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Response function of modulated grid Faraday cup plasma instruments 
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Massachusetts Institute o/Technology, Cambridge, Massachusetts 02139 

(Received 17 March 1986; accepted for publication 4 June 1986) 

Modulated grid Faraday cup plasma analyzers are a very useful tool for making in situ 
measurements of space plasmas. One of their great attributes is that their simplicity permits their 
angular response function to be calculated theoretically. In this paper we derive an expression for 
this response function by computing the trajectories of the charged particles inside the cup. We 
use the Voyager plasma science (PLS) experiment as a specific example. Two approximations to 
the "rigorous" response function useful for data analysis are discussed. The theoretical formulas 
were tested by multisensor analysis of solar wind data. The tests indicate that the formulas 
represent the true cup response function for all angles of incidence with a maximum error of only a 
few percent. 

INTRODUCTION 

Since the earliest days of space exploration, space probes 
have included instruments to measure plasma particles. 
There are two broad classes of plasma instruments: the mod­
ulated grid Faraday cup and the electrostatic analyzer. Mod­
ulated grid Faraday cups consist of a collector and several 
grids. The operation of such detectors is the topic of the bulk 
of this paper. Electrostatic analyzers typically consist oftwo 
curved conducting plates, with a potential difference 
between them and a particle counter at one end. When parti­
cles enter the instrument, only those particles moving in the 
proper direction with the proper energy per charge reach the 
collector. A good review article on techniques of deep-space 
plasma measurements is by Vasyliunas.' 

The first successful American spacecraft to carry a plas­
ma probe was Explorer 10, launched in 1961. This instru­
ment, which was the first to provide direct evidence of the 
existence of the solar wind2 (it actually measured the flow in 
the magnetosheath), was a modulated grid Faraday cup. 
The existence of the solar wind was confirmed and became 
generally accepted after observations made by Mariner 2, 
which carried an electrostatic analyzer.-' 

As more missions were flown, the plasma instruments 
improved. In order to measure the solar wind direction, Far­
aday cups with segmented collector plates were flown. If the 
plasma flow direction differs from normal to the cup, the 
current to the individual segments differs because of the 
shadow of the aperture. Faraday cups with three segments 
were flown on Mariners 4 and 5, which were three-axis stabi­
lized spacecraft,4.5 while a cup with its collector divided into 
two segments was flown on each of the spin-stabilized space­
craft Pioneers 6 and 7 6

•
7 and Explorer 33.R 

Improved sensitivity to the flow angle can be obtained 
by using an array of Faraday cups, each of which is pointed 
in a different direction. An instrument consisting of an array 
of four Faraday cups which was flown on the Voyager mis­
sions to the outer planets9 is shown in Fig. 1. This instrument 
has successfully measured positive ions and electrons in the 
solar wind '0 and at Jupiter ,I

·
12 and Saturn. 13 For the case of 

a cold beam of particles (such as the solar wind) flowing in a 
direction close to the look direction of the cups, data analysis 

from these instruments is straightforward. For cases when 
either the flow direction is not close to the look direction of 
the cups, the plasma thermal speed is comparable to or 
greater than the bulk velocity, or both, detailed knowledge of 
the instrument response function is required for the data 
analysis. The full response function described below has al­
ready been used for the study ofthe plasma flow around the 
10 flux tube, 14 and further work utilizing it is in progress. 

In this paper we discuss the operation of this type of 
instrument and derive an expression for its response func­
tion. Although the formulas which we quote describe the 
Voyager instrument, the method we use can easily be applied 
to any Faraday cup. 

The response function of the cup is defined as the ratio of 
the particle flux reaching the collector to the particle flux 
incident on the aperture when the incident particles are a 
collimated, monoenergetic beam. We compute the response 
function by studying the trajectories of the particles inside 
the cup. In Sec. I we describe the model of the cup which we 
use and the nature of the approximations which we have to 
make. 

