MMS SWT meeting 7 October 2020

Estimation of inhomogeneity factor for nonlinear wave particle interaction in an EMIC wave event

Naritoshi Kitamura
(Dept. of Earth and Planetary Science, The University of Tokyo)

MMS2

MMS3
MMS4

1. Introduction

- Electromagnetic ion cyclotron (EMIC) wave
-Free energy source: temperature anisotropy of hot ions ($T_{\text {para }}<T_{\text {perp }}$)
-Frequency: below H^{+}cyclotron frequency -Polarization at the source region: L-mode -Location of maximum linear growth rate: near minimum-B

Resonance condition (1st order)

Fig. He band EMIC wave observed by the AMPTE/CCE spacecraft [Keika et al., JGR, 2013]

$$
V_{\mathrm{R}}=\frac{\omega-\Omega_{i}}{k_{\mathrm{para}}} \quad \begin{aligned}
& V_{\mathrm{R}}: \text { Resonance velocity } \\
& \omega: \text { Wave angular frequency } \\
& \Omega_{i}: \text { Ion cyclotron angular frequency } \\
& k_{\text {para }}: \text { Wavenumber (parallel) }
\end{aligned}
$$

$\omega<\Omega_{i}$ (L-mode EMIC waves): $V_{\mathrm{R}}<0\left(k_{\text {para }}>0\right)$

For large amplitude electromagnetic cyclotron waves, the Lorentz force due to $\boldsymbol{v}_{\text {perp }} \times \mathbf{B}_{\mathrm{w}}$ become

$$
\frac{d \zeta}{d t}=-\theta \quad \theta=k\left(v_{\text {para }}-V_{R}\right)
$$ important.

$$
\frac{d^{2} \zeta}{d t^{2}}=\omega_{t r}^{2}(\sin \zeta+S)
$$

$$
\begin{aligned}
\omega_{t r}^{2} & =k v_{p e r p} \Omega_{w} \\
\Omega_{w} & =\frac{q B_{w}}{m}
\end{aligned}
$$

V_{R} : Resonance velocity V_{p} : Phase velocity ω : Wave angular frequency Ω_{H} : Protom cyclotron angular frequency k : Wavenumber
q : Charge
m : mass

Figure 1. Configuration of the wave fields, the velocity vector of resonant electrons, and typical angles in a Cartesian coordinate system for the case of $k>0$ and $v_{\|}<0$.
[Kitahara and Katoh, 2019] (A case for whistler mode wave)

Figure 2. Trajectories of resonant protons in the $(\theta-\zeta)$ phase space for the inhomogeneity ratio $\mathrm{S}=0.4$. The phase angle ζ_{0} is the center of trapping motion, while ζ_{1} is the saddle point and ζ_{2} is the boundary of the trapping region at $\theta=0$.
[Omura et al., 2010]

$$
\begin{aligned}
& \theta / \omega_{\mathrm{tr}} \sim 1(S \sim 0.4) \\
& v_{\mathrm{para}}-V_{\mathrm{R}} \sim \omega_{\mathrm{tr}} / k
\end{aligned}
$$

Resonance condition (2nd order)

$$
\begin{gathered}
\frac{d \zeta}{d t}=-\theta \quad \theta=k\left(v_{\text {para }}-V_{R}\right) \\
\frac{d^{2} \zeta}{d t^{2}}=\omega_{t r}^{2}(\sin \zeta+S) \\
S=\frac{1}{s_{0} \omega \Omega_{w}}\left(s_{1} \frac{\partial \omega}{\partial t}+V_{p} s_{2} \frac{\partial \Omega_{H}}{\partial h}\right) \\
s_{0}=\frac{V_{\text {perp } 0}}{V_{P}} \\
s_{1}=\left(1-\frac{V_{R}}{V_{G}}\right)^{2}
\end{gathered}
$$

$$
s_{2}=\left(\frac{V_{\text {perp } 0}^{2}}{2 V_{P}^{2}}+\frac{V_{R}^{2}}{V_{P} V_{G}}\right) \frac{\omega}{\Omega_{H}}-\frac{V_{R}}{V_{P}}
$$

V_{R} : Resonance velocity
V_{p} : Phase velocity
ω : Wave angular frequency
Ω_{H} : Protom cyclotron angular frequency
k : Wavenumber

Purpose

Direct identification of energy transfer from ions to EMIC waves (wave particle interaction analyzer (WPIA) method)
Measurements of grad B by four spacecraft

Is the feature of the energy exchange consistent with the prediction of the nonlinear theory [Omura et al., 2010]?
2. Data and Analysis Methods

2015/09/01~12:18 UT
Position of MMS spacecraft: near minimum-B ($\sim 1.5 R_{\mathrm{E}}$ southward)
MLT 16.1 h, MLAT - 24°, Dipole-L 12.7

