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14.5.3 Paterae and Mountains: Distributions and 
Relationships 

The absence of any obvious global tectonic pattern among 
either volcanoes or mountains on Io suggests that any sur
face expression of internal dynamics (i.e., convection) must 
be subtle. Indeed, the global inventory of mountains re
veals modest nonuniformities in their relative areal density 
(Schenk et al. 2001), with the greatest frequency of mountain 
occurrence in two large antipodal regions near the equator 
at 65° Wand 265° W. A similar bimodal pattern is also ev
ident in the global distribution of volcanic centers (Schenk 
et al. 2001) and paterae (Radebaugh et al. 2001) but off
set roughly 90° in longitude, and thus anti-correlated from 
mountainous regions. These broadly defined centers are off
set roughly 30° east of the current tidal axes. 

The bimodal distribution pattern for volcanic centers 
matches the expected pattern of heat flow from astheno
spheric tidal heating (Ross et al. 1990) and the internal 
convection pattern within Io's mantle predicted from 3-D 
simulations (Tackley et al. 2001). However, the regional anti
correlation of mountains and volcanic centers is counterin
tuitive if volcanic resurfacing causes mountain formation. 
Several hypotheses to explain the regional pattern were pre
sented by Schenk et al. (2001): (i) Mountains are shorter
lived in regions of more active resurfacing clue to more rapid 
burial or collapse. (ii) Tall (and longer-lived) mountains form 
less frequently in regions of higher heat flow and a thinner 
lithosphere. (iii) An additional stress mechanism is superim
posed on the global compressive stresses. Three possibilities 
have been suggested in case (iii): ( 1) stresses induced on 
the lower crust by rising and downwelling mantle convec
tion plumes, (2) nonsynchronous rotation of Io's lithosphere 
with respect to the interior (Schenk et al. 2001, Radebaugh 
et al. 2001), and (3) the model of McKinnon et al. (2001). 
These mechanisms could reduce compressional stresses near 
the anti- and sub-jovian regions, enhancing volcanism and 
discouraging mountain formation. 

Despite the global scale anti-correlation, individual 
mountains and volcanoes appear structurally linked in many 
cases (Figures 14.5, 14.6). Paterae have been identified on or 
near the flanks of numerous mountains ( rv40%) and there is 
a statistically significant spatial association between moun
tains and volcanic centers (Turtle et al. 2001, Jaeger et al. 
2003). Some mountains directly connect and form appar
ent structural links between two paterae. Some mountains 
may have formed along faults radiating from volcanic centers 
(Schenk and Bulmer 1998). Mountains could also form over 
small-scale mantle upwellings, consistent with the isolated 
occurrence of mountains (Jaeger et al. 2003). Several moun
tains show evidence of axial rifting possibly due to uplift
related extension. Fault-bounded mountains could provide 
ready conduits for migrating lavas in the upper crust. If 
the global subsidence model for mountain formation is cor
rect, it may be difficult for magmas to ascend to the sur
face through the compressively stressed lower crust. The 
formation of thrust faults may locally relieve compressive 
stresses, sufficient for magmas to ascend. The resulting vol
canism may then contribute to the ultimate destruction of 
the original mountain, for example at Tohil Mons(Schenk 
et al. 2001; Figure 14.6). On the other hand, the majority of 

mountains are not located near obvious volcanic centers, and 
their formation may be independent of nearby volcanism. 