We show that the response function can be written as a 
product of two terms: the "sensitive area" and the grid trans­
parency. The sensitive area term is computed from a 

FIG. I. Voyager plasma science (PLS) experiment, showing the relative 
orientations of the four cups. 
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straightforward study of the trajectories, while statistical ar­
guments are required to determine the grid transparency 
term. These terms are derived in detail and explicit expres­
sions for them are given for the case of the Voyager instru­
ments in Sec. II and III. 

Once the response function is known, one can use it to 
analyze data. The collector current from a plasma described 
by a known distribution function can be computed by per­
forming an integration over velocity space. The problem of 
data analysis, therefore, becomes the problem of solving an 
integral equation for the distribution function. A very useful 
approximate method for solving the integral equation is to 
use a parameterized model for the distribution function and 
then find the "best fit" values for the parameters. In order to 
do this one must be able to perform the velocity space inte­
gration. Certain further approximations which permit the 
integration over the components of velocity perpendicular to 
the cup normal to be performed analytically for the case 
where the distribution function is a convected Maxwellian 
are described in Sec. IV. 

Once we have computed the response function, we want 
to test it. In order to do this, one would like to have a very 
narrow test beam. Unfortunately, it is very difficult to make 
such a beam in the lab. We have used the calm solar wind at 
about 4 a. u. as our test beam. Analysis of data from Voyager 
1 taken when the spacecraft was rotating (Voyager is a 
three-axis stabilized spacecraft) causing the solar wind to 
enter the cups at large angles indicates that our expressions 
are an excellent representation of the true response functions 
of the cups for all energies and angles of incidence. This 
analysis is discussed in Sec. V. 

I. PHYSICS OF THE MODULATOR GRID FARADAY 
CUP 

In this section we analyze the physics of the Faraday cup 
and present the model which we use to compute the response 
function, using the Voyager plasma science (PLS) instru­
ment as an example. Throughout this paper we will consider 

/I 
Y 

(TO~ SYMMETRY /I 

the measurement of positive ions. For electrons, the analysis 
which we present can be modified in a straightforward man­
ner, although in that case the emission of secondaries must 
be considered. 

As can be seen from Fig. 1, the PLS instrument consists 
of four Faraday cups. Three ofthem, called the A, B, and C 
cups are arrayed about an axis of symmetry and have pen tag­
onally shaped apertures and collectors. The fourth cup, 
called the D cup, is circular in shape (a more conventional 
design) and points 880 from the main sensor symmetry axis. 
The geometry will be very important for understanding the 
test of the response function. 

A cross section of one of the PLS instrument's main 
sensor cups is shown in Fig. 2. The cup consists of an aper­
ture stop, eight parallel grids, and a collector plate mounted 
in a metal housing. A top view of a cup is shown in Fig. 3. 
Figure 3 also defines a coordinate system which we call cup 
coordinates (z is the inward pointing cup normal). Notice 
that the collector is much larger than the aperture, a fact 
which gives this cup a much larger field of view than a con­
ventional cup. 

During operation, the collector plate and all of the grids 
except the modulator grids and the suppressor grid are 
grounded to the spacecraft. The suppressor grid is kept at 
- 95 V to shield the collector from the plasma electrons and 

to return any secondary electrons to the collector. The in­
strument is used by applying a square-wave positive voltage 
to the modulator grids and measuring the collector current. 
Since more particles are repeUed when the retarded potential 
is increased, the current waveform is an inverted square 
wave, as shown in Fig. 4. We call the upper and lower limit­
ing modulator voltages iflk and iflk + l' respectively, and the 
corresponding collector currents I r and I r + 1 • The signal Ik 
is the amplitude of the current step, given by 

Ik = I r - I r + I . (1) 

We wish to determine collector current as a function of the 
modulator voltage and the plasma distribution function. To 
a first approximation, the signal consists of all of the incident 

ALL DIM IN em 
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FIG. 2. Main sensor: vertical cut of upper 
segment. Cross section of a PLS main sensor 
cup. The grids are numbered 1-9. and the 
directions of y and z axes (cup coordinates) 
are shown. 
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FIG. 3. PLS main sensor aperture and collector areas. Note direction of axes 
for cup coordinates: z points into the cup. 

particles for which the z component of velocity (uz ) is 
between Uk and Uk + l' where Uk is related to ¢k by 

(2) 

where mp is the proton mass, A * is the mass of the ion in 
amu, Z * is the charge state of the ion, and e is the proton 
charge. To obtain a better approximation, we need to study 
the motion of the charged particles inside the cup. 