2015/09/01~12:18 UT

Spacecraft separation:
$\sim 160 \mathrm{~km}\left(\sim 0.025 R_{\mathrm{E}}\right)$
Cyclotron-radius of $\mathrm{H}^{+}(\mathrm{B}: 22.5 \mathrm{nT})$ 10 keV : 640 km
$30 \mathrm{keV}: 1110 \mathrm{~km}$
Wavelength of EMIC wave:
~3300-6300 km
(Dispersion relation calculated using
KUPDAP [Sugiyama et al., JGR, 2015])

Origin at MMS centroid
MMS1 MMS2 MMS3
Field-aligned coordinates (FAC) (Phigeo in SPEDAS)
$+x$: Radially outward $\left(\mathbf{e}_{x}=\mathbf{e}_{\varphi} \times \mathbf{e}_{z}\right)$
$+y$: Eastward $\left(\mathbf{e}_{y}=\mathbf{e}_{z} \times \mathbf{e}_{x}\right)$
$+z$: Direction of background magnetic field
(\mathbf{e}_{φ} : Eastward basis vector (geographic coordinate))

Magnetic field

-16 vectors/s (Fluxgate magnetometers, Fast Survey) [Russell et al., SSR, 2016]

- Background magnetic field: $<0.05 \mathrm{~Hz}$ ($\mathbf{B}_{0 _ \text {емic }}$)
- Wave magnetic field: $0.05-0.15 \mathrm{~Hz}\left(\mathbf{B}_{\text {w Emic }}\right)$
- Accuracy: $0.1 \mathrm{nT}(0.1 \mathrm{nT} / 150 \mathrm{~km} \sim 0.67 \mathrm{pT} / \mathrm{km})$

Electric field
DC electric field data were not usable directly for the EMIC wave owing to the periodic fluctuation near the frequency of the EMIC waves due to the operation of ASPOC [Torkar et al., $S S R$, 2016].
Perpendicular electric fields for EMIC waves ($\mathbf{E}_{\text {w emic }}$) were estimated using cold ion ($9.72-257 \mathrm{eV}$) bulk velocity, because of the significantly smaller ($\sim 1 / 5$) frequency of EMIC waves than H^{+} cyclotron frequency [Kitamura et al., Science, 2018].
-Wave electric field ($\mathbf{E}_{\text {w_emic }}$): 0.05-0.15 Hz

[Torbert et al., SSR, 2016]

Fast Plasma Investigation (FPI)
Dual Electron Spectrometers (DES), Dual Ion Spectrometers (DIS)
8 heads (4×2) per spacecraft (total 32 heads (each of DES and DIS))
Energy range (Phase-1A): $10 \mathrm{eV}-30 \mathrm{keV}$ (32 (64) bins)
Angular resolution: 11.25° (32 (Azimuth) $\times 16$ (Elevation) ($=512$) pixels)
Temporal resolution (Burst data):
DIS: $0.15 \mathrm{sec}(6.67 \mathrm{~Hz} \gg$ EMIC wave frequency in the outer magnetosphere ($\sim 0.1 \mathrm{~Hz}$))
DES: 0.03 sec
Temporal resolution (Fast survey):
DIS, DES: 4.5 sec (\ll period of Pc5 ULF waves ($150-600 \mathrm{sec}$))
The whole sky is covered.
Each head measures 4×16 directions.

[e.g., Fukuhara et al., EPS, 2009; Katoh et al., AnGeo, 2013; Katoh et al., EPS, 2018;
Shoji et al., GRL, 2017; Kitamura et al., Science, 2018]
$\mathbf{j} \cdot \mathbf{E}$ indicates the energy transfer rate between particles and fields (waves).
$\mathbf{j} \cdot \mathbf{E}<0$
Fields (wave) get energy from particles.
(wave growth)

$\mathbf{j} \cdot \mathbf{E}>0$

Particles get energy from fields (wave).

Denseness indicates ion fluxes.
(particle acceleration)
$\mathbf{j}(t, \varepsilon, \alpha) \cdot \mathbf{E}_{\mathrm{w}}(t) / n(t, \varepsilon, \alpha)=q \mathbf{E}_{\mathrm{W}}(t) \cdot \mathbf{v}_{\text {average }}(t, \varepsilon, \alpha)=\frac{d}{d t}\left(\frac{1}{2} m v_{\text {average }}^{2}\right)(t, \varepsilon, \alpha)$
q : Electric charge \mathbf{v} : Velocity $\quad \mathbf{j}$: Current density (partial)
m : Mass $\quad n$: Number density (partial) $\quad \mathbf{E}_{\mathrm{w}}$: Wave electric field
Frozen-in condition is assumed for electrons.
We derived $\mathbf{j}_{\text {ion }} \cdot \mathbf{E}_{\mathrm{w}}$ using ion current density ($\mathbf{j}=q \mathbf{j} \mathbf{'}^{\prime}\left(\mathbf{j} \mathbf{j}_{\text {ion }}\right.$: Number flux of ions) $)$ in multiple ranges of energy (ε), and pitch angles (PA, α).
3. Result