14.5.4 Mass Wasting 

As befits a planet with locally high relief, Io exhibits sev
eral styles of mass wasting. Slumping of km-scale blocks 
and large-scale landslides have been noted in several cases 
(Schenk and Bulmer 1998, Moore et al. 2001), leading to 
suggestions of failure along weak horizons within the crust. 
Incoherent slump deposits are found along the flanks of nu
merous mountains (McEwen et al. 2000a, Turtle et al. 2001), 
suggesting simple slope failure. Parallel ridges on moun
tains (e.g., Hi'iaka Mons, Figure 14.5) have been attributed 
to down-slope flow or creep of surface layers. Very high
resolution images from 132 show evidence of terracing along 
the edges of at least one of these tabular plains, indicating 
the undermining of scarps and subsequent slope failure of 
the upper layers. Curvilinear scarps lOOs of km long (Fig
ures 14.5, 14.6), forming large isolated tabular plains up to 1 
km high, are generally interpreted as due to extensive scarp 
retreat, and in higher resolution images, these scarps can ap
pear to be "choked" by debris. McCauley et al. (1979) pro
posed that local venting of S02 could explain the scarp re
treat and diffuse bright deposits along many scarps, and this 
remains an attractive model given the ubiquity of S02 and 
hot spots as confirmed by Galileo. Several other mass wast
ing mechanisms can be envisioned, including plastic flow of 
interstitial volatiles, sublimation degradation, or disaggre
gation from chemical decomposition (Moore et al. 2001). 

14.6 IO'S HEAT FLOW 

lo is unique among solid bodies in the solar system in that 
its heat flow is so high that it can be determined by re
mote sensing of surface temperatures. Understanding lo's 
heat flow is important for constraining tidal heating mod
els (see Chapter 13), and for probing Io's interior structure. 
The discrete volcanic hot spots account for most of the heat 
flow, but conducted heat from extensive cooling lava flows 
may also be significant (Stevenson and McNamara 1988). At 
these longer wavelengths, however, thermal emission from 
the non-volcanic regions, which are warmed by sunlight, and 
from absorbed sunlight re-radiated by the hot spots them
selves, are also important. This "passive" component must 
be removed to isolate the hot spot contribution. 

Disk-integrated ground-based observations of Io's ther
mal emission provide uniform longitudinal coverage and a 
long time base, allowing study of the spatial and temporal 
variability of the heat flow. Models of the passive compo
nent can be constrained by wavelength-dependent changes 
in Io's thermal emission during Jupiter eclipses (Sinton and 
Kaminski 1988, Veeder et al. 1994). Very rapid initial cooling 
indicates extensive surface coverage by an extremely insu
lating, porous, material, such as pyroclastic deposits, that is 
best modeled as having relatively low albedo. Cooling dur
ing the remainder of the eclipse is much slower, due to a 
combination of a higher thermal inertia, higher-albedo pas
sive component, and emission from volcanic hot spots. As 
pointed out by Veeder et al. (1994), low-temperature hot 



spots will be warmed significantly by the Sun, and thus will 
also cool at night. 

Synthesizing their 10 years of ground-based 5-20 mi
cron photometry of Io, Veeder et al. (1994) obtained the 
most comprehensive picture so far of Io's heat flow and its 
variability. In addition to eclipse cooling, they constrained 
passive temperatures using Voyager estimates of Io's bolo
metric albedo (Simonelli and Veverka 1988) and Voyager 
infrared observations of Io's nightside temperature (Pearl 
and Sinton 1982, McEwen et al. 1996). They concluded that 
much of Io's heat flow was radiated from large areas at T < 
200 K, little warmer than the passively-heated surface, and 
that Io's average heat flow is more than 2.5 W m - 2

, with 
only modest temporal or spatial variability. They considered 
their estimate to be a lower limit because the ground-based 
data are not very sensitive to radiation from high-latitude 
anomalies, and because they did not include the possible 
contribution from heat conducted through Io's lithosphere. 
However, it is possible that rapid downward motion of the 
crustal materials due to resurfacing (O'Reilly and Davies 
1981, Carr et al. 1998) minimizes heat conduction through 
the lithosphere. 

Voyager IRIS observations oflo (Pearl and Sinton 1982, 
McEwen et al. 1996), covering the 5-50 micron region, pro
vide an independent measure of heat flow. Here the typical 
spatial resolution of a few 100 km is sufficient to resolve indi
vidual hot spots, and good spectral resolution allows some 
separation of passive and endogenic radiation within each 
field of view, by fitting multiple blackbodies to each spec
trum and assuming that the lowest-temperature contribu
tion is passive. However, the data do not provide globally ho
mogeneous coverage. Extrapolating from the Jupiter-facing 
hemisphere, where coverage is best, and assuming that Loki, 
which radiates more heat than any other Io hot spot, is 
unique, McEwen et al. (1996) estimated a minimum global 
heat flow of 1.85 W m- 2

, with likely additional contribu
tions from conducted heat and widespread low-temperature 
hot spots. 

