Reading CSV (Comma Separated Variable) files via IDL

Input: CSV file	e.g. V1_Fits_July8.csv

Example code for reading CSV files can be found in the Data_Plots IDL file as well as the Voyager_PLS IDL file.

This method of data unpacking works both for the CSV file with the input parameters as well as the uncertainty CSV files. Note these two files will have the same exact formatting as long as the uncertainty file was created form the original CSV file.

Most programming languages have built in procedures and functions to assist in reading CSV files. This documentation will assume that there is a built in procedure to properly read CSV files and separate out the Header information.

Using V1_Fits_July8.CSV as an example.

filename = ‘V1_Fits_July8.CSV’					Set filename variable to file name
										string format
CSV_Data = READ_CSV(filename, Header = CSVHeader)	Use IDL function READ_CSV to 										read values into a structure;
										header gets read into array

	Each CSV file our code produces has 67 columns each with a corresponding header. The headers are thus stored in an array of strings with each index of the array corresponding to the column that the Header came from. I will list each of the columns below, but it is important when indexing to check that you are pulling the right data from the structure by checking the name of the header.

Below are the names of each of the headers. Indexing will be started at 0.

 0. YEAR	 - Stores the Year of the fit parameters
1. DAY_OF_YEAR – Stores the Day of the fit parameters
2. HOUR – Stores the Hour of the fit parameters
3. MINUTE – Stores the Minute of the fit parameters
4. SECOND – Stores the Second of the fit parameters
5. SPACECRAFT – Stores the spacecraft number (1 or 2 for Voyager 1 and Voyager 2)
6. PLANET_NUMBER - Stores the planet number (order from sun Jupiter = 5)
7. RESPONSE – Response function used: CUPINT/DCPINT (0) LABCUR/LDCUR (1)
8. L_OR_M_MODE – Chooses data mode: M_Mode (0) L_Mode (1)
9. SAVE_PLOT – Save output plot after fit: 0 is do not save 1 is save
10. FIT – Set to 1 to fit the parameters set to 0 to skip fit and plot response
11. ITERATIONS – This value specifies maximum number of fitting iterations to go through.
12. CHANNELS_CUPA – Stores 4 to 6 digit number specifying which cup channels to fit.
[bookmark: _GoBack]The first 1 to 3 digits are the starting channel while the last 3 digits is the ending channel. The ending location always uses 3 digits and must have preceding zeroes if not a 3 digit value (i.e. 028 for channel 28). The CSV file will automatically remove preceding values from the starting channel, resulting in a 4 to 6 digit number that the code can handle. Ex: If fitting channels 1-128, the input would be 1128. To fit a smaller range, like 20-90, the input would be 20090.
13. CHANNELS_CUPB – Same as A Cup
14. CHANNELS_CUPC – Same as A Cup
15. CHANNELS_CUPD – Same as A Cup
16. VARY_V1 – Set this value to 1 if you want to vary V1 flowspeed during fit; 0 if you do not
17. VARY_V2 – Set this value to 1 if you want to vary V2 flowspeed during fit; 0 if you do not
18. VARY_V3 – Set this value to 1 if you want to vary V3 flowspeed during fit; 0 if you do not
19. VARY_DENISTY – Set this value to 1 if you want to vary densities during fit; 0 if you do not
20. VARY_TEMPERATURE – Set this value to 1 if you want to vary temperatures during fit; 0 if you do not
21. ANALYTICAL_VPHI – Set this value to 1 if you would like to use a hyperbolic tangent velocity curve for initial Vphi (V2 condition); 2 for strict corotation with the planet spin; 0 if you want to use input value
22. V1 – Set this value to starting V1 guess
23. V2 – Set this value to starting V2 guess
24. V3 – Set this value to starting V3 guess
25. COMMON_TEMPERATURE – Set this value to a temperature in eV. This value will be used according to the individual species specifications
26. DELAMERE_COMPOSITION – Set this value to 1 if you would like to constrain up to the 5 main species densities to Delamere composition, set to 0 if not. See manual for description of Delamere Composition.
27. SPECIES_1 – This is the species tag, it designates how the given species will be treated during fitting and in the response function. There is a species tag for each species followed by the Mass, Charge, Density and Temperature assumptions of the species. The code options as well as implications can be found below.
		0 – This species is not in parameter space and is a constant of the model. It will follow the common temperature value if it is greater than 0 and the species temperature will be neglected.
		1 – This species is not in parameter space and does not follow the common temperature value, but follows its own temperature value.
		2 – This species is in parameter space with its density and temperature as a parameter. IF common temperature is greater than 0, then the species temperature will be ignored.
		3 – This species is in parameter space but does not follow the common temperature value, eve if specified to be above 0.
		4 – This species is taken indirectly into parameter space. This value means that the density of this species is coupled to another species. Only the first species with a tag of 4 will technically be a parameter. Other species with a value of 4 will have a proportion of the density of the first species. This proportion is specified in the density of the species and will be multiplied by the first species' density with a species tag of 4. The current created by this secondary species will be included in the fit to the measured current but not directly varied. This method follows a common temperature if a common temperature is provided. If Delamere Composition is set to 1, then the species will follow those ratios accordingly.
		5 – Same as the procedure above but the species explicitly follows its own temperature as a parameter.
28. SPECIES_1_A – Mass of ion species (1 for H+, 16 for O+ and O++, etc.)
29. SPECIES_1_Z – Charge of ion species (1 for O+, 2 for O++, etc.)
30. SPECIES_1_N – Density of ion species, given in number/cc, unless argument of 4 is given as species tag. If 4 is given and it is the first 4 it is a density, if it is not the first species tag of 4 it is a fractional density to be multiplied by the first species density with a species tag of 4.
31. SPECIES_1_T – Temperature in eV, of Species. A common temperature will generally supersede this value, see species tags for details
32. SPECIES_X – Same as above where X is the number of the species
33. SPECIES_X_A – Same as above where X is the number of the species
34. SPECIES_X_Z – Same as above where X is the number of the species
35. SPECIES_X_N – Same as above where X is the number of the species
36. SPECIES_X_T – Same as above where X is the number of the species

