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Remember the solar system is about 4.5 Billion years old.
Modern humans are about a few 100,000 years old.
The space age is about 5 decades old.

Thus investigations of the early history of our own Earth and
its closest neighboring planets are the stuff (like much of astro-
physics) of relatively unconstrained speculations.

MAVEN s job is to obtain key constraints for Mars.




Much evidence points to an earlier, more hospitable Mars
climate, with significant amounts of liquid water on the surface
suggesting a thicker, wetter atmosphere once existed.

Neither much atmosphere nor much water are present today.
There are two possibilities:

1. The atmosphere is buried and/or frozen in the polar ice caps
2. The atmosphere was lost because it escaped to space

Which is the answer?
|sotopes-that you will hear more about later, plus measurements
of the present abundance of water and ice in the polar caps and

beneath the surface, plus surface composition- all point to #2-
Escape to Space.

The question is HOW ??? (and of course how much?)



MAVEN is targeting this period
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Volatiles on Mars:
Simplified Reservoirs and Interactions

Atmosphere

Escape occurs from the top of
an atmosphere.
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Upper atmospheres include
gas particles at the bottom that
still collide with one another,
but at higher altitudes act like
projectiles-either still trapped
by gravity or escaping.




Concepts of “escape velocity” and of velocity
distributions of atmospheric gases
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To escape planet’s gravitational field,
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How can it get there? By both ‘thermal’
(heating), and ‘nonthermal’ processes

“Thermal” Escape
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Impacts-mentioned earlier, were a special ‘nonthermal’ process..
but not so important after the first billion years of Mars history.
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Nonthermal sources related to photochemistry (here, for Oxygen,
which is particularly important for planets, including Mars)

Co; + O = 0, + CO

makes 0'2' then

dissociative recombination
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The photochemistry source is related to solar activity
(also solar age). The short wavelengths heat and ionize.

Solar magnetic field Solar Soft X-ray images
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Images from Kitt Peak Observatory magnetograph (left) and the Yohkoh Soft
X-ray Telescope, SXT (right) showing x-ray bright arcades over active regions,
both evolving over the course of a solar cycle-a ‘model’ for solar evolution.



Other sources of nonthermal escape are related
to the solar wind interaction

Solar Wind
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Some typical ‘quiet time’
properties at Mars:

density = 1-3 cm™3
Magnetic field = 1-3 n

speed= 300-600 km/s [ -2 AU

Spiral Field angle ~50

Note even quiet conditions are not uniform or constant.



Solar Wind stream interaction regions (SIRs-or CIRs
If corotating) cause interplanetary field and flow
deflections, and field and density enhancements
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We’ ve known about the existence of the solar wind
since the late 50s-early 60s-now realistic models exist
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Because Mars has no strong planetary magnetic field, this
solar wind interacts directly with its upper atmosphere
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Can the much different planetary magnetic fields on Earth
and Mars explain their climate differences?

Other contributing factors:
Mars is further from the Sun (~1.5 AU vs 1 AU)
Mars is smaller/less massive



In particular, do planetary magnetospheres
“shield” planetary atmospheres from possibly
important loss processes?

ESA web
image !



We know relatively much about Earth’ s response to ‘space weather’

Nonthermal Escape - Earth

“Polar Wind” ions

Charge exchange mediated
escape of neutral H

Earth atmosphere escape is however quite different in its details
due to its strong planetary magnetic field



Earth’ s Polar Atmospheric lon Outflows

(from ESA Cluster News)

Include:

* Classic light ion ‘polar
wind’ (H+ and He+)

*Cusp ‘ion fountain’

*Highly variable but most
intense ‘Auroral wind’

-each outflow has a
distinct physical cause.
The latter two include
heavy ion species like O+.
Not all outflowing ions
escape to space directly,
but most are believed

to eventually do so.



Mars’ More Direct Solar Wind Interaction-Related Loss Processes:

Atmospheric lon ‘pickup’ -Observed on earlier missions but
still many uncertain details on related escape

“Sputtering”-Related to ion pickup. Potentially Important
but so far unobserved at Mars
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lllustration of the sputtering process near the upper
boundary of the collision-dominated atmosphere
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Here- incident picked up O+ ions interact with the
upper atmosphere oxygen gas and other constituents
including CO,. Anything present here may be ejected.




Mars’ More Direct Solar Wind Interaction-Related Processes:

Atmospheric lon ‘pickup’ -Observed on earlier missions but
still many uncertain details on related escape

“Sputtering”-Related to ion pickup. Potentially Important
but So Far Unobserved
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Early Mars was a complicated scene
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But today it is still affected by the same escape processes-
though altered by its current state
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Current (Estimated) Escape Rates

H (thermal) ~1.7x 10?6 571
O (nonthermal) ~86x10%°g1*
CO; (sputtering) ~3x 108 g™

Loss over 3.5 Gyr at present rates:

H,>O equivalent ~3 m
CO, equivalent ~1 mb

To get rid of the atmosphere and water that
IS estimated to have been there, loss rates
would have had to be much greater in the past

*includes ~6 x 10°* ions s™! picked up by solar wind.
Phobos-2 measured ~10%4 - 102° !

