
necessarily interpreted as specific beams or electron popula-
tions. Indeed, if the data show complex shapes or are not near
Gaussian, the number of components K does not correspond to
the number of different populations (Ivezić et al. 2014). For
instance, a flat-top distribution is approximated by several
Gaussians, but each component is needed to approach the
broad mode of the distribution. A Kappa distribution can also
be represented by a central Gaussian centered around the mode
plus another Gaussian with a very large width to fit the wide
tail, thus two Gaussians are needed for a single population.
Moreover, as presented previously, BIC is sensitive to various
parameters: the data themselves and the sample size. For
instance, if the source of the data does not change but the
number of samples increased, the resulting number of
components may also change. However, BIC is still an efficient
criterion for providing a statistical analysis based on the
underlying properties of the data. It can help detect important
variations in the distribution. Another strategy consists of
fixing the number of components to a high value in order to
improve the fit for very complex distributions, which can show
poor results for a small number of components. In this case,
GMM is very close to a nonparametric density estimation
method, such as KDE. Such strategy is illustrated in
Appendix C.

4.3. Thermal Energy Variation

As the particle distributions are approximated by sums of
Gaussians instead of a single Maxwellian, it is interesting to
analyze the variation of the thermal velocity for these two
representations. The thermal energy for a single velocity
distribution is given by its variance. The straight measure of
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The first term can be interpreted as the mixture of the variances
and is related to the thermal energy per unit mass of the
mixture. Therefore, it is written as the thermal energy (per unit
mass) of the K multiple Maxwellians:
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The thermal energy ratio Edrop is derived to compute the
reduction in thermal speed for the particles, aiming to
distinguish heating from accelerating particles into beams. It
measures the ratio between the mixture of the variance and the
variance of the velocity distribution:
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This metric is defined to always be below 1. Low values
indicate that the thermal energy of the mixture is much smaller
than the thermal velocity computed directly from the definition,
suggesting that the second-order moment of the overall
distribution is not a good indicator of the conditions present.
An extreme example is that of two cold beams which
individually have zero thermal spread and only a relative mean
velocity but when taken together appear as a broad thermal
spread. This measure identifies these conditions, spotting
distributions characterized by interpenetrating beams.
The last two terms ofEquation (15) can be read as the

deviation of each mean compared to the overall mixture mean:
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This deviation is always positive as it corresponds to a
weighted variance. This is the thermal energy of the center of
all beams, measuring the distance between them. A second
metric Edev, called the thermal velocity deviation, defines the
ratio between the velocity deviation for the mixture and the
classical thermal velocity of the distribution:
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This strictly positive quantity allows the different mixtures to
be interpreted. High values mean the components are widely
separated and presumably have a distinct identity and perhaps
origin (Eastwood et al. 2015). Small values point to mixtures
of components close to each other and perhaps carry less
meaningful separation.
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where k is the number of parameters to estimate in the model
and L the likelihood. In cases of weighted particles, the number
of particles n corresponds to the weighted number of particles.
BIC penalizes the model complexity more than AIC. However,
AIC and BIC performances depend on the nature of the data
generating the model: sample size, complexity of the model,
whether the true model is contained in the model set or not, etc.
(Anderson 2002). As data from simulations may be noisy and
the number of particles is significant, BIC has been preferred in
this work to automatically select the number of components of
the mixture. Special attention should be paid to the number of
particles n, which can be arbitrarily large for PIC simulations.
On the one hand, a very small number of particles would lead
to noisy distributions and a BIC parameter with a weak
penalization for complex models. In this case, some compo-
nents may only fit noise. On the other hand, a very large
number of particles may overpenalize models with several
components. From the authors’ experience, typical numbers of
particles between 1000 and 10,000 seem to be acceptable. It
may be interesting to compare these numbers of particles with
missions such as MMS or Cluster.

