Polynomial reconstruction using data from a range of time

R. E. Denton and Y.-H. Liu,

The original idea

- MMS Jp ${ }_{\text {sc }}$ from FPI is very accurate
- Find quadratic $B_{\text {model }}$ from fits to $B_{s c}$ and $\mathrm{Jp}_{\mathrm{sc}}$ (assuming Jp $=\nabla \times \mathrm{B}_{\text {model }}$)
- Conditions to keep $\nabla \cdot B_{\text {model }}=0$
- Usually use a17 parameter model motivated by the ordering $\partial / \partial n \gg \partial / \partial l \gg \partial / \partial m$ where $n, 1$, and m are the directions of maximum, intermediate, and minimum gradient
- Find best least-squares fit for model coefficients

Extend to multiple times

- In the original scheme, the reconstruction is done at each particular time, yielding the reconstructed magnetic field at that time
- Here, we use a sequence of times assuming that a stationary magnetic structure is convecting past the spacecraft with a constant velocity
- We vary the structure velocity and polynomial coefficients of the reconstruction in order to get a best least-squares fit to the magnetic field and particle current density observed by the spacecraft
- By this means, we find not only the reconstructed magnetic field, but also the optimal structure velocity relative to the spacecraft

Test Case

Vertical motion of spacecraft relative to magnetic structure

- $B_{L}=N$
- $B_{M}=L / 100$
- $B_{N}=M / 10000$

Local gradient (MDD) and variance (MGA) analysis

Reconstruction Velocity

Science paper magnetotail event (Torbert et al., 2018)

Dotted=STD, Solid=Reconstruction

Fly through a 3D reconnection simulation

Velocity in simulation fields

Dotted=STD, Solid=Reconstruction

Conclusions

- The goal is to reconstruct the magnetic field and get the structure velocity at the same time
- We get exactly the right velocity for a simple test case
- Results using simulation data are promising, but we need to work out some issues

Extras

Equations

$$
\begin{aligned}
B_{l}= & B_{l, 0}+\frac{\partial B_{l}}{\partial n} n+\frac{\partial B_{l}}{\partial l} l+\frac{\partial B_{l}}{\partial m} m+\frac{\partial^{2} B_{l}}{\partial n^{2}} \frac{n^{2}}{2} \\
B_{m}= & B_{m, 0}+\frac{\partial B_{m}}{\partial n} n+\frac{\partial B_{m}}{\partial l} l+\frac{\partial B_{m}}{\partial m} m \\
& +\frac{\partial^{2} B_{m}}{\partial n^{2}} \frac{n^{2}}{2}+\frac{\partial^{2} B_{m}}{\partial n \partial l} n l+\frac{\partial^{2} B_{m}}{\partial l^{2}} \frac{l^{2}}{2} \\
B_{n}= & B_{n, 0}+\frac{\partial B_{n}}{\partial n} n+\frac{\partial B_{n}}{\partial l} l+\frac{\partial B_{n}}{\partial m} m+\frac{\partial^{2} B_{n}}{\partial l^{2}} \frac{l^{2}}{2}
\end{aligned}
$$

$$
\frac{\partial B_{n}}{\partial n}+\frac{\partial B_{l}}{\partial l}+\frac{\partial B_{m}}{\partial m}=0
$$

$$
\begin{aligned}
\mu_{0} J_{l}= & \frac{\partial B_{n}}{\partial m} \\
& -\left(\frac{\partial B_{m}}{\partial n}+\frac{\partial^{2} B_{m}}{\partial n^{2}} n+\frac{\partial^{2} B_{m}}{\partial n \partial l} l\right) \\
\mu_{0} J_{m}= & \frac{\partial B_{l}}{\partial n}+\frac{\partial^{2} B_{l}}{\partial n^{2}} n \\
& -\left(\frac{\partial B_{n}}{\partial l}+\frac{\partial^{2} B_{n}}{\partial l^{2}} l\right) \\
\mu_{0} J_{n}= & \frac{\partial B_{m}}{\partial l}+\frac{\partial^{2} B_{m}}{\partial n \partial l} n+\frac{\partial^{2} B_{m}}{\partial l^{2}} l \\
& -\frac{\partial B_{l}}{\partial m}
\end{aligned}
$$