If the current processes are the answer, could these have been high enough?



Example:

Estimated volume of an early ocean of Mars
is ~6 x 107 km?3 H,O (from surface features)

This amount contains about 2x10%° H,O molecules

It is relatively easy to get rid of light hydrogen by
heating.

To get rid of the oxygen in this ocean over 3.5 Byr,
need an average loss rate of 1.8 x 1028 O atoms/sec
(over 100 times greater than present)



Sun-like stars tell us that in the past, the Sun may have
been more magnetically active

Images from Kitt Peak Observatory magnetograph (left) and the Yohkoh Soft
X-ray Telescope, SXT (right) showing x-ray bright arcades over active regions,
both evolving over the course of a solar cycle-a ‘model’ for solar evolution.



Solar EUV History
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Part of the result is a trend of decreasing solar
EUV emission with time



The early Sun was also
likely to have been much
more active- producing
more flares and Coronal
Mass Ejections (CMEs)

2012/08/31 13:36
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SOHO LASCO images and STEREO SECCHI images
(from SOHO website and Ying Liu, SSL (panorama))




Big CME events in particular have many parts: Including shocks
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for the major July 23, 2012 super-fast CME



..which are produced by magnetic ejecta that move
much faster than the solar wind, plowing through
and compressing the ambient flow as they travel
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CMEs produce the largest solar wind disturbances



Solar energetic particles (SEPs) with protons of up
to ~100 MeV or more are also part of these events

2012/03/05 1B:36

Here the SOHO coronagraph CCD is ‘snowed’ by SEPs in March 2012
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A Flare occurs at the Sun. Its X-ray and EUV
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A Flare occurs at the Sun. Its X-ray and EUV
light bursts arrive in ~12 min at Mars

Typical Signatures: Earth-Directed Event Timing
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These disturbances energize Earth’ s polar
lonosphere, enhancing upper atmosphere heating,
auroras, and related ion escape

LFM MHD simulation from Goodrich et al. Inset
shows the resulting enhancement of energy going
into Earth’ s polar region when a coronal mass
ejection (CME) disturbance goes by



Cometary tail ‘disconnection’ following a CME encounter
IS in some ways a counterpart to what must happen at Mars

Question is whether
this is just interruption
of escape or actual
enhancement?

NASA website images
from comet Enke passage,
and cartoon of the CME
interacting with the draped
cometary magnetic fields
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Solar Cycle Settings of all observations need to be
considered in drawing conclusions: EUV, solar wind

structure, solar/coronal activity
AVEN

MEX arrives  launch

Cycle 24 Sunspot Number Prediction (2013/08)

Hathaway/NASA/MSFC

In particular, many MEX observations occurred during an
unusually quiet solar period. Its extended operation plus new
measurements on MAVEN mission will be a big opportunity.



Where the MAVEN mission will make a huge difference:

-We will see if sputtering really occurs and its importance
relative to other escape processes (some of which may
be new to us)

-We will observe how Mars’ atmosphere responds to solar
events-especially in ways that might enhance escape (e.g.
Higher EUV-enhanced thermal and photochemical escape,
and atmosphere ion production? CMEs-more sputtering and
ion escape”? Other processes e.g. related to crustal magnetic
field interactions with solar wind, to SEPs?)

- We will use the results to constrain estimates and models
of escape over time due to still-active processes.

These will tell us if we can explain how Mars got where it is
today-with implications for Earth and other planets as well.



Supporting information of interest to MAVEN
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ESA’ s Mars Express ASPERA-3 measures
solar wind and atmospheric ions in a
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NASA Space weather monitoring assets include models
Of CME shocks out to Mars orbit, based on SOHO and
STEREO mission imaging (Space Weather Center, GSFC)

2013-03-22T00:00 2013—-05-22T00 +0.00 day
O Earth @ Mars O Mercury @ Venus M Epoxi EJuno O Kepler O Spitzer
M Sterec_A M Stereo_B
s _ 0 —_n°
Ecliptic Plane 2089021 25»'3\T = —86.9 NoQ LON = Q W180

19
-,

e

S90 E180 g0 o° S90

R* N (em™)

IMF polarity Current sheath 3D IMF line

a 0 20 30 40 30 60 - I
ENUL-2.7 lowres—2135—0a3b1f WSA V2.2 GONG—2135

swc.gsfc.nasa.gov



Since 2011 we have been able to watch solar activity anywhere

STEREQ Behind EUVI 185 STEREC Ahead EUVI 125
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SDO and STEREO are part of the Heliophysics Great Observatory




STEREO +ACE real-time multipoint measurements at 1 AU give the latest
state of space weather ‘now’ (NOAA RT data plots, images from SOHO, SDO)
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