Nevertheless, the physical meaning of the number of
components K and the parameters associated with each
Gaussian must be analyzed carefully as they must not be
necessarily interpreted as specific beams or electron popula-
tions. Indeed, if the data show complex shapes or are not near
Gaussian, the number of components K does not correspond to
the number of different populations (Ivezić et al. 2014). For
instance, a flat-top distribution is approximated by several
Gaussians, but each component is needed to approach the
broad mode of the distribution. A Kappa distribution can also
be represented by a central Gaussian centered around the mode
plus another Gaussian with a very large width to fit the wide
tail, thus two Gaussians are needed for a single population.
Moreover, as presented previously, BIC is sensitive to various
parameters: the data themselves and the sample size. For
instance, if the source of the data does not change but the
number of samples increased, the resulting number of
components may also change. However, BIC is still an efficient
criterion for providing a statistical analysis based on the
underlying properties of the data. It can help detect important
variations in the distribution. Another strategy consists of
fixing the number of components to a high value in order to
improve the fit for very complex distributions, which can show
poor results for a small number of components. In this case,
GMM is very close to a nonparametric density estimation
method, such as KDE. Such strategy is illustrated in
Appendix C.
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The first term can be interpreted as the mixture of the variances
and is related to the thermal energy per unit mass of the
mixture. Therefore, it is written as the thermal energy (per unit
mass) of the K multiple Maxwellians:
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The thermal energy ratio Edrop is derived to compute the
reduction in thermal speed for the particles, aiming to
distinguish heating from accelerating particles into beams. It
measures the ratio between the mixture of the variance and the
variance of the velocity distribution:
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This metric is defined to always be below 1. Low values
indicate that the thermal energy of the mixture is much smaller
than the thermal velocity computed directly from the definition,
suggesting that the second-order moment of the overall
distribution is not a good indicator of the conditions present.
An extreme example is that of two cold beams which
individually have zero thermal spread and only a relative mean
velocity but when taken together appear as a broad thermal
spread. This measure identifies these conditions, spotting
distributions characterized by interpenetrating beams.
The last two terms ofEquation (15) can be read as the

deviation of each mean compared to the overall mixture mean:
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This deviation is always positive as it corresponds to a
weighted variance. This is the thermal energy of the center of
all beams, measuring the distance between them. A second
metric Edev, called the thermal velocity deviation, defines the
ratio between the velocity deviation for the mixture and the
classical thermal velocity of the distribution:
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This strictly positive quantity allows the different mixtures to
be interpreted. High values mean the components are widely
separated and presumably have a distinct identity and perhaps
origin (Eastwood et al. 2015). Small values point to mixtures
of components close to each other and perhaps carry less
meaningful separation.
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the x-direction over the time while the extent of the ion
diffusion region remains steady. The outflow region is still
clearly identified, and its location remains quite steady. The
reconnection gives rise to a clear magnetic island on the right
side of the figure at these time steps. The thickness of the
region around the O point tends to increase dramatically in the
y-direction when the reconnection grows. Several different
distribution types can be observed, leading to a rather noisy
mix with a background with two components and some with
three and four components. Moreover, secondary structures
gradually appear near the O point, creating a link between the
bottom and the top layers of the island. Finally, two concentric
ellipses can be observed at t = 20,000. They are composed of
three components for the outer ellipse and two components for
the inner ellipse. It is important to note that no spatial
constraints or correlations are imposed on the detection
algorithm, thus all the structures identified by the BIC
minimization may exist in the distributions.

All of the results provided by the detection algorithm are then
compared to the values of Q depicted in the right column in
Figure 2 for the same time steps. A few similarities are observed:
the measure of gyrotropy clearly highlights the EDR for all time
steps with peak values observed above 0.5, and topological
boundaries of the reconnection are also mapped, almost coinciding
with the boundaries of the GMM algorithm with slight differences.
However, different behaviors compared to the detection algorithm
are exhibited. For instance, the region surrounding the EDR is not
diagnosed by the measure of gyrotropy as well as the outflow and
inner structures around the O point. Small artifacts seem to be
present within the topological boundaries, but the background
noise prevents them from being clearly identified. Indeed, the
measure of gyrotropy is not exactly zero for regions far away from
the reconnection with a background noise around 0.1, while the
detection algorithm clearly identifies single distributions.
Figure 3 displays Edrop and Edev in order to support the

analysis of the number of components, helping to make

Figure 3. The left column highlights the energy drop Edrop defined byEquation (17), and the right column depicts the energy deviation Edev given byEquation (19).
Both quantities are presented at four different time steps, from top to bottom: t=8000, t=12,000, t=16,000, and t=20,000.
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(BIC; Anderson 2002):
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( ) ( ) ( )
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n k L