The total electric current incident on the aperture (lap) 
due to ionic species a is 

lap = Z:e J J dx dy I:., dux I:., duy 
Aperture 

xL" Uz/a(V) duz , (3) 

where dx dy is an area element in the aperture, and fa (v) is 
the distribution function of ion species a. For the total cur-

MODULATOR <PK+I 
VOLTAGE ¢K 

I II 
COLLECTOR K 

CURRENT 

TIME 

FIG. 4. Modulator voltage and collector current vs time. <P. is the modulator 
grid threshold voltage of the k th channel. 6.<P. is the voltage width of the k th 
channel. It is the collector current when the modulator grid voltage is <P,. 
and 1. is the current in the k th channel. 
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rent, one must sum over all species. In the remainder of this 
paper we will suppress the subscript a. 

Not all of the particles incident on the aperture reach the 
collector. In principle, given the initial position and velocity 
of a particle, one can calculate its trajectory and thereby 
determine whether or not it will reach the collector. There­
fore, we can formany write for the collector current 

It=Z*e II dxdy I:., dux J:oo duy 
Aperture 

x 100 

uz/(v)H(v,x,y'¢k) duz , (4) 

where H(v, x, y, ¢k) is equal to one if the trajectory of a 
particle incident on the aperture at the position x, y with 
velocity v reaches the collector. and is equal to zero other­
wise. In practice, Eq. (4) is useless in this form. because the 
precision with which we can calculate the particle trajector­
ies is insufficient to permit us to accurately predict whether 
or not a given incident particle will collide with one of the 
grids. We can, however, compute the probability that a parti­
cle will collide with a grid. If we denote by Aap the area of the 
aperture and by R(v. ¢k) the probability that an incident 
particle with velocity v has of reaching the collector (which 
is the same as the fraction of particles of a uniform beam of 
particles with velocity v which reaches the collector), we can 
rewrite the Eq. (4) as 

!t=Z*eAap roo., dux J:., duy i~ uz/(v)R(v'¢k)duz ' 

(5) 

We call R (v, ¢ k) the response function of the detector. 
To determine R, we use the folJowing model of the cup. 

We assume that the electrostatic potential inside the cup 
depends only on z and that it is a linear function of distance 
between any two adjacent grids. (The model potential for 
the Voyager PLS main sensor cups is shown in Fig. 5.) This 
approximation neglects the fine structure of the fields near 
the grid wires and the fringing fields near the edges of the 
grids. Since the distance between the grids is much greater 
than the spacing between the wires and the grid spacing is 
much smaller than the linear dimensions of the grid, this 
approximation should be adequate. 

In our model field we can calculate the particle trajec­
tories exactly. The particle trajectory between any two grids 
is either a straight line or a parabola. If we now assume that 

----•• z 

FIG. 5. Model potential vs z for a PLS main sensor cup. The numbered tick 
marks on the z axis correspond to the locations of the grids (see Fig. 2). The 
tick mark labeled c corresponds to the collector. 
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y 

x----~---------O~ 

IMAGE OF APERTURE 
IN PLANE OF 
COLLECTOR 

COLLECTOR 

FIG. 6. Definition of the shift vector. The figure shows the outline of the 
collector of one of the main sensor cups, with the image of the aperture in 
the collector plane superposed on it. An incident monoenergetic beam of 
particles will have the shape of the aperture as it travels through the cup. 
The shift vector S is the vector which lies in the collector plane and points 
from the point directly underneath the center of the long side of the aperture 
to the corresponding point on the image of the aperture in the incident 
beam. 

