
II. Pitch-Angle Diffusion 

11.1 Violation of an Adiabatic Invariant 

Purelv adiabatic motion, as described at length in Chapter I , characterizes 
the d;na1111cal problem in which the pba;cs <p1. <p2. and <p3 arc cyclic 
coordinate ..... These are thi.! phasi.!s canonically conjugate to tbe f undamcn­
ml acnon imegralsJ 1 =211111odc;I 1 .W,J2=J, and h=(q/c)<l> that iden­
tity thethrcl.!adiabatic invariants NT. J. and</> of charged-particle motion. 
Strict conservat ion of M, J. and <P is only a kinematical ideal that 
provides the framework for understanding radiation-belt dynamics, and 
geoph}sic:ally inreresilng dynamical phenomena involve violation of 
one or mori.! of the invariant<>. Violation of an adiabatic invariant occurs 
in the prc-.i.!rn.:e of forces that "ary on so short a ~patial or temporal 
scale th,ll paruclt:s having the same three adiabatic invariants (but 
different phase~) respond inequivakntly. 

Ordinarily this means that violat ion of the invariant associated with 
the action integral J; requires application of a force that varies abruptly 
on a 111m: scale comparable to the corresponding periodicity of adiabatic 
mouon '2n !l,). In some instances. however. spatial symmetries may 
pre!>el \Can 1nvanam even if thi -s condition on tht: time scale is satisfi<.:d. 
On the other hand . spatial variations of the forct: field that are abrupt 
on a length scah.: comparable lo the gyrorad ius can violate adiabatic 
invariants, im:!>pcctivc of the temporal scale. 

A variety of geophysical prm.:esses ca n violate the invariants of 
ad iabmic motion. Collisions. for example. act on a scale that is both 
spaually and ll!mporally abrupt with respect to gyration, and all thn:c 
of a charged partide's adiabatic invariants can be viola~oo. there~y. 
Elcctro~taw; and d ectromagneuc plasma cyclotron waves s1m1larly d1s­
tinoui))h among particles hav111g different gyration, bounce, and drift 

0 . • . . 

phases. Such waves are capable of violating all three adiabatic rnvanants. 
Geomag11etic 111icropulsations typically have frequencies comparable 
to panick bounce or drift frequencies. and thus <.:an violate J and/or 
<P. In 111a1w of the~e examples, the violation of </J is not severe by 
companso~ with that induced by geomagnettc suddt:n impulses and 
otht:r MOI m- and substorm-associated disturbani.!es of magnetospheric 
ex tent. Such disturbances distinguish among particles instantaneously 
present at different magnetic longitudes (having distinct drift phases 
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1.p3), but generally average over the phases <P 1 and cp2, thereby conserving 
the first two adiabatic invariants. 

lf the force fidd responsible for violating the adiabatic invariant 
associated with an action integra l J, exhibits sufficient spatial and tem­
poral c:ohc::rcnce, the distribution of particles initialli having in common 
their values of M. J. and <P can thereby become organized with respect 
to the phase I.pi. T hen, assuming for simplicity that only one invariant 
is violated, the associated dispersal of these particles with respect to 
the conjugate momentum J t12 n ca n be understood as a conseq uence 
of Lioll\~ ll e's theorem (Section 1.3) 12

• The dispersal is deterministic 
in the sense that L1J,, the change in value of J,. is a function of <p;: 
but the dispersal of a particle distribu tion with respect to J, appears 
random if one averages over (or loses sight of) the phase cp1• In practice, 
phase mixing always occurs eventua lly (see Introd uction) because any 
observational instrument has a grea ter-than-infinitesimal bandwidlh 
with respect LO the three invariants. Particles having slightly different 
values of M. J, and cf> may therefore be countoo as being observationally 
equivalent in the detector. However, since these particles have slightly 
different value-; of Qi. encompas~ing a ba ndwidth 11 Q;/211. their phases 
cp; will mix adiabatically on a time scale ~2rr/LJQ;. Phase memory 
persists in the distribution as the particles continue to gyrate, bounc;c, 
and drift, but this memory is hidden from an observer, to whom the 
particles appear to be randomly phased (see Introduction). 

For this reason, an essentially complete physical description of the 
earth ·s radial ion environment is pro,·ided by specifying the 11/wse-arer­
aged particle fiu>..es (see Introduction) in terms of M. J. <P. and time. 
T his suppression of the pha~c variables <f'; introduces an essential com­
ponent of randomness that permits violation of the adiabatic invariants 
to be represented by d{[fusion of the particle popula tion with respect 
to M, J. and/or <1> under most circumstances of interest. After phase 
averagmg, the various elements of the particle dbtribution, subjected 
to nonadiaba tic forces. usually appear to have walked randomly with 
respect to the violated invariants. Thus. the ultimate inability to dis­
tinguish particle phases by observation is a simplifymg Yirtue. 

Since the act ion variables ./;/2rr arc canonical. the basic form of 
the diffusion equation for radiation-bell particles is 

(2.01) 

12Sim:c the <lbtribution fu nction 1110\ cs "incompressibly .. through phase space 
in Hamiltonian mechanics [7] , a narrowing of the distr ibution with respect to 
<fJ• implies a hroadcning with rc:.pcd tu the J .. and vice vcrsn. 
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wherc/lp,r;t) is the phase-averaged partide distribution function and 
Dij is the tensorial diffusion coefficient. For practical purposes. there 
arc only two classes of internction not describable in terms of (20 I). 
One class involves change of particle identity. e.g., beta decay, electron 
attachment, recombinalion, charge exchange, inelascic capture, nuclear 
excilation. The other dass falls under the general heading of ' 'friction'', 
e.g., the gradual deposition of energy by energetic particle traveling 
through matter. Where such processes are truly important. as for the 
inner-zone proton population. it is necessary (and not usually difficult) 
to add the appropriate source and sink terms to (2.0 1). Although some 
of these non-diffusive processes are includt.'C! below, the primary emphasis 
of 1 he present work is on that multitude. of processes under which 
(2.0 l) very adequately describes the behavior of radiation-belt particles. 

lt is customary in radiation-belt physics to d i~tinguish between pitch­
a ngle diffusion (which violates M or J, and usually both) and radial 
diffusion (which violates <P). Although some diff usivc processes violate 
all Lhree invariants, the dichotomous viewpoint is conceptually con­
venient. As a rule. radial dilTusion cnabtes the radiation belts to become 
populated from an external scum.: (or rearranges particles injected by 
an internal source), while pitch-angle diffusion causes particle loss to 
an atmospheric sink. There are exception~ to this rule, but it is often 
fruitful to think in these terms; hence the distinction between radial 
diffusion and pitch-angle diffusion. The present chapter is devoted to 
pitch-angle diffusion, which arises from a variely of mechanisms. 

TI.2 Collisions 

Because radiation-belt particles have such high energies and low densities 
(sec Chapter f). CouJomb collisions between them are completely negligi­
ble. Collisions with ionospheric constitucnls, however, contribute impor­
tantly 10 t he ultimate demise of geomagnet ically trappoo radiation. 
Energetic particles traveling through matter (including the ionospheric 
medium) Lend to yield their energy to free and bound ambient electrons 
or to the excitation of atomic nuclei. Moreo\•cr, the phenomenon of 
charge exchange with an ambient atom effectively removes an energet ic 
proton from the radiation-belt population. 

As noted above, processes involving systematic energy loss to the 
medium are generally not describable by (2.0 I). Special terms must 
be added to account for such 11011-dif.fusire effects, although the friction 
mechanism may simultaneously be responsible for diffusion in pitch 
angle. Because systematic energy loss to the mc...'Clium can be interpreted 
as a convective now of.1 (p, r ;t) through adiabatie-invariant space. these 
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special terms have the form of the "divergence"' of a non-stochastic 
"current"' in the Fokker-PlancJ.. e111wtio11 ~ 

~~ + ~ /~J('~·:} { J = fy ?'~1 [ D 11 ;{]. (2.02) 

in w.hicl~ the subscript 1 refers lo frictional (non-stochastic) processes. 
Ordmanly the Fokker-Planck equation is written in the form 

where 

(ilf/t r)= - I [t<D:TJ:NJ +I [?2(Di,ll.1i'JicJ,], 
I fj 

o; = (ti Ji/ti 1),. + I(<! Di ;!<' J ;) . 
j 

(2.03 a) 

(2.03 b) 

The relationship between .1 and the phase-averaged flux ] ~ is i:,riven 
by ( 1.61 ), in Section I. 7. 

Inner-Zone Protons. An important example of non-stochastic "flow" 
in pha~e space is the deceleration of inner-/one protons (M .$4GeV/ 
gauss) by free and bound electrons in the upper ionosphere. Occausc 
the rest-mass ratio mp.hn,. is so large. the protons experience no significant 
rang.e straggling or pitch-angle diffusion (see below) in traversing the 
med ium. In other words. the equatorial pitch angle remains constant 
while M and J decrease systematically by virtue of energy transfer. 
The ra t ~ of energy tra nsfer is obtained by mcans of elaborate quantum­
mechamcal calculations. which yield [37, 38) 

(111., r/4 n q~ q;)(d E/d t),. = N,. [1 - r - 2 
- ln(J.,,11v/ li)] (2.04) 

+ L N;Zd I -j' -
1 

- In [2m,,c2(/-1)/1,JJ, 

where 1· is the speed of the proton, and }' is its ratio of relativistic 
mass to ~est mass. The quantities N,, and N; are obtained by averaging 
the dens1t1es of free electrons (N.,) and gas molecules (IV;), each of 
the. latter co 1~taining Z1 bound electro ns, over the proton trajectory 
(drift shell). Smee the ionospheric {or plasmaspheric) Debye length ;.D 
appears ~nly logarithmically in (2.Q.4), it may be evaluated anywhere 
on the drift shell (e.g., wh.:re N,. = N,.) without introducing substa ntial 
error. The quantity Ii has the significance of a mean excita tion energy 
for the bound electrons: typical values of J,, along with drift-a veraged 
values of Ne and /\:, [38], are given in Table 5 for selected drift :,hells 
on which J =0. These shells are identified by the Mcilwain parameter 
L"! (see Section 1.5). which equals (Bo/B,.,)1 3 in the case of particles 
m1rronng at the magnetic equator. The major contribution to each 
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Table 5. Drift-Averaged Atmo~pheric Densities, cm- 3 