Note: The number of species is defaulted to be 8 due to the number of species believed to be present during the Jupiter encounter. A value of 0 in the density location means this species, or lack thereof, will be ignored. Extra species may also be added so that there are more than 8. In order to do this, one can add headers in the same exact format as the existing species headers and fill in the appropriate fields.

Once the values are unpacked into a structure, the structure will be formatted fields inside the structure. There are by default 67 fields corresponding to the 67 headers described above. If there are more than 8 species the will be 5 extra fields created per species.

At this point values are appropriately unpacked into a workable structure, but we do not believe this is an easy way to work with the data and prefer creating arrays for each group of parameters. This is especially useful when fractional densities are used and the user wants to find out the density of the fit. To do this I begin by creating an array for each set of values, which is the length of the number of indexes or time stamps. Below are the arrays created to store the values as seen in IDL. Uncertainty arrays are created at the same time from the corresponding CSV file.

vr = make_array(index_number)
U_vr = make_array(index_number)
vphi = make_array(index_number)
U_vphi = make_array(index_number)
vz = make_array(index_number)
U_vz = make_array(index_number)
dn_proton = make_array(index_number)
U_dn_proton = make_array(index_number)
temp_proton = make_array(index_number)
U_temp_proton = make_array(index_number)
dn_odouble = make_array(index_number)
U_dn_odouble = make_array(index_number)
temp_odouble = make_array(index_number)
U_temp_odouble = make_array(index_number)
dn_Sodium = make_array(index_number)
U_dn_Sodium = make_array(index_number)
temp_Sodium = make_array(index_number)
U_temp_Sodium = make_array(index_number)
dn_stripple = make_array(index_number)
U_dn_stripple = make_array(index_number)
temp_stripple = make_array(index_number)
U_temp_stripple = make_array(index_number)
dn_oplus = make_array(index_number)
U_dn_oplus = make_array(index_number)
temp_oplus = make_array(index_number)
U_temp_oplus = make_array(index_number)
dn_oplus_hot = make_array(index_number)
U_dn_oplus_hot = make_array(index_number)
temp_oplus_hot = make_array(index_number)
U_temp_oplus_hot = make_array(index_number)
dn_sdouble = make_array(index_number)
U_dn_sdouble = make_array(index_number)
temp_sdouble = make_array(index_number)
U_temp_sdouble = make_array(index_number)
dn_splus = make_array(index_number)
U_dn_splus = make_array(index_number)
temp_splus = make_array(index_number)
U_temp_splus = make_array(index_number)
dn_sixtyfour = make_array(index_number)
U_dn_sixtyfour = make_array(index_number)
temp_sixtyfour = make_array(index_number)
U_temp_sixtyfour = make_array(index_number)
common_temps = make_array(index_number)
U_common_temps = make_array(index_number)
Delamere = make_array(index_number)
FIT_STYLE = make_array(index_number)

At this point it would also be good, but not necessary, to find the index location of the column you are trying to pull values from. You may also manually count the index location but this leaves room for human error. Instead I use IDL's where statement to calculate the index location of a set of values. An example can be found below.

e.g.
V2_LOCATION = where(csvheader EQ “V2”)		This searches the header array for the 								appropriate tag string location.

species_start_location = where(csvheader EQ “SPECIES_1”)

common_temp_location = where(csvheader EQ “COMMON_TEMPERATURE”)

Once we know the column indexes of the values we are trying to extract and have arrays set up to store data, we can now start making sense of our structure. We can do this by further unpacking the data using a for loop.

Most values can be unpacked relatively easily and do not need a for loop such as the flow speeds or fit tag. For this example, all data will be accumulated using a for loop. The for loop is needed to unpack density and temperature cases depending on the species tags used.

