

MMS solar wind turbulence

One year ago in Santa Fe, we showed the first results from the MMS solar wind turbulence campaign...

Solar wind turbulence campaign

8th October 2020

MMS Science Working Team Meeting Fall 2020

3

Results: Intermittency

- Direct measurement of intermittency parallel and perpendicular to B
- Increase observed perpendicular to magnetic field
- Non-Gaussian fluctuations peak at 65°

University of Colorado Boulder

Results: Taylor Microscale

MMS Turbulence Campaign: Direct Evaluation of Taylor-microscale in the Solar Wind

- Measurement is hard due to low time-cadence data
- Several studies have attempted to measure λ_T (Matthaeus+, 2005; Weygand+, 2007, 2009, 2010,2011; Gurgiolo+, 2013, Chuychai+, 2014)
- Using a single 5-hour interval, we show the difference of 2-s/c and 1-s/c estimate
- We estimate $\lambda_{T} \sim 7000$ km
- May vary due to solar wind condition

Bandyopadhyay et al., 2020, ApJ (https://doi.org/10.3847/1538-4357/ab9ebe)

8th October 2020

MMS Science Working Team Meeting Fall 2020

Solar Wind Turbulence Campaign Laboratory for Atmospheric and Space Physics

The MMS solar wind turbulence campaign led to new approaches in studying solar wind turbulence:

- Direct measurements of intermittency at kinetic scales (Chasapis et al. 2020)
- 2-point evaluation of the Taylor microscale (Bandhyopadhyay et al. 2020)

Future work using the co-linear multi-point measurements in solar wind turbulence...