L,. j 

l.1 50 I I 
J 186 H 
1.247 II 
1.349 II 
1.SOO H 
1.900 H 
2.500 H 

1. 1 '\0 lie 
1.186 He 
1.247 lie 
1.349 He 
1.500 He 
l.900 He 
2.500 lie 

1.150 0 
1.186 0 
1.247 0 
J.349 0 

1.150 N: 
1.186 Ni 

1. 150 0 2 
I.I SO c 
1.186 c 
1.247 c 
1.349 c 
1.500 e 
1.900 c 
2.500 c 

2 
2 
2 
2 
2 
2 
.2 

8 
8 
x 
8 

14 
14 

16 

f 1. 

cV 

J5 
J5 
15 
15 
15 
15 
JS 

4 1 
41 
41 
41 
4 1 
41 
41 

89 
K9 
89 
89 

78 
78 

89 

Phase of Solar Cyc:lc 

Maximum A\·cragcd Minimum 

5.36 x 101 7.09 x IOJ l. 17 x 104 

~.48 x 10" 5.90 x JO·' 9.58 x 10 1 

:u2x 103 4.34 x 103 6.93 x 101 

2.'.!3 x 1oi 2.XX x IOJ 4.50x IO°' 
U Ox 10·1 1.65 x 101 2.50x 103 

5.15xl01 5.99 x JO! 9.22 x 102 

1.95 x 101 2.24x 10! 3.09x 101 

1.26 x lO" 6.17 x lO' 1.52 x 105 

5.94 x 105 :uu x 10' 6.51 x IOJ. 
l.74xl0~ 798x 10.t 1.70x JO" 
HOx 10.1 1.48 x I0.1 2.84 x IOJ 
3.83 x 10·1 1.55 x 10·1 2.61x l01 

9.64x 10 1 2.86 x 101 

2.25 x 10" 7.51x10 I 

4.8J x 10•· 2.41x 101
' 8.24 x 1 0~ 

1.87 x 10~ X.41 x 10., 1.87 x 10• 
9.87 x 101 3.77 x 10~ 5.92 x !01 

2.82 x 10 1 

2.45 x 104 1.66 x 10 .. 6.46 x IOJ 
X.06x 10 1 4.61 x J01 l.27x 101 

5.57 x 1 0 ~ J.5J x 101 l. 19x 102 

J.L5 x 10~ 1.62 x 10.1 1.61 x !OJ. 
4.1Jx104 5.34 x LO·' 7.10 x I03 

9.32x 10·1 2.89 x 103 4.59 x 103 

3.29x 10 1 3.03 x 10.1 J.24 x !OJ 
2.66x IOJ 2.65 X 10 I 2.66 x 103 

l.69 x 10 ) l.69x 103 L.69x W 
7.92 x 102 7.92 x 102 7.92 r I 02 

Ni on these drift shells Ol:curs a t the Sou th Atlantic .. anoma ly" (see 
Section 1.5). where each of' the shells attain~ its perigee all itude under 
adiabatic motion. 

The qua ntity Eld E/dt l l is interpreted as an tnstantaneous e-folding 
time for the kinetic energy of a proton depositing its energy in the 
atmosphere. T he dependence of this e-foldmg t ime on L,,, is illustra ted 
in Pig. 14 for proto ns having sdcdcd values of M (given in G eV/gauss) 
and J =0 (39]. At constant M and J, the .. lifet ime" aga inst Coulomb 
deceleratio n thus peaks at L,..:::::. 1.6. 

In view of the great magnitude of the time scales for proton energy 
loss (see Fig. 14). it is essential lo re-exam ine assumption" concerning 
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1-i~. I~. F:!focti \ c lifetimes aguinst Coulomb drag (<>nergy loss) for eq uatorially 
mirroring 111ner-zone protons (dotted curves) m selected values of lht: first invarianl 
·~' · GeV g,1uss. Solid curYc ;;hows corresponding Lime ~e<1lc - Bu'2 80 for enc:r2iza-
11on by pn.>:.enl secular variation. of g~magne1ic dipole momenc (39). Dashed 
~urves show roughl~ correspond~ng time ~citi es L2/JO Du. for energization by 
inward rndial d11Tuswn (sec.: Sc:ct10n lll.8). assuming (a) Du= 10 8 L 10 day- 1 

and b) Du.= IO " l 1" day 1• 

the consta ncy of Bo in (l.37 ) W!)en carrying o ut 1heoretiml (.;alculations. 
fn fact, the present value of Bo( :::: -0.0 16 ga uss/century) leads to an 
insta ntaneous time scale -(L/ l)= -(Bo/ Bo)-2000yr for the secular 
contrn ction of ad iaba t ic drift shd ls. T he conservation of M a nd .J 
during this secular contraction implies a secular energization of geo­
magnetica lly t ra pped par ticles. Tn a contracting dipole fi eld the preserva­
tion of M=p2y2 L~~/2mo Bo and J =2 Lap Y (y ) implies tly/dt=O and 

I dE 2 d80 [1•+IJ [(i·+ f),'2~·] 
£ Tt=- B

0 
d 1 21 """"Tooo~· (~.OS) 

T hus. the equatorial pitch angle remains invar iant. a nd a nonrdativistic 
proton has its energy increased by a factor of eon a time sc<1 le ..... IOOOyr 
(sec F ig. 14). T his time <>cale is comparable to that for energy loss 
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to free and bound electrons. and so it appears chat the two processes 
are mutua lly competitive ror inner-belt protons [39]. 

Since inner-zone protons arc subject, in addition. to radial diffusion 
over the time scales of interest, a theoretical analysis of the quasi-static 
profile of the inner bell is deferred lo a later chapter (see Section 
V.7). Al this point it is appropriate to discuss only the form of (dJ ;ldt),. 
and of its "divergence·· with respect to Ji· Since J 1 = 2 n mo clql- 1 ,\1 
and l2=J, this .. divergence" may be written (for a dipole field) as 

'\' c [(" J,) 1-J ,... [(" ,\J) -J c [(d J) -1 L,- - =-~ - - J +-::- - I 
, cJi d1 • , M itt , J.t!J , 1 c11 , .'I.Ill 

( [(" M) ~1 J (" i'vl) = c M dr / + 1.M dr " (2.06) 

( 
1110 )

1
'

2 
( ' [, (d £) -J = - - ··-i· - I 

1M n;:, aM 1 dt , · 4' 

in the limit of cquatorially mirroring (J =0) protons, for which (dEid1 ), 
is given by (2.04) 13. The unidirectional fluxl.d = 21110 ,\-1 8 11,J) is considered 
a function of Mand <P in (2.06) and should be evaluatt.-d a l the magnetic 
equator. where B= B, .. Of course. both y and (d£,'dr ), arc functions 
of ,\1 and <P as well : in a d ipole field t he fact that TJ, = B(\ L 3 

= ( 1/8 n3 a 0 B6)1<PI·' implies 

')' 2 = 1 +(2M B0 /m0 c2 iJ )= l +(M/4rrJa<> B6m0 c2)1<1>1 3 (2.07) 

for par tides having J - 0. In th is case the phase-averaged distribution 
function that sat1sfit:s (2.02) is given by 

.1= 14>1 3 (4tr3 a0 Bfi/moM) J . (2.08) 

Coulomb energy loss for ions o ther than protons can be evaluated 
from (204) if qp is replaced by the ionic charge and l' interpreted 
as the ionic velocity 1°'. 
Charge Exchange. For protons of much lower energy than those repre­
sented in Fig. 14. tht: main coll isional "loss .. mechanism is charge 
l!Xchange. whereby a proton absorbs a n electron from an ambient atom 

''Nok that rtJE/d1), depends ra ther weak ly on M . which reduces lo 11·1 - l) 
x(111 11 c

21'.!8,.) for J =O. It can he shown hy Jacobian methods (~ee below) that 
(:!.06) holds not only for J = 0. but more generally for any constant value of 
K!= J 2

,18111.,.\l. 

1JAs not~'CI above. the explicit time dependence or 8 0 is potcnt1ally an import.ant 
dTcct for the m.ner proton belt. The time scale~ illustrat\.'Cl in Fig. l4 apply 
only to the present epoch, and not to past or future centuries. 
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L 

Fig. 15. Charge-exchange lifetimes again~t neutra lization for cquatorially mirroring 
protons (H • ) and hdium ions (He lat selected value:. o r .\/1 1. MeV 'gauss-nucleon 
[40). 

and escapes from the radiation belt ::is an energetic hydrogen atom. 
This process is microscopically catastrophic (a "one-shot,. interaction). 
and so, unlike that described by (2.04). it is best characterized by a 
true lifetime Tq=/q/r, where lq is a mean free pat h. Typical charge­
cxchange lifetime against conversion of H + and He - ions into tt0 

and He0 atoms by the hydrogen-atom environment are illustrated in 
F ig. 15 [ 40] for a n appropriate atmospheric model [ 41]. It is conventional 
to compare coincident radiation-belt fl uxes of distinct ionic species 
at common values of E/A (kinetic energy pt:r nucleon). where A is 
the number of nucleons in t he ionic nucleus. According to this conven­
tion 15

, first invariants M for H + are directly comparable with first 
invariants4 M for He+. The particles described in Pig. 15 are nonrelativis­
tic and have vanish ing second invariants (J =0). T he governing equation 

' 'Because the comcntional comparison is between ions ha\'mg E1A in common 
at the same point in ~pace. and therefore having ,. and ">' in common within 
experimc:ntal error. the (."oulomb -lirctimes"" l(d In E1dt) I ' ~calt: as Aj/1J} according 
to 12.04). where the sub~cript j denotes tbe species or the energetic ion. 
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in the presence of simple charge-exchange losses has the form 

ci.T =cl+ I!_ [(d1j) r]- I !___ [v .. ol ] = - z. (2.09J 
dr - D1 , <J; c11 , · u BJ; 'JcJj rq 

The charge-exchange lifetimes shown in Fig. 15 are deduced from cross 
sections u [ 40] shown in Fig. 16, applied to a model atmosphere [ 41] 

N 

E ..., 
. 

z 
0 
;:: 
'-' w 
"' 
~ 
0 
a:: 
u 

-15 
10 

-1 9 t__J__L_J....U_ L-£..J_l_Ll___.l--'--L...J....l...!.-:__J 

10 100 IOI 102 103 

[NEflGY, keV 

Fig. 16. Jon-energy dependence of ch<trgc-cxchangc cross sections in <1lomic­
hydrogen almosphc:re [ 40). 

and model field. Evidently charge transfer is a simple loss process 
governc,'CI by (2.09) only for singly charged ions (with £ :$400 keV in 
the case of He+). A single cross section u 11 governs conversion of H + 
into H0 • and there a re no competing channels open to radiation-belt 
protons. Three separate cross sections are needed to describe charge 
transfer in helium: 0'1o for the nemralization of He+ {He+-.He0

), 0'12 

for the conversion of He + into He++ (an insignificant reaction for 
E:S400keV), and 0' 21 for the conversion of He i--r into He+ (the largest 
<.Toss section of the three for E:S400 keV). T hus, in the presence of 
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comparable He + and alpha-particle (Hc"' -r ) Ouxes, 1t 1s necessary to 
introduce coupled crans_port equations for the phase-averaged distribu­
tion functions of He+ (/i) and He'+ ( f2). i:iz., 

(dTi/d /)= -(ft /r to)-(ft/T u) +(fJr z 1) 

(cl .Ti/di)= -(.i;;t21 ) +(J; /rn). 