AIC 2 2 ln
BIC ln 2 ln , 13

where k is the number of parameters to estimate in the model
and L the likelihood. In cases of weighted particles, the number
of particles n corresponds to the weighted number of particles.
BIC penalizes the model complexity more than AIC. However,
AIC and BIC performances depend on the nature of the data
generating the model: sample size, complexity of the model,
whether the true model is contained in the model set or not, etc.
(Anderson 2002). As data from simulations may be noisy and
the number of particles is significant, BIC has been preferred in
this work to automatically select the number of components of
the mixture. Special attention should be paid to the number of
particles n, which can be arbitrarily large for PIC simulations.
On the one hand, a very small number of particles would lead
to noisy distributions and a BIC parameter with a weak
penalization for complex models. In this case, some compo-
nents may only fit noise. On the other hand, a very large
number of particles may overpenalize models with several
components. From the authors’ experience, typical numbers of
particles between 1000 and 10,000 seem to be acceptable. It
may be interesting to compare these numbers of particles with
missions such as MMS or Cluster.

Nevertheless, the physical meaning of the number of
components K and the parameters associated with each
Gaussian must be analyzed carefully as they must not be
necessarily interpreted as specific beams or electron popula-
tions. Indeed, if the data show complex shapes or are not near
Gaussian, the number of components K does not correspond to
the number of different populations (Ivezić et al. 2014). For
instance, a flat-top distribution is approximated by several
Gaussians, but each component is needed to approach the
broad mode of the distribution. A Kappa distribution can also
be represented by a central Gaussian centered around the mode
plus another Gaussian with a very large width to fit the wide
tail, thus two Gaussians are needed for a single population.
Moreover, as presented previously, BIC is sensitive to various
parameters: the data themselves and the sample size. For
instance, if the source of the data does not change but the
number of samples increased, the resulting number of
components may also change. However, BIC is still an efficient
criterion for providing a statistical analysis based on the
underlying properties of the data. It can help detect important
variations in the distribution. Another strategy consists of
fixing the number of components to a high value in order to
improve the fit for very complex distributions, which can show
poor results for a small number of components. In this case,
GMM is very close to a nonparametric density estimation
method, such as KDE. Such strategy is illustrated in
Appendix C.

4.3. Thermal Energy Variation

As the particle distributions are approximated by sums of
Gaussians instead of a single Maxwellian, it is interesting to
analyze the variation of the thermal velocity for these two
representations. The thermal energy for a single velocity
distribution is given by its variance. The straight measure of

thermal energy based on the moment of the whole distribution is
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The first term can be interpreted as the mixture of the variances
and is related to the thermal energy per unit mass of the
mixture. Therefore, it is written as the thermal energy (per unit
mass) of the K multiple Maxwellians:
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The thermal energy ratio Edrop is derived to compute the
reduction in thermal speed for the particles, aiming to
distinguish heating from accelerating particles into beams. It
measures the ratio between the mixture of the variance and the
variance of the velocity distribution:
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This metric is defined to always be below 1. Low values
indicate that the thermal energy of the mixture is much smaller
than the thermal velocity computed directly from the definition,
suggesting that the second-order moment of the overall
distribution is not a good indicator of the conditions present.
An extreme example is that of two cold beams which
individually have zero thermal spread and only a relative mean
velocity but when taken together appear as a broad thermal
spread. This measure identifies these conditions, spotting
distributions characterized by interpenetrating beams.
The last two terms ofEquation (15) can be read as the