Endogenic emission is more readily separated from pas
sive emission at night, when the passive component is min
imized. Voyager IRIS obtained sporadic nighttime coverage 
of Io, but the first hemispheric maps of broadband nighttime 
emission came from Galileo PPR (Spencer et al. 2000b). 
Nighttime temperatures away from the obvious hot spots are 
near 95 K, and are remarkably independent of both latitude 
and local time. Making the assumption that at low latitudes 
this temperature is entirely due to passive emission, that the 
passive component temperature varies as cos114 (latitude), 
and that all emission at higher temperatures is endogenic, 
Spencer et al. (2000b) estimated global heat flow to be 1. 7 
W m- 2

, again assuming that Loki was unique. The lack of 
fall-off in temperature with latitude would then imply excess 
endogenic emission at high latitudes. 

Matson et al. (2001) explored the possibility that the 
uniform nighttime background temperatures were instead 
due entirely to endogenic heat, with negligible contribution 
from re-radiated sunlight, and derived a very large upper 
limit to Io's heat flow of 13.5 W m- 2

. Spencer et al. (2002a) 
noted, however, that such a large heat flow is readily ruled 
out by using heat balance considerations. They subtracted 
the total power of sunlight absorbed by Io (estimated using 
new bolometric albedo maps by Simonelli et al. 2001), from 
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Io's total radiated power, estimated using disk-integrated 
Voyager IRIS spectra of the day and night hemispheres, 
supplemented by ground-based observations of Io's daytime 
emission from Veeder et al. (1994) and PPR observations of 
Io's nighttime emission from Spencer et al. (2000b). Assum
ing that Io's emission depends only on phase angle, they ob
tained a total heat flow of 2.2 ± 0.9 W m-2

. Accounting for 
the likely lower emission at high latitudes than at the equa
tor, and refining error estimates reduces the estimated heat 
flow to 2.1 ± 0.7 W m- 2 (J.R. Spencer et al. manuscript in 
preparation; Figure 14.8). (This result is remarkably similar 
to the very first estimate of Io's heat flow of 2 ± 1 W m - 2 by 
Matson et al. 1981). Though this technique is not precise, as 
it involves subtraction of similar-sized quantities known with 
limited accuracy, it is robust in that the answer does not de
pend on assumptions about the temperature of the thermal 
anomalies or how the emission in any particular observa
tion is divided between endogenic and passive components. 
It also accounts for any heat that is conducted through the 
lithosphere, and thus provides an actual estimate of, rather 
than a lower limit to, Io's heat flow. This heat flow estimate 
is consistent with previous lower limits to the heat flow (i.e., 
that from hot spots), and indicates that hot spots account 
for most of Io's heat flow. Thus, the thermal observations 
support the O'Reilly and Davies (1980) model for volcanic 
heat advection through a cold lithosphere. 

Several lines of evidence indicate that Io's current heat 
flow and tidal heating rate exceed the long-term equilib
rium value. First, Io's current heat flow is about twice as 
large as the upper limit of rv0.8 W m- 2 expected for steady
state tidal heating models over 4.5 Ga (Peale 1999); the dis
crepancy can no longer be considered potentially resolvable 
from uncertainties in the heat flow estimate, as suggested by 
Showman and Malhotra (1999). If the theoretical estimates 
of steady-state heat flow are correct, then Io's heat flow has 
varied over time due to its orbital evolution. Second, recent 
secular orbital accelerations suggest that Io is now spiral
ing slowly inward, losing more energy from internal dissipa
tion than it gains from Jupiter's tidal torque (Aksnes and 
Franklin 2001). Third, if Io's thermal history varies strongly 
with time, then the absence of core convection driving a 
self-sustained magnetic field requires that the mantle be rel
atively hot (Wienbruch and Spohn 1995). The time-variable 
thermal/ orbital interaction has implications for the geologic 
histories and futures of Europa and Ganymede as well as Io. 