(1.10a) 

(2.10b) 

Except for the possible reconversion of energetic H 0 into H i- deep 
within the atmosphere in the course of precipitation {sec Section II.7), 
no such cross coupling occurs in the description of proton or electron 
radiation belts. This lack of cross coupling is a welcome simplification 
for these two major constituents of the geomagnetically trapped radia­
tion. 

Pitch-Angle Diffusion. 1 n add it ion to atmospheric deceleration, radiat ion­
belt dectrons undergo both piich-anyle diffi1sion and ra11ge srrnygling 
to a significant degree. These latter two effects arise because the mass 
of a radiation-belt electron is equal (apart from relativistic effects) to 
the mass of the atomic or plasma electrons with which it collides. 
The result is that deflection (pitch-angle scattering) becomes comparable 
in importance with energy loss. Moreover, the energy lost in an individual 
collision strongly depends on the scattering angle, which is a random 
variable. Thus, atmospheric collisions cause radiation-belt electrons to 
diffuse not only in pitch-angle cosine (x) but also in energy with respect 
~o the mean value of (d Ejdt), .. This latter phenomenon (energy diffusion) 
is known as ran(le straggling, because (in nuclear-physics ex perimenta­
tion) it permits the constituent particles of a monoenergetic beam to 
traverse statistically varying total path lengths before coming to rest 
in some material medium. For radiation-belt electrons, range straggling 
has the effect of smoothing the energy spectrum, which typically arises 
from a relatively unstructured source spectrum anyway. Thus. range 
straggling is usually neglected altogether. 

In this and other problems for which third-invariant violation is 
unimportant. the variables E and x (kinetic energy and pitch-angle 
cosine) are usually more convenient than M and J. The corresponding 
difTusion matrix 

(2.11) 

is diagonal because, in individual collisions, L1 E and Llx are statistically 
uncorrelated; the change in energy is an even function of the change 
in x. Since the ensemble average (L1£Llx) therefore vanishes, so do 
the off-diagonal components of (2.11 ). 
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In general. the transformation of (2.01) and (2.02) f~om the set. of 
act ion \'ariablcs J , to some set of new rnriables q1 r~utres evaluation 
of the Jacobian [51 GIJ,:QJ); det(c J ;/tQi). The diffusion operator then 
ha~ the property that 

(2.12) 

Jn a dipole field it is easy to calculate the Jacobian G(M,J:E.x), wh:re 
M = 1'2.1'2 L-' /2moBo and J = 2Lap Y(y). According to (1.30), the funcllon 
y ( i·) has the property that Y(y) - y Y' (y)= 2 T(y). The energ7 and ~o~cn­
tu1;1 arc rda ted as in (J.60). and x 2 +y2 =l. The partial derivat ives 
needed for calculat ing G(M,J: E,x) are 

(f M/(>E), = 2m M/p2 

(11 M/i' x)e= - 2xM/y2 

(i'l J/ t E),=(2111 La/p) Y(y) 

(l~.l li'x)£= - (2Lapx/.1'2)J Y' (y), 

(2.13a) 

(2.13 b) 

(2.13 C) 

(2.13 d) 

and it follow<; that 

G(.\1.J: E.x) = (4 ;· pl 4 a/Bo)X T(y). (2.14) 

Moreovl.!r. the ··divergence'" of the non-stochastic ··current"' introduced 
in (2.02) may be transformed to read 

I " [(d1·) r] = ~ I ~[c(dQ;) 1]. (2.1s) 
1 t J 1 d r ,. G ; ,; Q, d r • 

and so the Fokker-Planck equation for radiation-belt yarti~lcs subje:t 
only to atmospheric scattering \radial diffusion explicitly ignored) IS 

i'.-f· I (l [ (d E) ""] 1 J [ . T( ·) D t]] ••p -.- j +--- :\'. j <X~ Ti = }' p j) E I d t " x x T(y) (! .'( . . c: x Ii 

+ J_ ~[rrDn; ~lj . (2.16) 
l'P ilE l .' £ ·' 

T he first term of (2.16) represents a non-stochastic (mean) energy loss 
to the atmo!>phere, as described by (2.04). The second t~r~1 repres~nts 
pitch-angle dilTusion, and the associated transport coeffic1cnt 1s given 

[42] by 
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_, 
x J :1 [x2 I + (B.,'8)](1- cos{})2 (2. t 7) 

- 1 

+(I - x1)sin2 0! (do/ dQ)d(cos fJ)) 

where d <Tj/d Q is the differential cross seclion for an energetic electron 
incident on atmospheric constituentj at scattering angle 0 in the ··Jabora­
tory" frame. Debye shielding is considered in the specification of daj dQ. 
T he third term of (2. 16) represent , range straggling (diffusion with respect 
to energy). 

The deri vation of (2.17) is straightforward. If an electron initially 
traveling in the z direction with local pitch angle a relative to B (which 
lies loC'..tlly in the x: plane) is scattered through an angle O. the resulting 
change in its value of cos:x is 

LI cos'.X = coso: (cosO- I)+ sin e< sin 0 cos <p. (2. I 8) 

where <p is the azimuthal coord inate about the direction of i Since 
d<J) dQ is independent of cp. the expected value of 2(.d cos:x)2 is 2cos 2 :x 
x (I - cos 0)2 +sin 2.:xsin 2 U. ln terms of the equatorial pitch angle 
cos- 1 x. one obtains sin 2 :x= I cos' 'X = ( 1- x~)(BIB,,). Tt follows cha t 

(2.19} 

Finally, the dilTusion coefficient D.- is defined as half the rate at which 
(LI x)2 grows with time. 

The factor of one-half that enters the definition of D,,,, ca n be under­
stood in terms of a simplified prototype dilTusion equation of the form 

(2.20) 

which applies in one-dimensiona l problem~ for which D~~ is wnstant 
with respect to the n:dilinear coordinate~. The use of (2.20) is chosen 
over (2.16) for illustrative purposes only because (2.20) is satisfied by 
the simple unit-normalized Green's function 

.f(e,t)= (2rra2 ) - ' ' 2 exp[ (e ~o)2/2a2], (2.21) 

where a is a function of time and measures the "width., of the distribution 
in the sense that 

+:> 

al = J (~ t;o)"/(~,lld ~ . (2.22) 
- , 

Direct application of (2.20) implies that 

D _ ti ("z) 
~~ - dr 2 · (:2.23} 
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as indicated. Moreover. the distribution ( (~.r) given by (2.2 1) becomes 
the Dirac function c5(~-~0 ) in the limit a =O. In view of (2.22). the 
quantity a~ also represents the net mean-square migration of an indivi­
dual particle (a"cragcd over the ensemble) from the point ~=~o; the 
elapsed t ime of this random migration is a2 /2Dt;~· This simple illustration 
epitomizes a general principle that is extremely useful in the calculation 
of diffusion coefficients from dynamical information. Of course. the 
metric in (2.16) is not as simple as that in (2.20). and so the G reen's 
function is not easily identified. The basic relationship (between a diffu­
sion coeffi cient and the ensemble-averaged square of the random migra­
tion with respect to a kinematical variable) holds true nevertheless. 

Inner-Zone Electrons. Even with the inclusion of Debye shielding, the 
differential Coulomb cross section da;/dQ is strongly peaked in favor 
of forward scattering (0 ~ I). It follows that the mean value of (I -cos(j)

2 

in (2. 17) is much smaller than that of sin2 U. The distribution of terrestrial 
atmosphere <.:aui>es the bulk of the scattering in (2. 17) to occur near the 
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(da~hcd curve) for inner-1.onc electrons subjected solely to ;itmosphcric collisions 
L 42]. 

mirror points, i.e., where 8-::::; 8,,.. Moreover, the mirror points must 
not lie loo deep in the atmosphere at any longitude if the phase-averaged 
treatment explicit in (2.0 1). (2.02), (2.04). (2.16), and (2.17) is to have 
any meani ng. Other methods of analysis. preserving <p3 as a variable, 
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must be employed unless 2rr Du~ jQ31 and 2nj(cl £/dr),.I ~ jQ3J£. Granting 
these conditions, it is clearly permissible to neglect the term 2 [x 2

- I 
+(B,.f8)](1 - cos 20) in (2.17) by comparison with (1-x2 )sin1 0. The 
main energy dependence both of (d £ ,'di), and of d a /ti Q can be factored 
out, leaving the quantit ic.'> -(i:/m0 c3)(d £,t/t), and (2p3:;·mijc3y2)D.n 
~hat arc plotted [ 42] against x in Fig. 17 for sclcctt.'Cl values of Lm 
m a model atmosphere. The plotted funct ions. whose variations with 
energy are extremely weak. are evaluated here for !:.. :::::: 1.5 MeV. Both 
functions have the dimension of frequency. 