the probability of a particle striking a grid (a possibility not 
included in our trajectory calculation) does not depend on 
the position where the particle enters the cup, we can write R 
as a product of two terms and a normalization constant, 

(6) 

where Tis the transparency of the grids (the probability that 
a particle does not collide with a grid) and A is the "sensitive 
area" (the area of the aperture for which incident particles 
will strike the conector). 

n. SENSITIVE AREA 

We discuss first the sensitive area. Consider an incident 
beam of particles ofve1ocity v.lfvz is less than vk , defined by 
Eq. (2), then the particle will be repelled by the modulator 
voltage, and so R will be O. We take this into account by 
changing the lower limit of integration over v z [in Eq. (5)] 
from zero to vk • 

If Vz is greater than Uk, then in the conector plane the 
beam will have the shape of the aperture, but its position will 
be displaced because of the components of the particle veloc­
ity transverse to the cup normal direction, as shown in Fig. 6. 
We define a two-dimensional vector S, also shown in Fig. 6, 
to be the displacement of the aperture image from a perpen­
dicular projection of the aperture into the plane of the coHec­
tor. One can calculate from the equations of motion that the 
"shift vector" S is given by 

S" = S*h(u".iuz ) , 

Sy =S*h(uyluz ) ' 

(7a) 

(7b) 

where h is the distance between the aperture and the collec­
tor and S *, called the shift function, depends only upon Vz ' 

the cup geometry, and the grid voltages. For the Voyager 
main sensor cups, the shift function is given explicitly by 

2435 Rev. Sci.lnstrum., Vol. 57, No. 10, October 1986 

S*=O.743 k z 
( 

( 1 - (1 _ u2 I u2 
) 1 I 2] ) 

(uUu;) 

+ 0.093 ( 
1 )112 

1 - (uUv;) 

+ 0.392 s z + 0.340. (8) ( 
[ (1 +V2/V2)1/2 1]) 

(u;lu; ) 

The subscript s refers to the suppressor grid; Us is defined in a 
manner analogous to the definition of Uk in Eq. (2), 

(9) 

where cPs is the voltage on the suppressor grid. 
Once the shift vector is known, the sensitive area can be 

computed in a straightforward manner using a geometrical 
construction. For cups with cylindrical symmetry, the sensi­
tive area depends only on the magnitude of S and the func­
tional dependence can be expressed simply in closed form. 
For the Voyager main sensor, on the other hand, this func­
tional dependence is complicated. As there are 16 separate 
regions where the dependence is different (see Fig. 7), an 
exact analytical representation is cumbersome. A plot of the 
sensitive area (normalized to unity for normal incidence) as 
a function of Sy/h, with SJh as a parameter, is shown in 
Fig. 8. 

III. GRID TRANSPARENCY 

We now consider the grid transparency. The transpar­
ency of a single grid is defined as the probability of an inci­
dent particle traversing the plane of the grid without collid­
ing with the wires (all particles which strike the wires are 
assumed to be absorbed). We model a grid as a planar struc­
ture consisting of two perpendicular sets of parallel cylindri­
cal wires. The transparency of the grid will be the product of 
the transparencies of each set of wires considered separately. 