Event1

- Negatve Poynting flux parallel to \mathbf{B}_{0}
\rightarrow Almost anti-parallel propagation
- Negatve $\mathbf{j} \cdot \mathbf{E}_{\text {w_emic }}$ near the cyclotron resonance velocity

12:12:33.82-12:12:59.83 (2 rotation of $\mathbf{B}_{\text {w_ емIC } \text {) }) ~}^{\text {) }}$
Wave normal angle: $\sim 22^{\circ}$ (MVA)
Wavelength: $\sim 4000 \mathrm{~km}$ (para: $\sim 4300 \mathrm{~km}$, perp: $\sim 11,000 \mathrm{~km}$)
(phase difference of MMS1-2)
Phase velocity (para): $\sim-330 \mathrm{~km} / \mathrm{s}$ (PA: $\sim 99^{\circ}(18-30 \mathrm{keV})$)
Cyclotron resonance velocity: $\sim 1370 \mathrm{~km} / \mathrm{s}\left(\mathrm{PA}: 42^{\circ}-55^{\circ}(18-30 \mathrm{keV})\right)$
A single plane wave approximation did not hold even at small spatial scales.
 per H^{+}perpendicular to B_{0}

Phase velocity (para): $\sim-330 \mathrm{~km} / \mathrm{s}\left(\right.$ PA: $\sim 99^{\circ}(18-30 \mathrm{keV})$)
Cyclotron resonance velocity: $\sim 1370 \mathrm{~km} / \mathrm{s}$ (PA: $42^{\circ}-55^{\circ}(18-30 \mathrm{keV})$)
$\omega_{\mathrm{tr}} / k_{\|}\left(v_{\text {perp }}=1000,1500,2000 \mathrm{~km} / \mathrm{s}\right): 360,440,510 \mathrm{~km} / \mathrm{s}$

- Dispersion relation (KUPDAP)

$B: 26 \mathrm{nT}$

Plasma density: $3.0 / \mathrm{cm}^{3}$
Cold $\mathrm{H}^{+}: 81 \%, 99 \%(T=1 \mathrm{eV})$
$\mathrm{He}^{+}: 1 \%(T=1 \mathrm{eV}, 10 \mathrm{eV}, 100 \mathrm{eV})$ $T_{\mathrm{e}}=1 \mathrm{eV}$

Hot $\mathrm{H}^{+}: 18 \%, 0 \%$ (from DIS ($0.3-30 \mathrm{keV}$)) ($T_{\text {para }}=3.7 \mathrm{keV}, T_{\text {perp }}=5.6 \mathrm{keV}$)

The effect of hot H^{+}reduces ($\sim 10 \%$) the wave number around $0.2 \Omega_{\mathrm{H}+}$.
$\frac{d^{2} \zeta}{d t^{2}}=\omega_{t r}^{2}(\sin \zeta+S)$
$S=\frac{1}{s_{0} \omega \Omega_{w}}\left(s_{1} \frac{\partial \omega}{\partial t}+V_{P} s_{2} \frac{\partial \Omega_{H}}{\partial h}\right)$
$s_{0}=\frac{v_{\text {perp }}}{V_{P}}$
$s_{2}=\left(\frac{v_{\text {perp }}^{2}}{2 V_{P}^{2}}+\frac{V_{R}^{2}}{V_{P} V_{G}}\right) \frac{\omega}{\Omega_{H}}-\frac{V_{R}}{V_{P}}$
Constant density along field line

Density proportional to B
Phase velocity $\left(V_{\mathrm{P}}\right):-330 \mathrm{~km} / \mathrm{s}$
Cyclotron resonance velocity $\left(V_{\mathrm{R}}\right): 1370 \mathrm{~km} / \mathrm{s}$

The inhomogeneity factor S may be smaller than 1 .

Group velocity $\left(V_{\mathrm{G}}\right)$: $-173 \mathrm{~km} / \mathrm{s}$
$B, B_{\text {w_emic }}: 26,2 \mathrm{nT}$
$\mathrm{d} B / \mathrm{d} \bar{h}=1.0 \pm 0.67 \mathrm{pT} / \mathrm{km}$

$$
\begin{aligned}
& S \\
& \left(v_{\text {perp: }}: 1000 \mathrm{~km} / \mathrm{s}\right): 0.60-3.02(0.51-2.59) \\
& \left(v_{\text {perp }}: 1500 \mathrm{~km} / \mathrm{s}\right): 0.44-2.22(0.38-1.92) \\
& \left(v_{\text {perp }}: 2000 \mathrm{~km} / \mathrm{s}\right): 0.37-1.87(0.33-1.65)
\end{aligned}
$$

