Kinetic features in the Kelvin-Helmholtz instability

A. Settino, D. Perrone, Yu. V. Khotyaintsev, D. B. Graham, O. Pezzi, F. Malara, F. Valentini

E-mail adriana.settino@unical.it

Hybrid simulation of KH instability

Iso-contours of proton current density along the entire simulations time

2D-3V simulation with the HVM code (Valentini et al. 2007);

We start from an exact equilibrium configuration (*Malara et al.* PRE, 2018)

Generation of large scale structures that collapse in two vortices and form thin current sheets.

Kinetic features

Ion non-Maxwellianity

$$\epsilon_{M}=rac{1}{n_{i}}\sqrt{\int\left[f_{i}-g_{M}
ight]^{2}d^{3}v}$$
Greco et al. 2012

Ion Agyrotropy

$$Q = \frac{P_{xy}^2 + P_{xz}^2 + P_{yz}^2}{P_{\perp}^2 + 2P_{\perp}P_{\parallel}};$$

Swisdak, 2016

- 1. |j| peaks at the edges of the vortex;
- 2. $\epsilon_{\rm M}$ peaks inside the vortex.

KH event observed by MMS

Ion non-Maxwellianity

$$\epsilon_M = rac{1}{n_i} \sqrt{\int \left[f_i - g_M
ight]^2 d^3 v}$$

Greco et al. 2012

$$\epsilon_{M}^{\sim} = \frac{1}{2n_{i}} \int |f_{i} - g_{M}| d^{3}v$$

Graham et al. 2021, (arxiv)

[Settino et al., ApJ, 2021 (accepted)]

Comparison between simulation and observational data

VDF at the center of the vortex

VDF at the edge of the vortex

[Settino et al., ApJ, 2021 (accepted)]

Conclusions

- Comparison between KH simulation and observations has suggested new quantities that can be used for the identification of vortices:
 - 1. Magnitude of the total current density peaks at the edges of the vortices and has a minimum inside the vortex;
 - 2. The ion non-Maxwellianity is low at the edges of the vortex and increases inside the vortex;
 - 3. Ion agyrotropy has the same behavior of the total current density;
 - 4. Change in the direction of the ion temperature anisotropy;
- Single spacecraft measurements which need a good resolution for the particles instrument;
- > These quantities can be used in the Solar Orbiter mission to identify KH vortices.

[Kieokaew et al. 2021, arxiv]

Advertisement

Mixing parameter

Ion mixing

electron mixing

$$\mu_i = \frac{E_{i,L} - E_{i,H}}{E_{i,L} + E_{i,H}}$$
 $\mu_{e,2} = \frac{E_{e,L} - E_{i,M}}{E_{i,L} + E_{i,M}}$

MMS1 2015-09-08T10:26:26.183 -2015-09-08T10:27:43.283

[Settino et al., in prep.]

Statistical analysis

- > 69 crossings have been identified;
- Each crossing has been categorized according to its shape in the space of the mixing parameter;
- For each time interval the percentage of vortices has been evaluated.

Three main shapes have been recognized in the space of the mixing parameter:

- (a) same path trajectory;
- (b) different path trajectory;
- (c) complex trajectory with loops and twists.

[Settino et al., in prep.]