Summary of Splinter #1 — Reconnection, turbulence, & waves

Shan Wang, Bill Matthaeus, Alexandros Chasapis, Riddhi Bandyopadhyay, Rohit Chhiber, Roman Gomez, Li-Jen Chen

Kyunghwan Dokgo: Energy dissipation via upper hybrid waves

Upper hybrid waves modify $P_{e,yz}$ and E_y , and reduce J_y , leading to reduction of energy conversion J_vE_v

whistler waves

Rick Wilder: observations

- Regions: mainly in the magnetospheric separatrix region, on both closed and open field lines, sometimes deep in the exhaust
- Wave properties: oblique, both away and towards X-line, often associated with bipolar E_{\parallel}

Naoki Bessho: simulation, Bg asymmetric Rx

- Regions: magnetospheric separatrix on the side with the strong electron outflow, open field line
- Wave properties: propagating away from the X-line

whistler waves

Rick Wilder: observations

- Electron distributions: anisotropy and beams as possible excitation mechanisms; 'anomalous resonance': propagation along the beam
- Wave-particle interaction: plateau near $V_{Ae}/2$ along the propagation direction

Naoki Bessho: simulation, Bg asymmetric Rx

- Electron distributions: beams with anisotropy and/or nongyrotropy; propagation along the beam, Landau and cyclotron resonance (plus Doppler shift) in effect
- Electron heating occurs, mainly along $T_{\rm ell}$

Giulia Cozzani: EDR with lower-hybrid waves

- Magnetotail EDR with electron-scale gradients of fields
- Explained by kinking of the current sheet in the out-of-plane direction, due to the long wavelength mode electromagnetic lower-hybrid waves

Deirdre Wendel: Dissipation and Angular Momentum in Reconnection

- Deriving from reconnection conditions of loss of field line and flux conservation \rightarrow vorticity equation constrained by $\nabla \times E_N$
- Generate vorticity null points
- The threshold at vorticity null points to allow electrons/vorticity to escape the same field line: $\left|\frac{c}{2b}\right| > 1$, where $c = \frac{\partial \dot{\varphi}}{\partial z}$, $b = \frac{1}{2} (\nabla \times \omega)_z$

Test of vorticity equation terms in MMS and simulations

Matthew Argall

- Velocity-space entropy, a measure of deviation from Maxwellian distribution
- Simulation analysis:
 - ➤ Double peaks along N for electrons, parallel anisotropy
 - ➤ Single peak for ions, explained with the larger thermal speed than electrons
 - ➤ Information loss, depending on grid spacing
- Qualitative and quantitative agreement between the simulation and the tail EDR observation

Riddhi Bandyopadhyay: effective viscosity in plasmas

Demonstrate that in plasmas J.E~J² and Π_{ij} D_{ij} ~ D_{ij} D_{ij} In collisional media, $J = \mu$ E; J.E ~ J² $D_{ij} = \nu D_{ij}$; D_{ij} D_{ij} D_{ij} D_{ij} D_{ij}

Evaluate v, μ for natural systems?

Michael Hesse: Can low-density inflow drive current sheet turbulence?

- Low-density inflow can drive explosive reconnection, with very large electric fields and weak shocks in the outflow
- Reconnection electric fields continue to scale with ~0.1-0.2v_AB₀
- · Very large electric fields lead to very strong particle acceleration, even for ions
- Simple, low-density inflow drives only limited fluctuations
- Inflow density variations can generate appreciable fluctuations and structure, as magnetic islands. Electric field and current density structures are complex
- Results are promising. Next step: quantify turbulence level

Subash Adhikari: Reconnection as a Turbulence Process

Third-order law decomposition of the cascade is similar to standard turbulence

Is there universality between reconnection and turbulence?

Owen Roberts: density spectrum at high frequencies in the turbulent magnetotail

Spectral analysis of a magnetotail event

- Different noise levels for different quantities make comparison difficult
- Density measurement down to 200Hz
- Skewness varies a lot near the characteristic scales of electrons (and protons although time series is too short to resolve protons)
- Kurtosis increases with frequency in all measurements (until we reach noise)
- How to best use this data? Use a longer time interval (prefereable) but other problems arise. Local magnetic field? Throw out density measurements when E is above a certain threshold?

Open questions

- To complete the map of what and how waves are generated in the reconnection context
- To further understand the wave/turbulence effect on particles and reconnection structures
- To pursue the link between reconnection and turbulence
- To solve the 'dissipation' problem in reconnection and turbulence