14.7 DISCUSSION: THE LITHOSPHERE AND 
MANTLE OF IO 

Post-Voyager models of Io's crust had a rugged differentiated 
silicate crust mostly covered by layers of silicate and sulfur 
(molten at depth), and showed the mountains to be ancient 
protuberances of the silicate subcrust (Schaber 1982, Kief
fer 1982, Nash et al. 1986). An updated vision of Io's crust 
and lithosphere (Figure 14.9) is a layered stack of mafic lava 
flows, interbedded with smaller amounts of silicate and sul
furous pyroclastics, sulfur flows, and volatile species such as 
S02 . The mechanical lithosphere in this case corresponds 
very closely to the crust, which may have relatively minor 
compositional distinctions from the mantle (i.e., compared 
with Earth). This lithosphere may be broken into slabs no 
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Figure 14.8. Io's disk- and wavelength-integrated therm.al emission, measured at low sub-observer latitudes, as a function of phase 
angle, from various sources (modified from Spencer et al. 2002). The upper x-axis scale is solar phase angle (degrees) and the lower 
x-axis scale is solid angle from the sub-solar point to the corresponding phase angle. The x axis is linear in solid angle, so that the area 
under curves on the plot represents the total power emitted, after a few percent correction to account for the likely lower emission at 
high latitudes. The solid curves show plausible upper- and lower-bound fits to the data, and the dashed curves show expected passive 
thermal emission for the bolometric albedo range 0.52 + /-0.03. Also shown is the range of powers corresponding to these curves, and 
the resulting net endogenic power. 

smaller than a few hundred kilometers judging by the typical 
dimensions of the massifs. Occasional lithospheric blocks are 
upthrust along deep-rooted thrust faults to form mountains. 
Punctuating this broken layered stack are hundreds of vol
canic conduits or magma chambers, some of which may feed 
dikes or sills intruded along existing faults, along horizontal 
bedding planes or elsewhere. This lithosphere is relatively 
cold and isothermal (O'Reilly and Davies 1980, Carr et al. 
1998) except near the base where the thermal gradient must 
be very steep. The thermal gradient may also be steep under 
caldera floors, if they reside over shallow magma chambers. 

There is still no consensus on the average thickness of 
Io's lithosphere, except that it must exceed rv15 km. Carr 
et al. (1998) gave an example where the depth of isostatic 
compensation would be rv90 km, but wrote "The mountains 
may, however, be uncompensated and partially supported by 
a thick rigid lithosphere. Even so, it is difficult to see how 
10 km high mountains could be supported by a mechani
cal lithosphere that is less than 30 km thick, particularly 
since there is no evidence of moats having formed around 
the mountains as a result of flexure of the lithosphere ... " 
:LvicKinnon et al. (2001) presented a crustal chaos hypothe
sis and wrote "Mountain lengths range from rv50 to >400 
km, and the crustal thickness is probably some sizeable frac
tion of this, perhaps as great as 25-100 km." Jaeger et al. 

Figure 14.9. Cartoon of Io's crust. The Ionian crust is thought to 
be dominated by layers of mafic silicate lava flows with thin beds 
of sulfurous and silicate pyroclastic deposits. A sulfur dioxide
rich coating blankets most of the surface away from hot spots. 
Prometheus-type plumes are generally caused by lavas advancing 
over this volatile blanket. Plumes of primary volcanic gas are most 
visible at UV wavelengths and are not illustrated here. Mountains 
are formed by deep thrust faults and the crust is underlain by a 
zone with significant melting, perhaps a magma ocean. 



(2003) conclude that a minimum lithospheric thickness of 
14 km is required to provide sufficient compressive stress 
to explain the existing mountains, and Schenk et al. (2001) 
pointed out that the lithosphere must be at least as thick as 
the tallest mountains (13-17 km) if they are thrusted blocks. 
The lithosphere may vary in thickness; perhaps it is thicker 
in regions where mountains are concentrated (Schenk et al. 
2001) and in the polar regions (McEwen et al. 2000a). 