deviation of each mean compared to the overall mixture mean:
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This deviation is always positive as it corresponds to a
weighted variance. This is the thermal energy of the center of
all beams, measuring the distance between them. A second
metric Edev, called the thermal velocity deviation, defines the
ratio between the velocity deviation for the mixture and the
classical thermal velocity of the distribution:
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This strictly positive quantity allows the different mixtures to
be interpreted. High values mean the components are widely
separated and presumably have a distinct identity and perhaps
origin (Eastwood et al. 2015). Small values point to mixtures
of components close to each other and perhaps carry less
meaningful separation.
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where k is the number of parameters to estimate in the model
and L the likelihood. In cases of weighted particles, the number
of particles n corresponds to the weighted number of particles.
BIC penalizes the model complexity more than AIC. However,
AIC and BIC performances depend on the nature of the data
generating the model: sample size, complexity of the model,
whether the true model is contained in the model set or not, etc.
(Anderson 2002). As data from simulations may be noisy and
the number of particles is significant, BIC has been preferred in
this work to automatically select the number of components of
the mixture. Special attention should be paid to the number of
particles n, which can be arbitrarily large for PIC simulations.
On the one hand, a very small number of particles would lead
to noisy distributions and a BIC parameter with a weak
penalization for complex models. In this case, some compo-
nents may only fit noise. On the other hand, a very large
number of particles may overpenalize models with several
components. From the authors’ experience, typical numbers of
particles between 1000 and 10,000 seem to be acceptable. It
may be interesting to compare these numbers of particles with
missions such as MMS or Cluster.

Nevertheless, the physical meaning of the number of
components K and the parameters associated with each
Gaussian must be analyzed carefully as they must not be
necessarily interpreted as specific beams or electron popula-
tions. Indeed, if the data show complex shapes or are not near
Gaussian, the number of components K does not correspond to
the number of different populations (Ivezić et al. 2014). For
instance, a flat-top distribution is approximated by several
Gaussians, but each component is needed to approach the
broad mode of the distribution. A Kappa distribution can also
be represented by a central Gaussian centered around the mode
plus another Gaussian with a very large width to fit the wide
tail, thus two Gaussians are needed for a single population.
Moreover, as presented previously, BIC is sensitive to various
parameters: the data themselves and the sample size. For
instance, if the source of the data does not change but the
number of samples increased, the resulting number of
components may also change. However, BIC is still an efficient
criterion for providing a statistical analysis based on the
underlying properties of the data. It can help detect important
variations in the distribution. Another strategy consists of
fixing the number of components to a high value in order to
improve the fit for very complex distributions, which can show
poor results for a small number of components. In this case,
GMM is very close to a nonparametric density estimation
method, such as KDE. Such strategy is illustrated in
Appendix C.

4.3. Thermal Energy Variation

As the particle distributions are approximated by sums of
Gaussians instead of a single Maxwellian, it is interesting to
analyze the variation of the thermal velocity for these two
representations. The thermal energy for a single velocity
distribution is given by its variance. The straight measure of
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The first term can be interpreted as the mixture of the variances
and is related to the thermal energy per unit mass of the
mixture. Therefore, it is written as the thermal energy (per unit
mass) of the K multiple Maxwellians:
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The thermal energy ratio Edrop is derived to compute the
reduction in thermal speed for the particles, aiming to
distinguish heating from accelerating particles into beams. It
measures the ratio between the mixture of the variance and the
variance of the velocity distribution:
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This metric is defined to always be below 1. Low values
indicate that the thermal energy of the mixture is much smaller
than the thermal velocity computed directly from the definition,
suggesting that the second-order moment of the overall
distribution is not a good indicator of the conditions present.
An extreme example is that of two cold beams which
individually have zero thermal spread and only a relative mean
velocity but when taken together appear as a broad thermal
spread. This measure identifies these conditions, spotting
distributions characterized by interpenetrating beams.
The last two terms ofEquation (15) can be read as the

