Enhanced Reconnection in Three-Dimensional Electron-only Reconnection

P. Sharma Pyakurel ${ }^{1}$, M.A. Shay ${ }^{2}$, T.D. Phan ${ }^{1}$, J.F. Drake ${ }^{3}$, J.L. Verniero ${ }^{1}$, and P.A. Cassak ${ }^{4}$
${ }^{1}$ SSL-University of California-Berkeley, ${ }^{2}$ University of Delaware, ${ }^{3}$ University of Maryland, ${ }^{4}$ West Virginia University

Stawarz et al., 2019, ApJ

Phan et al., 2018, Nature eventincluded in this interval

The correlation length, roughly speaking, is the size of the biggest eddies in the turbulent flow

Pyakurel et al., 2019, PoP

1. Correlation length scales of few d_{i}
2. The current sheet structures are spatially limited in all dimensions
3. Current sheet structures are highly 3 D in nature
4. Small scale (few electron inertial length, d_{e}) finite length X-lines are likely generated

Other examples
Observations:

1. Gingell et al., 2019, GRL
2. Wang et al., 2019, GRL

Simulations/Theory:

1. Vega et al., 2020, APJL
2. Bessho et al., GRL, 2019

Finite Length Electron-Only Reconnection

Finite Length Electron-Only Reconnection

3D inflow is two times 2D inflow

3D Control Volume Analysis

Mass flux through each face is given by

$$
\Phi_{i}=\sum_{l, m}\left[\mathbf{V}_{e, i}(l, m) \cdot \hat{n}\right] \Delta^{2}
$$

where i is one of the six faces, \hat{n} is a unit vector pointing out of the face and (l, m) indexes are the grid point locations of the face.
$\left|\Phi_{1}+\Phi_{2}\right|$: difference in the mass flux in the z-direction $\left|\Phi_{3}+\Phi_{4}\right|$: total mass flux in the y-direction $\left|\Phi_{5}+\Phi_{6}\right|$: total mass flux in the x-direction

Flow into and out of the diffusion region, where $\overline{\mathbf{V}}=\mathbf{V}_{e} \times 10^{2}$. Panels (a) and (b) show normal flow through each of the six faces of the diffusion region, which are numbered. For example, normal flow through face 2 at $z=59.13$ is given by $\mathrm{V}_{\mathrm{e} z}$

We find, $\left|\Phi_{1}+\Phi_{2}\right|=\left|\Phi_{5}+\Phi_{6}\right| \&\left|\Phi_{1}+\Phi_{2}\right|+\left|\Phi_{5}+\Phi_{6}\right|=\left|\Phi_{3}+\Phi_{4}\right|$

Remarks

1. Electron flow feature of finite length X-line in electron-only reconnection is different than 2D.
2. We find that the larger reconnection rate in 3D is due to the flow of mass out of the boundary of the diffusion region (along the z-direction).
3. A control volume analysis of the diffusion region reveals that in 3 D , the net mass flux along z is equal to the net mass flux along x. This increased outward mass flux allows an inflow velocity twice what is present in 2D, leading to twice the reconnection rate.
4. Is there an upper bound on the reconnection rate in 3D electron-only reconnection?