Figure J 7 illustrares a sharp distinction at L,,,= 1.9 between electrons 
for which x ~xc:::::0.9 and those for which x~x" T he former are scattered 
~lmost.ncgligibly 0~1 timc scales for which the latter experience virtually 
mu?ediate absorption by the atmosphere. Equatorial pitch angles for 
~h1ch lxl>x,. arc therefore sa id lo constitute an atmospheric loss cmie 
111 momentum space. ln mathematical terms, the coordinates x= ±x,. 
represent perfectly absorbing boundaries at which I is forced to vanish. 
Energy Joss a nd pitch-angle diffusion satisfv the conditions 
27rj(d£/dr), l~lfh1£ and 2nD,u~l~hl extremely ~vell for lxl<x. at 
E"" I MeV, thereby justilying the phase-a vcraged approach. T he ultimate 
sink for inner-zone radiation. however, is quite localized at the South 
Atlantic "anomaly" (see Sect ion 1.5), where drifting particles having 
x:::::x,. must dip deep into the atmosphere to find their mirror-field 
intensity Bm. 

A rough estimate for the loss-cone angle cos- 1 x, can be obtained 
by post~ lating total absorption at altitude Ir(:::: 0.02a) and displacement 
o~ the di pale by r o( ~0.07 a) perpendicular to its axis. This eccentricity 
ol the dipole plays an important rok in rntting off the inner zone. 
The indicated parameters pred ict that 

1-x; ~[(a +/z)/LaJ1 [1 +3r0 (La)- 1121a + li)- 1
: 2 ] 

+ [4-(J/ La)(o + h)-3r0 (La) 3' 2 (a+h)' '2 ] 1i 2 (2.24) 

as a function of L. This formula yields Xe~0.940 at L = 1.9 (cl Fig. 
!7), x,.::::0.567 at L= l.1 85. and Xe= O at L~ 1.085. Thus. the function 
I should vanish for all pitch a ngles if" 'L $ 1.085: in fact, a true South 
A~1erican anomaly a<.:cidcnta lly near the eccentric-d ipole ··anomaly" 
raises t~e lower ?otmdary of the inner 1.onc to L = 1.10, approximately. 
According to F ig. 17, the loss cone is a poorly defined feature at 
Lm= 1.185, and so this simplifying concept is inapplicable there. The 
loss cone, however, is sharply defined over most of the magnetosphere 
(at least for L_<. 1.9, according to Fig. 17). and is known to play an 
essenual role 111 the dyna mics of geomagnetically trapped radiation. 
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11.3 Wave-Particle Interactions 

The atmosphere alone is quite incapable of accounting for the decay 
rates observed following temporary enhancements of the electron nux 
beyond L::::: 1.25 (sec Chapter l V). The situation is indeed extreme al 
L;?;:4, where storm-assrn.:iatcd enhancements of the nux at £--..0.5 MeV 
characteristically decay by a factor of I! on a tim<.: scale ..... 5 days [ 43]; 
i11 sitrr deceleration and pitch-a ngle scattering into the loss cone, if 
caused solely by collisions with the tenuous atmosphere. would require 
thousands of year to produce the same amount of decay. The discrepancy 
i~ qualitatively s imilar for outer-belt protons, although the observational 
data are considerably less ex tensive than for electrons. lt is therefore 
natural to invoke non-collisional mechanisms for pitch-a ngle scattering. 
These ml.!chanisms are clm;sificd under the generic term wure-particle 
inf r:racr ions. 

Magnetospheric waves may arise from a variety of sources. Some 
waves may enter the magnetosphere from the turbulent magnctosheath 
bee Introduct ion) [44]. Waves known as whistlers originate from light­
ni ng discharges in the atmosphere. Whistlers propagate in a plasma 
\\.ave mode that can also conduct VLF (very low frequency, 3- 30 kHz) 
rn<lio transmissions through the magnetosphere. Man-made (Morse) 
signals often trigger new VLF emissions in the magnetosphere, as illus­
trated in F ig. 18. Moreover. plasma instabilities in the whistler (electro­
magnetic electron-cyclotron) and other wave modes constitute a pro­
digious magnetosphcric source of wave energy. The VLF phenomenon 
known as chorns (sec Fig. I 8) apparently arises from one such instabili ty. 
Othcr plasma instabilities n1ay give rise to waves known as continuous 
(Pc) and irregular (Pi) yemnaynet ic 111icrop11/satio11s, which are commonly 
observed o n the ground and in space at frequencies from -2mHz 
to ~ J Hz. A summary [ 4. 47] of the magnetospherically important 
frequency classificat ions is provided in Table 6. 

Table 6. Classitication of Magnelo~pheric Signals 

Name Frcqut:ncy Name Period or Rbc Time 

SHF 3-30 GHz Pc I 2-rr iw= 0.2- 5.0 sec 
Ull F 0.3- 3.0Ci117 Pc 2 2rr/w = 5- 10 ~cc 
VHF 30-300 MH.l Pc 3 2n:/!11= 10 45 sec 

HF 3- 30 MHt Pc 4 2 n::l'i 45-150 sec 

Mt- 0.3 - 30 MHz Pc 5 '!. rc,'tn 150 600 sec 

LF 30-300 l..Ht 
VLF 3 30 kHz Pi I r,= 1-40 \CC 

1-LF 3 - 3000 117 p· 1 •- r, 40 150 ~c 
L:LF ::53 Hz SC. Si r, -300 c;ec 

---
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'.ig. 18. Example~ of mag~ctosphcric .wave . P.h~nomcna o hscrvcd at r= tt [ 45] 
and r = 6.6a [ 46]. fa) multiple-hop .whistler m1llatcd by n\."Jrb} lightning ~trokc 
(arrow) and reflected bet~eeo conjugate points along J o;mgle rn::ignetosphenc 
path; (b! choruc;. char~c~emed .by elements of c;harpl) ri~ing frcqut:ncy: (c) ri~mg 
a nd fallmg VlF cm1s~ 1om triggered by Morse-code transmission from NAA 
fl•J/ 2rr"."' 14.7 lliz, 11=56 land detected by mobile station <H ,1 ::::; 50 in the South 
Allan t1c; (d ). coh~rcnt Pc-4 mic~opulS<JLion ((J)/2re- 10-• I lzJ ohscrved al syn­
chronous alt1ludc in thc compressional(~) componcnl, but ab:;cnl in the 1ransvc·rsc 
(p and q>) compo11c11ts relative to the unperturbed B field there. 

Not all magnctosphl.!ric waves and disturbances can interact effec­
tively wilh tra pped particles; each trapped pa rt icle exhibi ls the thn.-c 
f~ndamental periodicities of adiabatic motion, and '\O tends to suppress 
(filter out) spectral components of applied forces that are dista nt in 
frequency from its natural resonances. T hus, trapped particles yield 
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a net difTusi"e respon'c to forces that haYc spectral power within a 
narrow band about some natural resonance frequency in the frame 
of the particlc·s adiabatic motion. The width of the passband is deter­
mined by the duration of interaction, according to the classical analogue 
of Heisenberg\ uncertainty principle. More specifically, the bandwidth 
Llc-1 is equal to l n 'r. where r is the interaction time. The interaction 
time may be limited b) the duration of a wavelike signal or noi c 
burst. hy the time required for a particle to traverse a spatially limitcxl 
region of wa vc activity, by temporal variation of the wave frequency 
required by a particle for resona nce. or (more generally) by the eventual 
breakdown of phase coherence between a particle and the Fourier 
component of the wave spectrum with which it is resonant. 

To the extent that the wave spectrum is smooth (structureless) over 
a ha11dwidth ..... 2rr/ r about a resonance frequency, the interaction is 
truly rc:-onant in the sense that the "line shape" rcsemhles a Dirac 
delta function. More generally, the particle accepts a Lorentz-weighted 
mean or th.: wave-spectral density over a bandwidth Ll(<u/2n)= l /r about 
the resonance fn:quency t<•. 

ln the interest of completeness, Tabk 6 includes such disturbances 
as :.tormtimc sudden commencements and magnetic impulses that arc 
only vaguely wavdil-.e in character. More precisely, the "wavelengths·· 
associated with '>Lich disturbances are comparable in size to the magneto­
-,pherc itself. Since their time scale are so long (~minutes), these distur­
bance:-. violate onl)' the third invariants of radiation-belt particles: such 
proc:.:,sesarcconsidcnxl in Chapter III. The present chapter is concerned 
with processes that violate t:ither or both of the fust two invariants. 

11.4 Bounce Resonance 

A force field can \ iolate the second invariant (while preserving the 
first) through a resonant interaction with the bounce motion of a trapped 
particle [ 48]. A force .Iii (s, 1) that perturbs the bounce motion could 
typically originate from a compressional {magnctosonic} micropulsation, 
in which case .fi1= - (M/)')({~b1 1/i'1s). or from an electrostatic wave 
l.f'u=11

1
e11 ). The field perturbations band e are understood lo project 

16\'iolatiun of .1n adiahalic invariant is the dassicul analogue of the breakdown 
or Huenfc~t'~ 1hcorem in 4uantummechanics. This theorem holds that the quanium 
number~ of a particle. as given by the action integrals of its qua:,i-periodic motion:. 
in the okl I.Buhr Sl1mmerfold) quantum theory. do not diange by a~ mud1 as 
~l unit vf Ir if the apphcd force field varies only on a sufficiently long lime 
s..:<ile. l· orccs ~•olating this condllion lead to diffusion with respect to the classical 
:1d1a h.1tic 111variants. 
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nonvanishing components ~I I = b· B and e 1=e· B along the unperturbed 
B field. If the normal (to B) components of b and e are confined to 
the azimuthal (ii>) and meridional {cp x B) directions, respectively, then 
bounce resonance will not contribute to radial diffusion in an azimuthally 
symmetric B field. 

ln_ this C'<1Se ~nly the second imariant is violated and the governing 
equation of mouon [3] is 

(d p111dr)+ (.<\-1 /y)(c B/c~ s) =.Iii (s. t) (2.25) 

where fl 1=)'ll10L't1 =}11110 .\. Since the unpcrturb"'Cl geomagnetic field B 
is taken to be static, it follows that 

dw/dt - (p11/111o)fii (s. 1), (2.26) 

where w=(P1T/2mo)+MB=p2/2mo. The oscillatory force fj1(s,t) thus 
threatens to alter the particle's energy, leaving M and <1> invariant. 
This is equivalent to the violation of J only. and the relevant Jacobian 
is 

G(M,J, <P: M, w. <P) == (rlJ /c w)." ·"'==4La(mo/p) T(y} (2.27) 

if B is given by { 1.161, i.e., for a dipole fi eld. 
T~e oscillato~·y force .fi1 (s,f) is conveniently represented as a super­

po~1t1on of Fourier components applicable Lo the time interval 0< t < r. 
This means that 

y 

./ 1(.,,1)= L f.cos(k ·' 0J,,t + ~1,,), (2.28) 
11 - 1 

where c1J,,=2rc11; r. ku(k· B) is the parallel wavenumber corresponding 
to frequenc~ w,,J2n. and t/ln is the corrc!>ponding phase (ultimately a 
rand~m vana~le) -~f the wavdil-c Fourier component. Each component 
contnb_utes (1 1~)}n_to the !11ea~-S(JUare force perturbation ( [Jii(.s.t)]2). 
an? this contr1but1on resides ma frequency interval Ll(w/2rr)=r- 1

• 

ft 1s therefore appropriate to introduce the spectral density 

.-F11 lw11/2 n) = ( t /2)j,,2 (2.29) 

a~ an optimal eharaclcri1.al ion of the force field Jj1(.s,1). Moreover, by 
vrrtue of (2.29), each Fourier component acts separately from the others. 