For I=0, Index_Number					Where index number is the number of time 								stamps fit (number of rows – 1). Minus one 								for the header
		
	vphi[i] = csv_data.(v2_location)[i]			This is an example of when for loop is not 								needed but is shown for simplicity.
	Delamere[i] = csv_data.(Delamere_location)[i]	Another simple case
	Common_temp = csv_data.(common_temp_location)[i]
								Continue to unpack the rest of the values in 								this manner excluding the densities and 								temperatures of ions. See below.

	Species_array = make_array(5, N)			By default N is 8 for 8 species
								This array holds all information about all 								species except for common temperature.

	Ncnt = 0						This is used to keep track of O+ vs O+ hot

	For jjj = 0, N Do					For loop for number of species
		For iii = 0, 4 Do				For loop for 5 values corresponding to each 								species
			Species_array(iii,jjj) = csv_data.(species_start_location + iii + jjj*5)[i]

		endfor						This loop stores all needed information to 								unpack species data
	endfor

	ind1 = where(species_array(0,*) eq 4, nind1)	Find location of first 4 tag if encountered
	ind1 = MIN(ind1)					Find first 4 if multiple

	If ind1 GE 0 Then Begin				If there is a 4,
		main_species = species_array(*,ind1)	this is now main species used to calculate 	Endif							the densities of tied species

 for jkl= 0, N do begin					This is an example of unpacking protons
								It will include uncertainties due to small 								variations as to how to unpack
 if (species_array[1, jkl] eq 1) and (species_array[2, jkl] eq 1) then begin

 if (species_array[3, jkl] eq 0) then begin
 dn_proton[i] =0.				set all to 0
 U_dn_proton[i] = 0.
 temp_proton[i] = 0.
 U_temp_proton[i] = 0.
 endif else begin
							Set densities below according to species tag
 if (species_Array[0,jkl] eq 5) or (species_Array[0,jkl] eq 4) then dn_proton[i] = main_species[3]*species_array[3, jkl] else dn_proton[i] =species_array[3, jkl]

							Set uncertainties according to species tag
 if (species_Array[0,jkl] eq 5) or (species_Array[0,jkl] eq 4) then U_dn_proton[i] = U_main_species[3]*species_array[3, jkl] else U_dn_proton[i] =species_array_uncertainty[3, jkl]
				
							Set Uncertainty to 0 if value is not fit
 if (species_Array[0,jkl] eq 1) or (species_Array[0,jkl] eq 0) then U_dn_proton[i] = 0

							Set Temperature according to species tag
 if ((species_Array[0,jkl] eq 0) and (common_temp ne 0)) or (species_Array[0,jkl] eq 2) or (species_Array[0,jkl] eq 4) then temp_proton[i] = common_temp else temp_proton[i] = species_array[4, jkl]

							Set according to species tag
 if ((species_Array[0,jkl] eq 0) and (U_common_temp ne 0)) or (species_Array[0,jkl] eq 2) or (species_Array[0,jkl] eq 4) then U_temp_proton[i] = U_common_temp else U_temp_proton[i] = species_array_uncertainty[4, jkl]

							Set to 0 if value is not fit
 if (species_Array[0,jkl] eq 1) then U_temp_proton[i] = 0

 endelse
 endif

							Lets do O+ since we use it as our main species 							whenever species are tied. IF Ncnt is 0 we are on 							first O+ species.
 if (species_array[1, jkl] eq 16) and (species_array[2, jkl] eq 1) and (Ncnt EQ 0) then begin
 if (species_array[3, jkl] eq 0) then begin
 dn_oplus[i] =0.
 U_dn_oplus[i] = 0.
 temp_oplus[i] = 0.
 U_temp_oplus[i] = 0.
 endif else begin

 dn_oplus[i] =species_array[3, jkl] 		Main species in our cases
 U_dn_oplus[i] = species_array_uncertainty[3, jkl]
									Set according to species tag
 if ((species_Array[0,jkl] eq 0) and (common_temp ne 0)) or (species_Array[0,jkl] eq 2) or (species_Array[0,jkl] eq 4) then temp_oplus[i] = common_temp else temp_oplus[i] = species_array[4, jkl]
									Set according to species tag
 if ((species_Array[0,jkl] eq 0) and (common_temp ne 0)) or (species_Array[0,jkl] eq 2) or (species_Array[0,jkl] eq 4) then U_temp_oplus[i] = U_common_temp else U_temp_oplus[i] = species_array_uncertainty[4, jkl]

 if (species_Array[0,jkl] eq 1) then U_temp_oplus[i] = 0
 endelse
 Ncnt = Ncnt + 1 							Increment Ncnt once O+ is hit once.
 endif else begin

Next time 16, 1 is encountered Ncnt will be 1 and we know that this is a hot species.

This methodology of filling in the parameter arrays continues for the rest of the species being considered. In our case O++, S+, S++, S+++, Na+, and SO2+.
EndFor

From here, all data should be unpacked into appropriate arrays. Plotting and calculating values such as fractional density should be much easier.