The cold subsiding lithosphere model, combined with 
new observational data, has important implications for the 
chemical composition of the crust and the physical state 
of the mantle of Io. The predicted temperature profile 
requires that the crust/mantle boundary and the litho
sphere/asthenosphere boundary coincide to within a few 
kilometers. If Io is predominantly solid, then the lava seen 
at the surface must originate in a partially molten mantle. 
These lavas are subjected to repeated episodes of partial 
melting when they are buried to the depth of the zone of 
melting. Each episode of partial melting will chemically dis
til the rocks, producing a buoyant liquid enriched in incom
patible elements (e.g., Na, K, Si, H) and a dense solid residue 
enriched in compatible elements (e.g., Mg). If Io underwent 
the current level of volcanic activity for even a fraction of 
the age of the solar system, the entire silicate portion of Io 
should have gone through hundreds of episodes of partial 
melting. This would produce extreme differentiation of the 
rock types through the crust and mantle. While processes 
such as assimilation of wall rocks during ascent of magma 
would cause some mixing, one would expect Io to have a 
wide variety of silicate lava types. Furthermore, the compo
sitions should be dominated by the most easily melted (i.e., 
lowest melting temperature) lavas (Keszthelyi and McEwen 
1997). It would be difficult for dense mafic melts from the 
mantle to rise through the low-density crust and reach the 
surface. 

Instead, the observations of temperatures, colors, and 
landforms suggest that Ionian volcanism is dominated by 
mafic lavas. This requires that the crust be very efficiently 
mixed back into the mantle to erase the distillation effects 
of partial melting (Carr et al. 1998). The simplest way to 
achieve this level of mixing is if the top of the mantle is 
molten, leading to rapid and efficient mechanical and chem
ical mixing. Since such mixing must take place across the 
globe of Io, it suggests a global layer of melt (Keszthelyi et 
al. 1999). Theoretical studies have shown that there cannot 
be a global layer of pure liquid magma under the Ionian 
lithosphere because this would not produce the observed 
tidal heat flux (e.g., Schubert et al. 1981, Ojakangas and 
Stevenson 1986). However, a crystal-rich magma ocean is 
allowed by these studies. Using a petrologic model (Ghiorso 
and Sack 1995) and a dry chondritic bulk composition for 
Io, the magma ocean is predicted to go from rv60% melt at 
the base of the lithosphere to only rv5% melt at the core
mantle boundary (Keszthelyi et al. 1999). A magma ocean 
is not required to remove Io's heat (Moore 2001) but may 
be required to prevent the formation of a low-density crust 
that would be a significant barrier to mafic volcanism. 

The observations to date are all consistent with the idea 
of a partially crystalline global magma ocean, but may not 
discriminate this model from rapid solid-state convection 
(Schubert et al. Chapter 13). As predicted by the magma 
ocean model (Spohn 1997), Io has no intrinsic magnetic field 
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(Kivelson et al. Chapter 21). The high temperature of the 
magma ocean would lead to a stably stratified liquid iron 
core within Io. However, the lack of magnetic field is not 
proof of a magma ocean within Io. 

The distribution of volcanism on the surface of Io pro
vides some additional, inconclusive, clues about the state 
of the interior. Segatz et al. (1988) calculated that if tidal 
heating is predominantly at the base of the mantle, heat gen
eration should be concentrated at the poles. Conversely, if 
heat is mostly generated at the top of the mantle, heat flow 
will be highest along the equator. The distribution of persis
tent hot spots (Lopes-Gautier et al. 1999), volcanic centers 
(Schenk et al. 2001) and paterae (Radebaugh et al. 2001) 
are concentrated in a manner consistent with tidal heating 
mostly in the upper mantle. However, the more sporadic but 
highly energetic volcanic eruptions seen at high latitudes and 
the higher than expected background temperatures require 
either some heat generation deep within Io's mantle or some 
mechanism for lateral heat transport within the mantle. A 
partially molten magma ocean as hypothesized by Keszthe
lyi et al. (1999) could fit these observations, but so could a 
vigorously convecting solid mantle (Tackley et al. 2001). 