The unperturbed bounce motion may be represented 

sit) :::: (p.\ /111!22) sin(f2.zt I cpz) (2.30) 

for particles having x 1 ~ I (sec Section 1.4 ). It follows from (2.26)-(2.30) 
that 

~, , r 

ii 11· ~ (p X/ m 0) Re L J c~(!l2 t +<Pi) CUI) 
n - I 0 
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If r is interpreted as a large (ullimately infinite) integral number (N) 
of bounce periods 2n/Q2• then it follows that c11n=(n/N)Q2 and 

+ -r 

LI 1r~ (px1111 0)t I, (//:1) J1( : 1)cos(IQJ;, + l/l" )J;,v (2.32) 

where :1:=k" 11x/mQ2 and 11 denotes the Bessel function of order I. 
In the evaluation of D ... w=(L /2r) ( (L1 w)2

) . where the angle brackets 
denote the ensem ble average over the phases <Pi and t/J" , the cross 
term:; vanish and I he result is 

J.. 

f)""";:::;;(px/mol2 L (//:,)2 Jf(:rlY'i1UQ2/2n). (2.3}) 
, _ l 

Since (ow/8 x).w.1.= 2 M B0 x/l 3 y4
, it is logical to define a diffusion coeffi· 

cicnt 

D .•. , = [(<1 w/2 xhuJ 2 D11,,,. 

"' 
~(/} y6/2m0M B0) L (// z1)

2 Jf (:,) ffei1(1Q2/ 2rc) . (2.34) 
/ : l 

The corresponding diffusion equation 

cl = r~ !_ [x T(r) Dxx ~1] 
t r xT(y) e x y 3 

- l X M. I, 

(2.35) 

is constructed from the canonical formalism by inser ting the Jacobi<~n 
G (M.J : ,\.1.x)= (c"lJ /t w ).w.L(f w/cxhu= (8amo .114 Bo/L1)(xlpr~l T (y) m 
t2. l2). T hediJTusioncoefficient D.udisplaysa str~ngly mv~~sc de~nd:n~ 
on x2 ( = 1- r2), if only because of t he factory . In add1tton. the Be:, d 
functions act to suppress Do fo r particles that mirror beyond ~ ··w~vc· 
length" from the equator. i. c .. for:/~/. T his justifi~s t~e approx1mat_1~n, 
inherent in (2.30). that bounce resonance acts prmc1pally on particle~ 
having x 2 ~ I . . . 

lf the o rigin for.fi
1 
(.~.I) is a spectrum of compress1on~l (ma~netoso~1c) 

micropulsations. then (in a cold plasma) the relevant d1spers1on _rcl~11on 
• • 1 where c is the Alfven speed [ 49]. Jn tlus case ti 1s lound 
IS (1) = ( 11 K. ' A . I ' /'( · ) -
that :

1
= /(ku/k)(px/mc,.) and that bu = (kJ 1l<)h. Smee . 11 .~.1 -

- (M /)')(t!IJu/iis). the spectral density ,'?T11 (w/2n) has the property that 

-~II (10/2 n)= (M/y)2 l<n Bd11 (w/2 n) (2.36) 

where .<$ ((/)/ 2rc) is the spectral density of the magnetic-field perturbation 
b

11
• (t is 

1 ~ac itly undcrsto~d that (2.34) repr~sents an aver~1ge over . the 
direction of pfopagation k, weighted accordmg to the relative contnbu· 

tion of each k 10 .M11 ((1)/2 n:). 
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Alternatively. if the oscillating force f j1 (s.t) arises from a spectrum 
of electrostatic waves. then the force is given by f 1 (s,t)= -q(( <{J/i: s), 
where w(s.c) is the oscillating electrostatic potentia l. For this situation 
it follows that : 1= l(px/m)(k11/w), where w= /Q 1• and that 

.? 11 ((1) /2n)= 11 2 k[ 'I "((1)12 n) . 1237) 

where 'fi"(w/2 n) is the spectral density of q>(s, 1). T he Yalu es of k 1 appearing 
in (2.36) and (2.37) are related tow by the dispersion relation appropriate 
to the wave mode m quest ion. 

Pitch-angle diffusion by bounce resonance has the d istinctive property 
that particles having x 2 ~ I a rc much more strongly affected than those 
for which x 2 - I. This means that bounce resonance may diffuse the 
mirror points of !rapped particles to perhaps -2or latitude from the 
magnetic equator , whereupon some complementary process, acting pref­
erentially upon particles for which x 2- I, must complete the task of 
diffusing their equatorial pitch angles into the loss cone [ 43, 48]. 

II.5 Cyclotron Resonance 

Particles that do not mirror at til e equator often satisfy a resonance 
condition of the form 

(2.38) 

with electromagnetic or electrostatic plasma cyclotron waves. This condi­
tion is known as Doppler-shifted local cyclotron resonance. If the wave 
frequency c'J/2 n is held constant. t hen J.. 11 varies with position along 
the field line. Both v11 and Q1 vary with the position of a particle·s 
guiding center in the cour::.c of its bo unce motion. T his is the sense 
in which cyclotron resona nce is a local phenomenon ; the conditions 
that satisfy (2.38) d o not persist over t he entire bounce path. Cyclotron 
resonances therefore have an intrinsic breadth .tJ rv=2 n/ r, where the 
o ptimal interaction time T is est ima ted from the expression 

2n/ r =Max [ n.ir, (w/8)-r2
] = Max r(2 nw) 1

'
2,(n2cv/2) 113

]. (2.39) 

T he symbols oi and u) represent time derivatives of the value of w 
required for resonance as thi.: particle proceeds to execute its adiabatic 
bounce motion. Since (/i= O a t lhc equa tor and al the mjrror poi nts, 
the optimal interaction time is lhcn g iven by r 3 = 16n/<;j. Very roughly 
speaking, this means thal Llw-i: 213 Q, . Lo<.:al n:sonancc, o ther than 
near points where (1J= O, has an opt imal inlerat.:tion time given by 
r 2 = 2n/<o and a minimum bandwidth Llw-c112 Q1 . The case o)=O 
appears somewhat the more favorable for sharp resonance, i. e., for 
minimizing .:1 w. 
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Electrostatic Waves. Both of the above cases find r to be substantially 
smaller than the bounce period (sinccf. ~I), and so the analytical problem 
can be treated in terms of a locally uniform B field . Di!Tusion of the 
local pitch angle a is equi valent to diffusion in x by virtue of (2.19). 
I 11 a uniform B field containing only partides and electrostatil: waves, 
the equation of motion for each Fourier component is 

p+ Q 1 (p x B)= qek k exp(i k · r - iwt + il/lk) (2.40) 

where .Q
1 
= - q Blmc. The component Dxx of the dirrusion tensor [see 

(2. l I)] is obta!tled from the local di!Tusion c~effi~icnt f?r COS'.1.'= Pl /p. 
where p

11
= p·B. T here i-; no loss of generality m taking k,=0 and 

k>'=J.._ in the equation 

' LI (cos :x)k = Re J (q/p°' /<) ek [ri k11 - l'x Pu P., -k, P11 p,.] 
() 

x exp(ik, '<+ik,_1 + ik
11
=-iw1 +i 1/1,ltl1 . (2.41) 

which follows from (2.40). Insertion of the unperturbed orbit 
(x=(p_c/qB)cos(.Qif + <ptl: y= (Jl ("lq B)sin(Q,1 +q>d: ==r1r] then 

yields 
+ f 

tl(cos:x)k= L (<J/ p3 k)ekJ,(k 1 pi. c:c1 Bl[P~ '- 11 
I .t: 

+ /(qBld1711]rcos(/<P1 +1/ld (2.42) 

to the req uired first order of accuracy in Ck. upon application of (2.38). 
Evaluation of the phase averages over <{)1 and t/Jk finally implies 

D x.- =((Bel B)Cr/.·.;\2 (lJ2 /2 p2)cosJ a 
+f. 

x L J~(k 1'i..Q1)>' (c•>;2n)[k 1sin rl - /(Q1 r i.)co~:xJZ ). (2.43) 

\-..here the angle brackets denote a bounce average. The spectral density 
i ·(w/2n:) is evaluated at the resonant w given by (2)8) for ~ch I. 
Tbe weighted a verag.c over the various directions of k present m the 
spectrum is tacitly understood in (2.43). as in (2.34). . 

The three remaining components of (2.11) do not vamsh, but D,x 
is the component of primary significance in the analysis of pitch-angle 
diffusion. Components such as Du; and D.,F. enable the waves to exchange 
energy with the particle~. T he direction of this energy c~change depends 
upon the form of the part icle distribution function f (p, r ). and _leads 
accordingly either to amplification or attenuat ion of ,.,.a 1,.cs havmg a 
given value of k in the mock of interest. Thus, the free energy prese~t 
in a non-Maxwellian part icle di~tribution can be extracted by the avail-
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able wave modes under certain conditions. T his can lead to the spon­
taneous generation of plasma waves in the magnetosphere. 