Consider a set of wires which run in the y direction (as 
before, z is taken to be normal to the plane of the grid). Since 
the transparency of these wires does not depend upon vy' we 

y 

x~ ~ 
2 3 40 ~ d 00 

"""ft ._-
5 6 7 8 

d~ Qp ~ 9a It~ "Q I~ 

13C6I't'b I'~ I~ 
FIG. 7. Sensitive area ofa main sensor cup. The figure shows the 16 distinct 
regions in which there is a different functional dependence of the sensitive 
area on the shift vector. 
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Sy 

h 

3 

FIG. 8. Main sensor sensitive area vs Sylh. 

only need to consider the projection of the particle motion 
into the x-z plane. The probability of a particle colliding with 
one of the wires is simply the ratio of the area of the wires to 
the area of the gaps between the wires projected into a plane 
perpendicular to the particle velocity vector. As can be seen 
from Fig. 9, the probability of collision is proportional to 
sec a, where a is the angle between the projection of the 
particle velocity into the x-z plane and the z axis. The same 
line of reasoning can be applied to the set of wires which runs 
in the x direction. Using the computed trajectories in our 
simplified cup model to compute the value of a for each grid 
and noting that the probability of a particle reaching the 

BEAM DIRECTION 

x-o o 0 0 0 0 0 0 

d 

z 

FIG. 9. Geometry for grid transparency calculation. A beam of particles 
incident on a grid of parallel, cylindrical wires is shown. a is the angle 
between the beam direction and the normal to the plane of the grid, L is the 
distance between the centers of two adjacent wires, and d is the wire diame· 
ter. The wires run in the y direction and the z direction is normal to the grid 
plane, with + z making an acute angle with the direction of the incident 
beam. 
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collector plane without colliding with a grid is simply the 
product of the probabilities of it successfully traversing each 
individual grid, we can write the grid transparency term as 
the following product: 

N [( v2 )112] T= n 1- c 1+ x 

i = 1 v; - 2Z *erpJA *mp 

X [1 _ C(1 + v~ )112] 
v;-2Z*erpJA*mp , 

(10) 

where rp i is the voltage on the ith grid, c is the ratio of the wire 
diameter to the wire spacing, and N is the total number of 
grids. 

For the voyager main sensor, c = ;b" and the sets of wires 
in the different grids are parallel. Since each cup has three 
modulator grids, one suppressor grid, and five grounded 
grids (see Fig. I), the transparency is given explicitly by 

T= l-c 1+- l-c 1+---[ ( V~)II2]'5 [ ( v~ )112]3 
v;' v; - v~ 

[ ( 
V2 )112] [ ( V2)1/2]5 

X. 1 - c 1 + v; ~ v; . 1 - c 1 + v; 

X l-c 1+ y [ ( 
V2 )1/2]3 

. v; - v~ 

X l-c 1+-Y- '. [ ( 
V2 )112] 

v; + v; (11 ) 

For the Voyager main sensor cups at normal incidence, 
T = To = (I - c) 18 = 0.65. 

1.0 

.9 

.8 
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.5 
oCt 
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.3 

,2 

,I 

0 
-3 -2 -I 0 2 3 

Sy/h 

FIG. 10. Main sensor sensitive area vs Syl h (trapezoidal approximation). 
Compare with Fig. 8. 
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IV. FURTHER APPROXIMATIONS 

In order to use our results to analyze data, one must 
evaluate the integrals of Eg. (5) for a parameterized distri­
bution function and use the data to obtain "best fit" values 
for the parameters. It is possible to do all of the integrations 
numerically, but a much faster running computer code can 
be written if some of the integrations can be done analytical­
ly. In this section we outline two approximation schemes 
which permit analytical, closed form evaluation of the inte­
grations over v x and Vv' The details of the schemes are given 
in Ref. IS. 

For the complicated geometry of the Voyager PLS main 
sensor, a suitable analytical expression for the sensitive area 
(Fig. 8) must first be found. We used a family of trapezoids, 
plotted in Fig. 10. The formulas for these trapezoids are 

Ax=l, -X,<Sx1h<X" 

(Sx1h) - X; 
A =- , X,<Sxlh<X;, 

x X; _ X, 

A x = 0 , otherwise, 

(12c) 

(I2d) 

( 12e) 

(Sylh) - Y d 
Ay = , Y d <Sylh < Yd , (12f) 

Yd - Y d 
Ay = 1, Yd <Sylh < Yu (Sx) , (12g) 

(SJh) - Y~ (Sx) 
Ay=' " Yu(S<)<SJh<Y~(Sx) 

Yu (Sx ) - Y u (Sx ) 

Av = 0, otherwise, 

with 

X, = 1.10, 

X; = 4.94, 

Yd = - 2.02, 

Yd=-3.62, 

3 

2 

2 

FIG. II. Y. and Y ~ vs SJh. 

