Observations of lower hybrid drift waves in a disturbed electron diffusion region in Earth's magnetotail

G. Cozzani^{1,} Y. Khotyaintsev^{1,} D. B. Graham¹, M. André^{1,} J. Egedal², A. Vaivads ^{3,} A. Alexandrova⁴ & the MMS team

IRF Uppsala, Sweden; 2. University of Wisconsin – Madison, Madison, Wisconsin 3. KTH, Stockholm, Sweden;
LPP, CNRS, Palaiseau, France.

EDR encounter in the magnetotail

Waves are consistent with electromagnetic LHDW within the EDR

Characteristics of the waves:

 $- f \sim f_{LH}$

- power is high at the center of the current sheet
- wave vector along M, \perp to B
- **_ electromagnetic** ($\frac{E}{B} \gg v_{ph}$ in the electrostatic case)
- $|\mathbf{k}|\rho_e \sim 0.3$ and $|\mathbf{k}|\sqrt{\rho_e \rho_i} \sim 2.7$
- All three components of B

 $f(P_{max}(\delta B_N)) = 1.4 Hz$

Waves are consistent with electromagnetic LHDW within the EDR

 $/m^2Hz$

 $[mV^2]$

 v_{ph}

 log_{10}

 $log_{10}E^{2}$

The observed waves are consistent with the electromagnetic contribution of LHDI [Daughton, Phys. Plasmas, 2003], [Yoon et al., Phys. Plasmas, 2002] or MTSI [Ji et al., PRL, 2004]

Characteristics of the waves:

– f ~ flh

- power is high at the **center of the** current sheet
- wave vector along M, \perp to B

_ electromagnetic (
$$\frac{E}{B} \gg v_{ph}$$
 in the electrostatic case)

-
$$|\mathbf{k}|\rho_e \sim 0.3$$
 and $|\mathbf{k}|\sqrt{\rho_e \rho_i} \sim 2.7$

Oscillations in EN and Ve,L are related to LHDW in the EDR

– Strong spatial gradients ($L_{grad} \sim 0.5 \ d_e$) not destroyed by the instability.

- **Oscillations** are **not expected** in the 2D laminar picture.

They are related to the LHDW in the center of the electron scale layer.

$$T_{osc}/2 \sim 0.35 \ s \sim T_{LHDW}/2$$

Oscillations in EN and Ve,L are related to LHDW in the EDR

– Strong spatial gradients ($L_{grad} \sim 0.5 \ d_e$) not destroyed by the instability.

- **Oscillations** are **not expected** in the 2D laminar picture.

They are related to the LHDW in the center of the electron scale layer.

$$T_{osc}/2 \sim 0.35 \ s \sim T_{LHDW}/2$$

Thank you for you attention!

Extra

Analysis of the waves in the EDR

Properties of the waves:

 $f(P_{max}(\delta B_N)) = 1.4 Hz$ $v_{ph} \sim 668 \ km/s$ $\hat{\mathbf{k}} = [0.0423, -0.9484, 0.3141] \ GSM$ $= [0.1279, -0.9595, 0.2505] \ LMN$

 $|\mathbf{k}|\rho_e \sim 0.3$ $|\mathbf{k}|\sqrt{\rho_e \rho_i} \sim 2.7$

 $\lambda \sim 480~km \sim 2.2~\sqrt{\rho_i \rho_e}$

k is directed along the direction of the current (-M)

The waves propagate close to perpendicularly to B And they have a rather **long wavelenght**