deviation of each mean compared to the overall mixture mean:
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This deviation is always positive as it corresponds to a
weighted variance. This is the thermal energy of the center of
all beams, measuring the distance between them. A second
metric Edev, called the thermal velocity deviation, defines the
ratio between the velocity deviation for the mixture and the
classical thermal velocity of the distribution:
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This strictly positive quantity allows the different mixtures to
be interpreted. High values mean the components are widely
separated and presumably have a distinct identity and perhaps
origin (Eastwood et al. 2015). Small values point to mixtures
of components close to each other and perhaps carry less
meaningful separation.
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where k is the number of parameters to estimate in the model
and L the likelihood. In cases of weighted particles, the number
of particles n corresponds to the weighted number of particles.
BIC penalizes the model complexity more than AIC. However,
AIC and BIC performances depend on the nature of the data
generating the model: sample size, complexity of the model,
whether the true model is contained in the model set or not, etc.
(Anderson 2002). As data from simulations may be noisy and
the number of particles is significant, BIC has been preferred in
this work to automatically select the number of components of
the mixture. Special attention should be paid to the number of
particles n, which can be arbitrarily large for PIC simulations.
On the one hand, a very small number of particles would lead
to noisy distributions and a BIC parameter with a weak
penalization for complex models. In this case, some compo-
nents may only fit noise. On the other hand, a very large
number of particles may overpenalize models with several
components. From the authors’ experience, typical numbers of
particles between 1000 and 10,000 seem to be acceptable. It
may be interesting to compare these numbers of particles with
missions such as MMS or Cluster.

Nevertheless, the physical meaning of the number of
components K and the parameters associated with each
Gaussian must be analyzed carefully as they must not be
necessarily interpreted as specific beams or electron popula-
tions. Indeed, if the data show complex shapes or are not near
Gaussian, the number of components K does not correspond to
the number of different populations (Ivezić et al. 2014). For
instance, a flat-top distribution is approximated by several
Gaussians, but each component is needed to approach the
broad mode of the distribution. A Kappa distribution can also
be represented by a central Gaussian centered around the mode
plus another Gaussian with a very large width to fit the wide
tail, thus two Gaussians are needed for a single population.
Moreover, as presented previously, BIC is sensitive to various
parameters: the data themselves and the sample size. For
instance, if the source of the data does not change but the
number of samples increased, the resulting number of
components may also change. However, BIC is still an efficient
criterion for providing a statistical analysis based on the
underlying properties of the data. It can help detect important
variations in the distribution. Another strategy consists of
fixing the number of components to a high value in order to
improve the fit for very complex distributions, which can show
poor results for a small number of components. In this case,
GMM is very close to a nonparametric density estimation
method, such as KDE. Such strategy is illustrated in
Appendix C.

4.3. Thermal Energy Variation

As the particle distributions are approximated by sums of
Gaussians instead of a single Maxwellian, it is interesting to
analyze the variation of the thermal velocity for these two
representations. The thermal energy for a single velocity
distribution is given by its variance. The straight measure of
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The first term can be interpreted as the mixture of the variances
and is related to the thermal energy per unit mass of the
mixture. Therefore, it is written as the thermal energy (per unit
mass) of the K multiple Maxwellians:
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The thermal energy ratio Edrop is derived to compute the
reduction in thermal speed for the particles, aiming to
distinguish heating from accelerating particles into beams. It
measures the ratio between the mixture of the variance and the
variance of the velocity distribution:
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This metric is defined to always be below 1. Low values
indicate that the thermal energy of the mixture is much smaller
than the thermal velocity computed directly from the definition,
suggesting that the second-order moment of the overall
distribution is not a good indicator of the conditions present.
An extreme example is that of two cold beams which
individually have zero thermal spread and only a relative mean
velocity but when taken together appear as a broad thermal
spread. This measure identifies these conditions, spotting
distributions characterized by interpenetrating beams.
The last two terms ofEquation (15) can be read as the

deviation of each mean compared to the overall mixture mean:
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This deviation is always positive as it corresponds to a
weighted variance. This is the thermal energy of the center of
all beams, measuring the distance between them. A second
metric Edev, called the thermal velocity deviation, defines the
ratio between the velocity deviation for the mixture and the
classical thermal velocity of the distribution:

( )
( )

�E
E

E
. 19

K

dev
dev

thermal

This strictly positive quantity allows the different mixtures to
be interpreted. High values mean the components are widely
separated and presumably have a distinct identity and perhaps
origin (Eastwood et al. 2015). Small values point to mixtures
of components close to each other and perhaps carry less
meaningful separation.
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