3 4 
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( 12h) 

( 12i) 

(13a) 

(13b) 

(13c) 

(l3d) 

FIG. 12. Three-dimensional plot of the sensitive area vs S. and Sy in the 
trapezoidal approximation. 

0.762 cos [ 1.0I81SJh [ + 0.247] 
Yu = , 

1 + 0.251SJh [ 
(13e) 

Y~ =2.50-0.125[[Sx1h[-lf. (l3f) 

All of the quantities defined by Eq. (12b)-(l2i) and (13a)­
(130 are dimensionless. Yu and Y ~ are plotted in Fig. 11. 
Figure 12 shows a three-dimensional (3-D) plot of A (SI h). 

The values of X" X;, Yd' Y d' Yu' and Y ~ were chosen to 
match the volume of the solid of Fig. 12 as closely as possible 
with the volume of the solid representing the true area over­
lap. Figure 13 shows a 3-D plot of R (SJh,sJh). computed 
using the "trapezoidal approximation" for A and Eq. (11) 

for T. 
We shall now proceed to describe two different approxi­

mation schemes. In both cases the plasma distribution func­
tion will be assumed to be a convected Maxwellian. 

( 14) 

where V is the plasma bulk velocity. w is the thermal speed, 
and no is the particle number density. For the case where 
V>w. we have a well-collimated beam. In this case we can 
approximate the dependence off on v x and Vy by a product of 
delta functions 

FIG. 13. Three-dimensional plot of the full response function. computed 
using the trapezoidal approximation for the sensitive area and the "exact" 
expression for the grid transparency. 
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I(v) = ~ D(Vx - Vx )8(vy - Vy ) 

WV1T 

Xexp[ - (Vz - Vz )2Iw2
) • (15) 

The delta functions permit the integrations over Vx and Vy to 
be computed trivially, leaving only the numerical integra­
tion over Vz • This approximation was used to experimentally 
test the response function, as described i.n the following sec­
tion. 

For the more general case where the bulk velocity is not 
much. greater than the thermal speed, we must change the 
form of the expression for the grid transparency. It is possi­
ble to approximate Eq. (10) by an expression of the form 

T = ttl ci exp [ - a{~: YJ} 

X ttl cj exp [ - aj (~r]) , (16) 

where the a's and c's are functions of the grid voltages and Vz 

only. The values of the a's and c's must be determined by a 
numerical fitting procedure. This approximation permits 
the desired integrals to be evaluated numerically with the aid 
of the saddle point method. 

For a cylindrically symmetrical cup, a similar approxi­
mation scheme can be used. This case is much simpier, since 
the response function does not depend upon the azimuthal 
angle of incidence of the particles. (This is so except for a 
small effect due to the rectangular structure of grids them-
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FIG. 14. Reduced distribution function vs velocity for cruise maneuver spec­
trum I. The staircases are the data, while the smooth curve is the fit. 
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selves. If the grids are mounted such that the wires of a given 
grid are not parallel to the wires of the other grids, this effect 
will be minimized.) The sensitive area can be approximated 
by a single trapezoid, and the grid transparency term con­
tains one sum of Gaussians, rather than the product of two 
sums of Gaussians. The integration over azimuth angle then 
yields a modified Bessel function, which can be approximat­
ed by a sum of exponentials to permit analytic evaluation of 
the integral over the magnitude of the tangential velocity. 
The response function of the D cup of the Voyager PLS 
instrument is discussed in detail in Ref. 15. 

