Electrostatic fluctuations in the Earth's bow shock

<u>Ivan Vasko¹</u>, Rachel Wang¹, Forrest Mozer¹, Stuart Bale¹, Anton Artemyev², and MMS team

¹UCB, ²UCLA

Broadband electrostatic fluctuations

These fluctuations are always present in the Earth's bow shock

They consist of quasi-sinusoidal wave packets (IAW) and ESW

What instabilities drive electrostatic fluctuations in shocks?

What are effects of these fluctuations on electron thermalization?

Wang+, apjl, 2020

Selected crossings of the Earth's bow shock

#	date	time	n	θ_{Bn}	M_A	eta_e	T_e/T_p
1	11092016	12:19:24	(0.91, 0.42, 0.01)	65.4	8.4	2.8	2.7
2	11042015	07:56:04	(0.98, 0.15, -0.11)	116	10.3	0.75	0.45
3	11042015	07:37:44	(1.00, 0.01, -0.04)	92.5	11.2	0.8	0.45
4	11022017	04:26:23	(0.76, 0.64, 0.11)	119	3.4	0.8	4.3
5	11022017	08:28:43	(0.85, 0.52, 0.10)	101	4.7	1.6	2.3
6	11302015	08:43:14	(0.99, -0.10, 0.12)	86	7	0.4	1.1
7	11092016	12:57:04	(0.93, 0.36, -0.01)	107	6.4	5.5	1.6
8	11022017	06:03:33	(0.80, 0.57, 0.18)	98	5.4	2.25	2.4
9	11042015	04:57:34	(0.99, 0.11, -0.01)	100	12.75	0.85	0.3
10	12282015	03:58:04	(0.96, -0.25, 0.10	101	24	3.3	3

Vasko+ (2020), Frontiers in Physics

9 crossings of the Earth's bow shock and only bipolar solitary waves with amplitudes larger than 50 mV/m

Wang+ (submitted to JGR)

10 crossings of the Earth's bow shock and >2100 bipolar solitary waves with amplitudes as low as 10 mV/m

Additional motivation of this study: can we trust E56 and what is the optimal ratio of freq. resp. factors of axial and spin plane antennas?

Dataset of electrostatic solitary waves (ESW)

- Vertical lines indicate time of occurrence in each shock
- Red curves give Cumulative
 Distribution Functions (CDF) of ESW
 number in each shock
- We could do interferometry for 1942 (our of 2136) ESW

101 (<5%) - positive potential structures (electron holes)

1841 (>95%) - negative potential structures (ion holes)

Electrostatic fluctuations in the Earth's bow shock are predominantly produced by ionstreaming instabilities!

Interferometry analysis and are we okay to use E56?

For 3 time delay events (~450 out of 1942) we could determine wave vector **k** using time delays and electric field **E** (effects of short scales were compensated)

Agreement between **k** and **E** is an indicator of a good quality of measurements of electrostatic field

Conclusion: E56 is okay to use (correction to E has to be done; optimal freq. resp. factors ratio is around 1.65/1.8)

Amplitudes and temporal widths of ESW

Velocities of ESW

Spatial scales of ESW

Amplitudes of ESW

Propagation direction (plasma rest frame)

LM - the shock plane

LN - coplanarity plane

- ESW propagate within ~30° of the shock plane
- In the shock plane, they tend to propagate within 40° of B_{LM} (about 25% of ESW have angle >45° though)
- In the shock plane, ESW prefer to propagate in the direction of J_M current (as can be seen in panel (e))
- In the plasma frame they can propagate toward both upstream and downstream (see panels (a) and (b))

origin of bipolar structures

Ion phase space holes are most likely produced by ion-ion stream instability. The condition for saturation of that kind of instability is

$$\omega_{bi} < \gamma \qquad \longrightarrow \qquad \frac{e\Phi_0}{T_e} < \left(\frac{\gamma}{\omega_{pi}}\right)^2 \frac{l^2}{\lambda_D^2}$$

maximum increment of a two-stream ion instability

$$\frac{\gamma}{\omega_{pi}} = \left(\frac{3\sqrt{3}\alpha_b}{16}\right)^{1/3}$$

This instability can also explain highly oblique propagation of ESW with respect to shock normal

Conclusions

- 95% of electrostatic solitary waves in the Earth's bow shock are ion holes
- 5% of ESW are electron holes
- ESW have scales of 1-10 λ_D , speeds ~100 km/s that is ~ C_{IA} , amplitudes of ~0.1Te. Scales are correlated with λ_D .
- ESW propagate within 30° of the shock plane and within about 40° of **B** projection onto the shock plane. 25% of ESW are very oblique to **B** (>45°).
- In the plasma rest frame, ESW can propagate both toward upstream and downstream
- The most likely instability producing the observed ion holes is ion-ion streaming instability. It can explain the oblique propagation to shock normal, ion hole formation and observed amplitudes
- We could not find any particular dependence of wave properties on upstream parameters (Ma, β , θ_{BN})

The results of the ESW analysis show that electrostatic fluctuations in the Earth's bow shock should be predominantly produced by ion-streaming instabilities!