14.8 FUTURE EXPLORATION 

Though our understanding of Io has increased greatly in 
the past decade, there is much more we can learn from this 
dynamic world. We can witness large-scale volcanic and tec
tonic processes on Io that inform us about ancient and mod
ern processes on the terrestrial planets. Perhaps we could di
rectly observe the formation and/ or destruction of landforms 
such as mountains and paterae. Many important questions 
lack complete answers. 

• What was the coupled orbital evolution of Io-Europa
Ganymede and how has it affected the thermal evolution of 
all three worlds? 

• Are tidal heating and core convection periodic? 
• Does Io have a magma ocean? 
• What are the mantle convection patterns within Io and 

how does that influence the volcanism and tectonism? 
• What is the composition of the crust, and is the crust 

equivalent to the lithosphere? 
• How uniform is the resurfacing over time periods im

portant to the tectonism ( rv 105-106 years)? 
• What are the timescales for formation and destruction 

of mountains and paterae? 
• Are there identifiable impact craters on Io? 
• What is the composition of the silicate lavas? 
• Are the high temperatures due to Mg-rich lava com

positions, some other composition, or some mechanism for 
"superheating" the lava? 

• How common are lava temperatures too hot for normal 
(not superheated) basalt? 

• How common are lava lakes, how do they work, and 
how much do they influence heat loss? 

• Is Io's current heat flow typical or anomalous? 
• Why are the styles of volcanism different in the polar 

regions? 
• Is the polar heat flow higher or lower than average? 
• What are the mechanisms of faulting and tectonics? 
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• Are there topographic bulges due to mantle plumes and 

lithospheric thinning? 

• Why are mountains and paterae often associated with 
each other on local scales? 

• Why are they anti-correlated on hemispheric scales? 

• What is the inventory and distribution of crustal 
volatiles and how do they affect the geologic processes? 

• Are sulfur or S02 flows common? 

• How do the volatiles affect mass wasting, sapping, and 
other processes of landscape modification? 

• What are the mechanisms driving the various types of 
plumes? 

• What are the sources of sodium, potassium and chlorine 
escaping from Io? 

• Can the volcanic gasses help us to better understand 
the chemistry of Io's crust and mantle? 

There is much we can still learn about Io via observa
tions from the Earth's surface or near-Earth space. The Hub
ble Space Telescope, and the new class of 8-meter telescopes 
when coupled with adaptive optics techniques (~1Iarchis et 
al. 2001), can resolve 100-km scale features, allowing loca
tion and characterization of volcanic eruptions and studies 
of compositional changes. The composition and spatial dis
tribution of lo's atmosphere, and its response to volcanism, 
can be studied at millimeter wavelengths, in the infrared at 
20 microns, and from HST in the ultraviolet. A decade or 
so from now, the next generation of space telescopes with 
improved spatial resolution and sensitivity is expected to 
provide many new opportunities for Io studies. 

Many advances in our understanding, however, must 
await a return to lo by a spacecraft with more capable in
strumentation and much higher data return capability than 
Galileo. lo's intrinsic interest as the only place beyond Earth 
where we can watch large-scale geology in action, and its po
tential to teach us about the fundamental process of tidal 
heating, makes a return to lo a high priority. A jovicentric 
orbiter with many Io flybys is probably the most practical 
mission concept in the near term. Radiation-hard electron
ics currently under development could allow a spacecraft to 
survive more than 50 Io flybys, sufficient to sample a wide 
range of eruptions and other dynamic phenomena. A func
tioning high-gain antenna and modern high-capacity data 
recorders would enable 105-106 times greater data return 
per flyby than Galileo, providing significant coverage at the 
high spatial, spectral, and temporal resolutions needed to 
understand dynamic processes. Improved topographic map
ping at all scales, especially globally, is needed to test models 
for the dissipation of tidal heating, internal convection, and 
tectonics. Penetrators might be practical, allowing seismic 
studies of the interior; this is the best way to confirm or re
fute the magma ocean hypothesis. Io studies could be readily 
combined with studies of the jovian magnetosphere or the 
other Galilean satellites. 

For a detailed discussion of options for future lo explo
ration, see Spencer et al. (2002b). We look forward to future 
exploration of Io, and to continued progress in our under
standing of one of the most spectacular places in the solar 
system. 
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