Electromagnetic Waves. The eleclromagnctic cyclotron modes of a 
plasma are of great geophysical interest in the contcxl of spontaneous 
wave generation. For propagation along the magnetic fi eld, these modes 
arc circularly polarized. such that the magnetic-field perturbation is 
given by 

h, =b~ cos(k11 :-wr + t/14) 

h, = ± h.L sin(k11 = - (l)t ~ t/lk). 

(2.44a) 

(2.44 b) 

Particles in a locally uniform unperturbed B field follow the equation 
of motion 

p I .Q1pxB=qc + (q/111c) p x b (2.45) 

when subjected Lo (2.44). T he induced electric-field perturbation e is 
given by 11e= - B x b, where n(=:ck11/w) is the refractive index. 

If r is the interaction time. then the fir!'.>L-ordcr change in cosed= p11!p) 
is given by 

r 

Ll(cos :ch= (<f.' " p2
) [11(pim c)- cos a] J (p, h, - p, b)d £ 

0 

-(lJ/11 p) [n(p im c) - cosaJ r b.L sin a (2.46) 

x COS( t/tk+cp,); w- "-11r11 = +.Q •. 

The upper sign in (2.44 b) therefore leads to cyclotron resonance for 
w - k11 v11 + !21 =0: the opposite polariza tion implies the resonance condi­
tion w-k11l'11- Q1 =0. The required phase averages yield 

D."' =((8,., 'B)(yj.x)2cos2 x(c12/2111 p2) 

x [11(p/mc) - cosx]2 .YJ (ll)1 2 n)) (2.47) 

upon applicarion of (2. 19), ( l.22), and ( 1.05). The term np/mc dominates 
cosx if w~IQtl. in which case the d iffusion is approximately elastic 
(r2 ~ ri ~ fl2). 

It is inslruclivc lo recast the equation of motion as 

/>11 fill = q (p11 /111 c)(px b, - p,. h,,) 

f>.LljJ. =(11/11)[1-(11p11/111d](p)>,. p,h_J. 

In terms of the pha'>c velocity l'p=w/J.. 11• it follow:, that 

(2.48a) 

(2.48 b) 

(2.49 a) 
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or 

p~ + 1f (p
11
-mi)d p11 =constant. (2.49b) 

It is understood here that w>O, thal 01 <0 for q>O. and that Q, >0 
for q<O. (This convention is not universally accepted.) The case f,11t'11 <0 
corresponds to the normal Doppler shift (particle and wave traveling 
in opposite directions). It allows ions to resonate \\1th ion-cyclotron 
waves (sometimes called LH for their left-handed polarization relative 
to B) and electrons to resonate with electron-cyclotron waves (otherwise 
known as RH or whistler-mode waves). Accord ing to (2.49), the wave 
gai ns energy from any resonant particle whose pitch angle thereby 
decreases. In other words, the conversion of 11i into pij is accompa nied 
by the loss of particle energy to the wave, since d (p1),'dr < 0 (see F ig. 
19 [54]). 

2 

2 6 

•11 I CA 

Fig. 19. Velocity-space trajccwric~ of nonrelativist1c protom rc~onant with de.:tro­
magnetic proton-cyclotron waves propagating parallel lo a llniform magnetic 
field [54]. 

Since pitch-a ngle ditTusion tends to drive the distribution ,f toward 
pitch-angle isotropy. the anisotropy caused by the presence of a loss 
cone (see Section 11.2) at ~~o represents a source of free energy for 
the amplification of ion- and electron-cyclotron waves. This is true 
because the pitch-angle diffusion produces a net difTusive flow of pitch 
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angles into the loss cone, thereby converting 11i into tii for the lypical 
resona111 particle 1 ~. 

.For ~ · = 0. the electromagnetic cyclotron modes in a cold plasma 
sa tisfy d1spers1on relations of the form 

kkJlt•w)2 = 1- I [wilw(w ± Q)] 
i 

(2.50) 

where the subscript} denotes particle species. The ion or electron plasma 
frequency cvj(2rr is ~iven by (IJ]=47rN;qf lmj, where N

1 
is the particle 

number density. q1. 1~ t.he particle charge. a nd m i is the par6cle rest 
mass. The nonrelat1v1st1c gyrofreq uency Q,;/2 rr is given by the formula 
Qi=. - t/18/mjc. so as to agree in sign with the definition of Q 1 (see 
~ecuon I. I; many authors define Q1:: +qjBim1c). The choice of sign 
m (2.50) depends upon the sense of circular polarization relative to 
B, as in (2.44). The upper sign corresponds to an ion-cyclotron mode, 
and the .lower to an electron-cyclotron mode. (n a Lwo-component 
plasma (J= e for electrons and j= i for ions) it is customary to simplify 
(2.50) thus: 

(c k11 /o))2
::::: w; /w(Q~ - w); 

(w;k1 )
2 ~ c! (1 - lw.'Qd); 

(I) ~ IQ;I 
U)<IQ,I . 

(2.51 a) 

(2.51 bl 

T he Alf vcn speed l'... = (B2 /4 nm; N;) 1 
' 2 is presumed to be much smaller 

than the speed of light c. 

Various Types of Cyclotron Resonance. Resonance via lhe ··normal"" 
Doppler shift occ.;urs for k11 ti11 =w- IQJ/YI <0. For dectrons thus resonat­
ing with (2._5 la) .. the .required whistler-mode wave frequency is related 
lo the particle kinetic energy (y- l )m" c2 and local pitch angle :x by 

( 1 . )ic 2 _ [1 - y(lv/ Q)] 2 [1 - (w/Q")] 
C1 l ~ OS a - - -

(m,Jm,)(w/ Q"){;•2 -1) (2.52 a) 

For ions of velocity v resona ting analogously with (2.5 lb), the corres­
ponding relationship is 

(2.52 b) 

. t -A word of caution is in .order here. Th1: path along which rarticlcs diffuse 
111 momentum. srace (/111 ·/IJ.) !S not a path of constant p. Thus, wave growth 
rc~u1res esse~1t1ally that . - VPf.P?iut. toward increasing p11 (decre.1sing p1 ) along 
the path of d11Tus1~>n. This cond~t1011 1s somewha! morc :.tringcnt than the minimal 
requi rement. of. p1tch-a.1~gle ani~o~r~p) _[1.e., t?flcy)F >O] at constant energy. A 
more quant 1tat1ve stabtl1ty analy:,1:, is given below (Sec Section 11.6). 
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Figure 20 indicate:-. the normalized frequency 101/QA required for 
resonance according lo (2.52). The two cases of interest. electrons (j = 1!) 
resonati ng with (2.51 a) and nonrelativistic ions (}= i) with (2.5 1 b), arc 
plotted separately. 

Fig. 20. Wuvc fn:quencics required for electromagnetic cyclotron rc~onance with 
protons (solid curves) and dectrons (dashed curves) v1a chc "normal" Doppler 
shift. as~uming I- parallel to B. Termination of eleccron-wa\'c contours at rl/- 21Q,I 
is dictated by use of (2.51 a). 

For a given particle, the minimum wave frequency w/2rr required 
for resonance is that required at the equator. where t'!I attains its maxi­
mum value and IQ;I its minimum along the bounce path. The distribution 
of particle density (hence, refractive index) along the field line cannot 
overcome this tendency unless B2/N; decreases with increasing JJ. Such 
a distribul ion of Ni occurs only in low-altitude regions where Coulomb 
collisions an: already more important than wave-particle interactions 
in radiation-belt dynamics. 

To the extent that &d1 (co/2n) tends to fall with rising fn:quency 
in the resonant region, the "normal" Doppler-shifted cyclotron resonance 
acts rreferentially ufX>n particles that mirror away from the equator 
(sec Fig. 20). This mechanism for pitch-angle diffusion is thus complemen­
tary to bounce resonance, which acts preferentially upon particles having 
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-"2 ~ 1 , in disposing of the particle~ th<1t populate the earth's radiation 
belts [ 43]. 

A second form of cyclotron resona nce involves the '·ovenakino" 
or .. a_nornalous:· D?ppler sh ift (k_1 r1 = w + jQ,, yl > 0). whereby the particle 
s:es a wav~, w1th :cs se~se of c1rcula~ polarization apparently reversed 
[50]. T~c anomalous Doppler sluft enable~ ions to resonate with 
(2.51 a) if 

(.2.53 a) 

where n ( = _c/...11 /(IJ) is the refractive index. Moreover, ekc:Lrons can thus 
resonate with (2.51 b) 

(c/cA)1 
COS

2
'.1 ~~Q •. /<11)2(y 1 - I) - l(l - lrrJ/Q;!)- 1. . (2.53 b) 

This la~t. in.teraction is believed to be responsible for the precipitation 
of r,elati_v~st1c.~le~tr~ns (Y ~ 4) ~.uring the _ma_in and early recovery phases 
of cl JU,\~net1c sto111~ [51 ]. hgurc 21 1nd1cales the normalize<l wave 
frequencies 1(1)/Qj j with which protons and cleclrons can resonate via 
the "anomalous" Dorrkr shift. 

101 

-----

m, = 1836 '"e 

(c /cAl cosa 

-4 
10 

Fig. 11., \~a~e frequencies rcquin.'<l for cli.:ctromagnl.!li<.: <.:ydotron resonance with 
pr?.ton~ (:;ol.1d curve~) and clcclrons td_ashed curws) via the .. anomalous" Doppler 
sbh ift. assum1!1g ~ parallel to B. l·xtc1rnon of proton contours to "' ~ IQ11 is effected 
Y using (2.:.0) in place of (1.51 a). 
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For the pitch-angle anisotropy characteristic of a Joss-cone distribution 
f. the .. anomalous" Doppler shift leads to a resonant pitch-angle diffusion 
that extract energy from the wave spectrum. Moreover. the re~triction 
that k_ = 0 makes (2.44)-(2.53) a somewhat oversimplified description 
of geophysical reality. The acceptance of k_ :4=0 introduces cyclotron-har­
monic resonances (/=I=± I) accompanied by squared Bessel functions 
Jf (k 1 1 .11'01) in D,., Often these resonances also extract energy from 
the wa vc spectrum. Such wave-absorbing resonances are called parasi1h' 
[53], sin1.:e they detra<.:I from the wave-amplifying properties of (2.52) 
in the presence of a loss-cone d istribution. Ordinarily. however. the 
parasitic rc~onances account for only a fract ion of the energy transfer 
between the particle distribution and wave spectrum, since they lend 
to he associa ted (at a given cu) wit h the more sparsely populated (high­
cncrg.y) portion of I than the primary resonances described by (2.52). 
Thus, the wave-amplifying properties of /remain largely intact. 

