# The Effect of Thermal Pressure on Collisonless Magnetic Reconnection Rate

Xiaocan Li, Yi-Hsin Liu

Dartmouth College

MMS 2020 FALL SWT

### Reconnection rate decreases with plasma $\beta$



- $m_i/m_e = 400$ ,  $T_i = T_e$ ,  $\omega_{pe}/\Omega_{ce} = 2$ ,  $1536d_e \times 1536d_e$
- Harris sheet,  $B_g = 0$ ,  $n_b = n_0$
- $\beta = 0.25, 1, 10, 40$  by changing  $T_b/T_0$
- VPIC code



Slower outflow in high- $\beta$  simulations

## An extended model including pressure anisotropy and pressure gradient force (adapted from Liu et al., 2017)



#### Thermal effects in the run with $\beta = 1$



- In the inflow region, we assume  $P_{\perp} \sim B$  and  $P_{\parallel} \simeq P_0$ .
- In the outflow,  $P_{\perp} \simeq P_{xx}$ . The increases of  $P_{xx}$  is associated mostly with Fermi-reflected ions.

### **Model predictions**