V. EXPERIMENTAL TEST OF THE RESPONSE 
FUNCTION 

In order to test our theoretical response function, we 
have analyzed data taken by Voyager I during a cruise ma­
neuver. Voyager is a three-axis stabilized spacecraft, and 
most of the time it is oriented such that the main sensor 
symmetry axis, which is parallel to the spacecraft's main 
antenna, is pointed toward the Earth. Since the angular sepa­
ration between the Earth and the sun, as viewed from the 
outer solar system, is small, the solar wind direction was 
usually almost parallel to the main sensor symmetry axis. In 
this configuration the "unity response" approximation to 
the cup response (all incident particles which are not 
stopped by the modulator voltage reach the collector, but the 
aperture area is corrected for the transparency of the grids at 
normal incidence) is good. During the cruise maneuver, 
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FIG. 15. Reduced distribution function vs velocity for cruise maneuver spec­
trum 2. The staircases are the data, while the smooth curve is the fit. 
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FIG. 16. Reduced distribution function vs velocity for cruise maneuver spec­
trum 1. The staircases are the data, while the smooth curve is a simulation 
done assuming "unity" response using the plasma parameters determined 
from the fit which is plotted in Fig. 14. Note that the locations of the peaks 
in the simulation are correct, but their heights and shapes are wrong. 

however, the spacecraft performed a series of rotations, 
some of which involved rotating the main antenna away 
from the Earth. 

The data were taken over a period of 90 min on 14 Sep­
tember 1978, when Voyager 1 was 4.1 a. u. from the sun. The 
solar wind bulk speed during the maneuver varied between 
368 and 378 km/s, while the thermal speed varied between 
14 and 20 km/s. Data were taken simultaneously in all four 
cups. Two such spectra are shown in Figs. 14 and 15. The 
figures consist of! k / (4) k + 1 - 4> k ) plotted versus v k for each 
cup. The staircases are the data, while the smooth curves are 
the "best fit" simulations. The fits are excellent, correctly 
reproducing the location, height, and shape of each peak in 
all of the cups in which there is a signal. For the spectra of 
Fig. 14, the angles between the bulk velocity and the cup 
normals for the A, B, C, and D cups were 38°, no. 56°, and 
124°, respectively, while for the spectrum of Fig. 15 the an­
gles were 67°,34",52" and 56°, respectively. 

As an illustration of the extent to which we are actually 
testing our response function using this process, consider 
Figs. 16 and 17. Figure 16 is the same spectrum as Fig. 14, 
except that the smooth curve is a simulation using the pa­
rameters derived from the fit of Fig. 14 with the assumption 
of unity response. Notice that although the peaks are all in 
the right place because of the effect of the sharply peaked 
distribution function, the heights and shapes are all wrong. 
It should be pointed out that the current in the B cup of this 
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FIG. 17. Reduced distribution function vs velocity for cruise maneuver spec­
trum 2. The staircases are the data, while the 5mooth curve is the fit. The 
change in the orientation of the spacecraft between the time of the peaks in 
the different cups was not compensated for. Compare to Fig. 15. 

spectrum is only about 4% of what the current would be if 
the same beam were at normal incidence. 

An even more striking example is shown in Fig. 17. 
While the measurements were being taken, the spacecraft 
was rotating at a rate of one rotation every 33 min. Since the 
instrument takes 0.24 s to measure a single channel, and the 
same channel is measured simultaneously in all four cups, 
the peak in the B cup (channel 46) was measured about 5 s 
after the peak in the A cup (channel 24) was measured. 
During that time, the spacecraft rotated about 0.9°. For the 
fit shown in Fig. 15, this rotation was compensated for, while 
for the fit shown in Fig. 17 the effect of this small rotation 
was neglected. Our theoretical response function is suffi­
ciently good that failure to account for this rotation of less 
than 10 made the fit noticeably worse! The quality of the fits 
to the data taken during the cruise maneuver has convinced 
us that our theoretical response function represents the true 
response function of the Voyager PLS experiment within a 
few percent for all angles of incidence. 
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