11.6 Limit on Trapped Flux 

Plasma instabilities driven by radiation-belt particles arc of special impor­
tance in that they can sometimes enforce an upper limit on the particle 
flux trapped by the geomagnetic field [52]. An instability analysis of 
the electromagnetic cyclotron modes is best formulated in terms of 
the plasma dielectric tensor derived from (l.12). The required operations 
can be simplified by taking k1 =0. e1 = 0. and 

<'v= ±ie1 cxp(ik
11 

: - iwf +it/I,.) (2.54a) 

(",=e exp(i/\11 :-iwi+il/lk). (2.54b) 

T he real part of (2.54) agrees with (2.44) if e.,. = - (w/c/\11) /1 . The Maxwell 
c4uations for this Fourier component of e and b thus rl:<ld 

k·e=k ·b = O, 

c k xc=w b . 

c k x b= -4rri J -w e . 

(2.5Sa) 

(2.55 b) 

(2.55 c) 

where J is the current-density perturbation. The vanishing divergence 
of c is characteristic of the electromagnetic cyclotron wave modes at 
J, l = 0, since the perturbation of net charge density vanishes. 

D ispersion Relation. It follows for these wave modes that 

(2.56) 
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If the distribution fun; t ion jj(p. r: r) for s.pecies j is decomposed into 
a pha~e-avcraged part./;(P: r ) plus an osci llatory part h{p,r: ti. the Vlasov 
equatmn ( 1.12) can be written in the linearized fonn 

- i(co-J..1 r11)f (Q /1•) pxB ·V t" 
. l J I I ' J 

= - q;e·V,.J: q ,lku/<'J) vx(kxe)·V,.~ (~.57) 
= - lq ifwHw J..1 '"ilc · Vp .~ -q)k 1,'(l))(e. v}(i' Ji,'c p 1). 

where /j i~ the ratio of relativistic mass to rest mass. By transforming 
to t!1e variables p1 and <p~, su:h that p_, = - p ... sin cp 1 and P;= Pl cos<pi 
dunng unperturbed gyration, 1t can be shown that 

(Q /i)l<...,f/<' <p 1 )- i(<1J -k11 Pu)}~ 
= - [(q ii) r 1H<•>-ku 1·11 l(il .~/f pi l 

+ (lJ 1k11h';m1 111)(i1.U1) J1u) I (ex J1x + <'yf.1) (2.58) 

+ (q ;fw Pi l(cn k111·11)VT,/t <{> 1 )kx p_.. - "i Px) . 

!he final line of (2.58) vanishes because./~ is phase-averaged. and therefore 
independent of r.p 1• 

It is <~ssumed that cu ha~ a sma ll imaginary part that describes 
the ~a~p1ng (J.mw<O) o: growl~\ (lmo~>OJ of the wave.:. It is proper 
to '1e~~ (2.58) c1~. an o~~mary <l~rrcrcnt1al equation for .fj(r.pi). subject 
to the boundary cond1tton ~hat./;(- y )-0 for Im c•1>0 andh(- x)=O 
for Im co <0. Thus. the solution of (2.58) may be written 

h<P il =(q/ 2w)[(w - J..11 ruHf Ji. t• p ) + k1 rl. (r.~, f rul 
x [(".- -ie_'. )exp(i ~il _ (e, +ie, Jexp(-icpi)J· 

w - kuiu - (f.1/ ,';) w - k11r11+W/ ;-) (2.59) 

The electric current-density perturbation J 1..-an thus be written 

J = Lq,;Jr1(JCOS<P1 xsin<pi),~(<P1)d3 p (2.60) 
j 

= I (qJ /2 i w) e f [(w-ku t>u)(<; .Tif c1 Pi )+ ku r.1. (?,{;Jc Pu)] tJ. <i"' p 
J w-ku ru ± (r.l/i') 

where~3p~ Pl.dPl. d~.11 d ~ i. and where t1_1c choice of sign (±)corresponds 
lo tl:e cho.1ce _of P?lauzat1011 (t•., = ± '")') in (2.54 ). In terms of the unit-nor­
malized d1stnbut1011 function F1 =Ni 1 jj, the d ispcrsion relation deduced 
from (2.56) for f, .J. = 0 is therefore 

cl k 2 = w2 + n " (JJ2 I L,_ J I, (2.61 a) 
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where 

- ' 0 

In the rest frame of a cold plasma whose various componentsj exhibit 
no relative streaming along B, the integration of each I i by parts allows 
(2.50) to be recovered from (2.61). 

Growth Rate. If the cold plasma is augmented by a comparatively 
small dcn'\ity of hot plasma or of radiation-belt particles. then (2.50) 
remains a pproximately valid for relating k11 to th~ real part of <r>. T~c 
growth rate Tmw follows directly from (2.61). lfVPJis free of s1~bst an~ta l 
variation in the velocity interval extending ~ 1(3 Imw/k11)I to either side 
of the resonant velocity t•,:=(cu/k11) ±(Q1hk11). then the integral over 
p11 can be simplified by means of the fom1ula 

[l',;(o>-k11 1•11 )± !2,]- 1 ~ P :(-i•1(m- k11 r11 )±QJ- 1 l 
- in 111)k11 I -

1 b(p11 - .,. ; 1111 r,) , (2.62) 

where P denotes the Cauchy principal value and o the Dirac function. 
It follow~ that 

c 2 J.. 2 :::: w2 _ L [w;C!Ji(C)~Q)] 

-' 

-4n3 i l/.11 1-
1 l:qJ J [+ (Q/;·,H?.J; 2p1J (2.63) 

j 0 

+ku tJ.. (C J;!? Pul] Pl d P~ • 

where the integral follows the path p11=Yim1(w/k11)+(q1B/ckn)· 
It is inconvenient to eV'c;1luate (2.63) in its full relativistic generality. 

Since the resonant protons and electrons that tend to amplify magneto­
spheric cyclotron waves arc typically nonrelativistic, it iii reasonabk 
to adopt the nonrelativistic (}'j= I) approximation for cva~uating (~.63), 
in which case the integral follows a path of constant /Ill· In this approxima­
tion, a particle distribution whose energy spectrum follow~ a power 
law (£- ')and whose pitch-angle distribution approximates sin

25
a over 

the unit sphere(/ and s are not necessarily integers) may be represented 

as 
(2.64) 

where p
1 

is the scalar ~1omentum that corresponds ~o a kinetic. e~crgy 
p}l2 mJ- The form of jj given by (2.64) is observat10nall~ reahst1c, as 
well as algebraica lly convenient. It leads (263) to predict a growth 
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rate Im w, ~iven in lowest order by taking the imaginary part of (2.63). 
The result 1s 

+-{l w + L [(l)j Q/ (w±Q1)
2]), (2.65) 

) 

whe~e B(s+l,/):= f(s+I Jr(/J/ rts + i + I) is the beta function. The de­
nom111alor of (2.65) can be expressed as 2cv(c21t·pry), where z:p( =culk,,) 
and Vg( = d w/dk11) respectively represent the phase and group velocities 
of the wave in the direction of B. 

U parasi~ic resonances (sec Section I I.5) are neglected, as is usually 
pen111ss1ble m the magnetosphere. the growth rate 

Im (J)~ - (2rr·1/w)(l'ul'i/c 2)lk11 1 1 t/T(P/ml·,)21 

x B(s + 1. l)[(t)+s(w- IQ;l)]J. (pf!2m) (2.66) 

thus follows from the interaction of electrons with the whistler mode 
U = e) ~r f~om the interactio 1~ of protons with the proton-cyclotron 
mode (J= 1). The growth rate 1s therefore positive at frequencies such 
~h~t .o < w< Is Q/(s + I )j. Since (2.66) is based on the dynamics of an 
mf1rute homogeneous plasma, however. a positive value of fml'J is not 
synon~mou~ wit~ an instability that spontaneously generates appreciable 
wave mtens1ty 111 the magnetosphere. Instability in th is !alter sense 
requtres at least a small coeffi cient R of internal reflection, as in a 
maser. to prevent all the wav~ energy from escaping [52]. If the typical 
path . l ~ngth between the po111ts of wa vc reflection is ~La, then the 
cond1t1on for spontaneous wave generation (maser action) is 

2La lm (t)> lr,,lnRI. (2.67) 

This condition imposes an upper limit on the particle flux that the 
magnetosphere C<rn stably contain. Instability in the sense of (2.67) 
generates wave energy that. by virtue of (2.47), causes the pitch angles 
of the excess particles to diffuse into the loss cone until (2.67) is no 
longer satisfied [52]. 

~imiting Flux. The upper Ii mil on stably trappoo particle flux is customar­
ily expressed as a bound on the integral omnidirectional flux 

I .;;, 

l4,(P712m)= 4 rr J 'iin2
•,. d(cosx) , J J J (pj /1 m)(pjfp)21dE 

0 p1 , lm; 

= [n:3 12
(flf /m) r(s + 1)/(/ - I )r(s+il] J. (py /2m) (2.68) 
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above the minimum particle energy with which a wave having lm w>O 
can resonate, i. e., for a value of Pi given by pj = (mif/..1 )(C'J-!Qi!), \\here 
co= ,.s Q/(\ + l )I. The critical nonrclativistic parti:k energies for electro ns 
resonant with (2.51 a) and protons reso nant wnh (2.51 b) are therefore 
given re -rx:ctively by 

E*=B2:8nN.,(s11)1 s 

E*= B1;8 rrNp(s+ l)s2
. 

(2.69a) 

(2.69b) 

An estimate for the critical (maximum) value of J4.(f*) b obtained 
from (2.66) - (2.68) by replacing ui+ s(w-IQiJ) with the value that maxi­
mizes Im w/ t:

11
• This prescription tacitly ignores any frequency dependence 

ofln R, i. t'., it isassurm:d that the internal -reflection coefficient is indepen­
dent of wave freq uency over the band of interest. It is thus estimaloo 
that Im (l)/ t'IJ peaks at 

w +s(w l .Q,;ll~-(s/2)1Q,l[(l -l )(P)v) + s/]- 1 
(2.70) 

ifs/+ (/ - 1)(l'pll',1)}> 1/2. 
If the particle spectrum is at least moderately steep (/<:,4), then 

the value of lmw/rq doc:-. in fact descend sharply from a peak [where 

1
,J is given by (2.70)] to 1.ero [where cv=js Qi,·h+l)I] . as required. The 
limiting flux b then given by 

{IP /r ) ..1.. [s/ '(1 - l JJ: c Bl( /+ s + 1)1 In R I (_"'.?! ) 
I *(E*J - I II - , 4~ , - 2 n: 3 2 1 tJJl( 'i + 1 )~sl(/)l(s +·~)La ' 

with 1• ,,'p,
1 

evaluated at t•1+slw- IQi!)=O: thus l'pfi·11 =(s+ 1)/2 for elec­
tron~ ~nd 1 Hs/2) for protons. For practical applicat ion. it is usual 
to insert apparently reasonable values of the various parameters (e. U·· 
L'pi i •,,- 1. /-4. s-· 1/2. ln R- -3) and to cite a common upper bound 

(2.72) 

for the cq11atoriul integral omnid ircctional flux of stably trapped par~i~lcs 
(i.:i t her electrons or protons, separately) exceeding the appropnatt: cnllcal 
energy given by (2.69). 

Observational evidence for such a limit on the flux of trapped elec­
trons is shown in Fig. 22. Fors- 1/2, the value of E* given by (2.69~) 
approximates the magnetic energy per plasma electron ( ~~O k~V 1f 
N .. ~4 cm ' at L = 5). Data points rcprcsentmg the omnrdrrectwnal 
flux of electrons oreatcr than 40 keY in energy are distributed generally 
bdow J

4
*, on the"°logarithmic scale; the flux exceeds 14*• only in isolatoo 

(unsta ble) instances (see also Section IY.4). 

11.7 Weak Diffusion and Strong Diffu~ion 
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Fi~. 22. Compilation ?f ncar-eq uMorial clcdron-Oux measurements 1magnctic 
la titudes <30 al L = ::i and < 15 at/. 61 from [xplorcr 14 [52]. 

II.7 Weak Diffusion and Strong Diffusion 

Altho~gh some degree of incla~lieily is essential for waYe growth or 
damping, cyclotron-resonant interactions of energetic (radiation-belt) 
particles are often preponderantly elastic rn the sense that D ~ EID I 

£
7 • t.I·. \f 

~ - Dxx· This property has been illustrated schematically in Fiu. 
19. The degree of inelasticity is of order h·i w/QJ)2 in the electromagnetic 
c~se, and the more energetic particle~ tend lo resona te (Figs. 20-21) 
with _the lowcr~frequency wave~. Th u~. the Jacobian given by (2. 14) 
r~a1_ns approx~m~tcly applicable to the cyclotron-resonant pitch-angle 
d1ff us10n of radratron-bell particles, and the equation 

. = xT v D ilf I t [ DJ] 
8r x T (.I •) r1.x· · (_) "' 'ox (2.73) 

approximates their dynamical behavior nt constaot energy. 
Since T(y) varies only moderately with .r = (l - x 1 ) 1 ' ~-lhe solutions 

of (2.73) must somewhat reescmblc those for symmetric diffusion in 
a_ cylinder. I~ Dn is approximately constant in x, the decaying eigenfunc­
tions of pitch-angle diffusion must then resemble the sequence 
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exp[ - Du(h·,,/xJ21]J0 (K,.x/xJ in order lo satisfy the boundary condition 18 

that /=0 at x = x, [43]. Here the "·o (~2.40), '" (::::5.52), i.:2 (-:::;;8.65), 
ere., denote the roots of the Bc5sel function J0 (x) in ascending sequence. 
This mean~ that a suddenly injected distribution of trapped particles 
settll!S toward the lowest eigcnmode of pitch-angle diffusion al the 
t'-folding rate -(KT-1<o)(Du/x; ) upon removal of the particle source. 
Once the lowest dgcnmode is attained. the pitch-angle distribution 
cease" to change it::. functional form. but prOl:ceds to decay exponentially 
in time at a rate - KG(D.,.J x}). The characteristic lifetime of a particle 
again~l pitch-angle diffusion into the loss cone, i.e., the e-folding time 
for the lowest eigcnmodc. thus exceeds by a factor -4 the time rcquinxl 
for attaining the lowest normal mode from an initially abnormal distribu­
tion of pitch angh.:s (see Section TV.2). 

A pitch-angle distribution of the form _r 2 ~ (sec Section 11.6) yields 
a decay rate of 4sD.u at x = O in either (2.35) or (2.73). If xls- I, 
this rate is quite comparable to the estimate n:ij (Dxx/xf) based on the 
cylinder analogy (sec a bovc). For comparison, the lowesl eigenvalue 
of (2 20) i~ (n 2/4)(D.:c/.;,21 if J is req uired to vanish al ( = ±~c· The 
numerical consistency of these estimates enables the particle lifetime 
to be characteri1cd as x'/-;5Drn wilhin perhaps a factor of two. 

The above considerations apply to a condition known as wl!ak diffir­
sion. in which l he lif ctime x}/5 D_.. is sufficiently long compared to 
the bounce period 2n/ (}i_ The reason for this cautious interpretation 
is Lhal the dt:nse atmosphere is typically distant from the site of pitch­
anglc diffusion caused by a wave-particle interaction. Thus. the diffusing 
particles arc unaware of a loss cone in momentum space (see Fig. 
19) until they attempt to enter the dense atmosphere in the subsequent 
course of bounce motion. The requirement for applyi ng (2.73) with 
the boundary condition that f = 0 at x= ±xc amounts to the demand 
that 

(n/!22)D.u ~ ( 1-x,f. (2.74) 

This means that a typical particle originating at x = ±xc must be unable 
to wander (diffuse) across any subslantial fraction of the loss-cone aper­
ture during a single pass between mirror points. If {2.74) fails to hold. 
then the boundary condition that/= 0 at x = ±x, applie~ only to upward­
bound particles between the dense atmosphere and the site of pitch-angle 
diffusion. not to the entire bounce orbit. In such a case, the analysis 
based on (2.73) must take acl:ount of tbe substantial probability that 
a pmticlc's pitch angle may wander into and back out of the Joss 

1 ' rh1~ d bc:ussion is fad litah.xl by the tacit a~sumpt1011 of a centt:red-dipole 
fidd, for which the loss-cone angle docs nut vary with longitude. The generalization 
to an offset-dipole model i~ indi1:alcd below. 
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cone (p~rhaps _several times) during a single trnnsit of the (typically 
equatorial) region whac the wavc-pctrtide interaction occurs. 

The foregoi_ng co?siderations are based on the tacit assumption 
?fa centered-d_t~le field. When the eccentricity of the dipole is taken 
mto account, lt 1s necessary to distinguish between the ho1111ce /os., 
c:one, which contains particles that will precipitme (lose their energy 
to the dense atmosph~re) ~ithin one bounce period. and the drift loss 
cone. whose aperture 1s given by (2.24). The aperture of the bounce 
loss cone varies with azimuth, and attains its maximum (identical with 
the ~pertur~ of chc dri~t loss cone) near the South Atlantic "anomaly ... 
Particles w1thm the dnft loss cone, but outside the local bounce Joss 
co~e. proc.~ to drift in azimuth but are doomed to precipitate somewhat 
pnor to v1s1tmg the "anomaly". 

An _e~timate for the bounce loss-cone angle cos- 1xb follows from 
generalizmg (2.24) lo arbitrary longitude <p relative to the ··anomaly'', 
where <p = q>0 • The result. 1·i= .• 

l - x;~[(a-l '1)/ La] 3 [1 + 3r0 (Lu) - 112 (a + h)- 112 cos(<p-cp.,)] (2.75) 

+ [ 4- (3/ La)(a +Ii) - 3 r0 ( Lu) 3,!fo + lz) 112 co.~ (q> _ Cf>u)] 1 1. 

suggests a rnlher pronounced azimulhal modulation of the aperture 
of the bounce loss c?ne ' Q. al L ~ 3. As a result, partidc precipitation 
~ ends to concentrate m azimuth near (slightly prior to) the ~anomaly'' 
m the absence of a counteracting variation of D ... ~ with <p (see Section 
IV.2). Since the meaning of (2.74) is somewhat ambiguous under azi­
muthal asymmetry, it 1s customary to regard weuk dij]i1sfo11 as a condition 
applicable lo any longitude at which 

(2.76) 

. ln the opposite extreme, if D\X~(Q~/n), then the distribution f is 
1~1mtme from_ bo~ndary condition<> in x throughout the region in which 
ptt~h-angle d_ilTus1on occurs. On a single pass through this sc-&ttering 
reg10n, a par!1cle's probab~e pitch angle becomes thoroughly randomized 
over th; unit ~p~er~. Thi~ conditi~n, ~nown as strong diff11sio11 [53]. 
ca~ses .f to exh1~1t _virtual 1sotro~:>y 11: pitch angle within th<:_ scattering 
reg10n. In the l1m1t of strong d1fTus1on, the decay rate of {is limited 
not by the mag nit ud1.; _of D.n (of which i'j/r1 1 is actually i~depcndent), 
but rather by lhe l-Ohd angle ol' the bounce loss cone and by the 
bounl:C frequency 0 2/ 2rr.. Under strong diffusion, a fraction 1-xb of 

' "Thus. x, i ~ delin~'<l as the maximum "aluc attained by the azimuthall} 
\arying parameter xh. 
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the trapped particles will precipitate during each half boun<.:e period, 
since the solid angle of either bounce loss cone is 2n(l - xh). The loss 
rate is therefore given by 

(~.77) 

in the limit of strong d iffusion . This limit represents an ultimate standard 
by which all diffusive precipitation mechanisms can be j udged for 
clTectiveness. Several storm-associated phenomena (l'. g., ring-current, 
relativistic-electron. and a uroral precipitation) are actually observed 
to approx imate the limit of strong diffusion LSI, 52, 54]. 


