I1. Pitch-Angle Diffusion

1.1 Violation of an Adiabatic Invariant

Purely adiabatic motion, as described at length in Chapter I, characterizes
the dynamical problem in which the phases ¢i. @2, and @3 are cyclic
coordinates. These are the phases canonically conjugate to the funda men-
tal action integrals J y=2nmqoclg| ' M, J2=J, and Jj:(q,-'clr_b that :d_cn-
tify the three adiabatic invariants M. J. and @ of charged-particle motion.
Strict conservation of M, J, and @ is only a kinematical ideal that
provides the framework for understanding radiatiop~bell dyngmic;s, and
geophysically interesting dynamical phenomena mvol_ve vplauon of
one or more of the invariants. Violation of an adiabatic invariant occurs
in the presence of forces that vary on so short a spatjgl or_tempnral
scale that particles having the same three adiabatic invariants (but
different phases) respond inequivalently. ‘ _

Ordinarily this means that violation of the invariant assqctated with
the action integral J; requires application of a force that varies at?rupll_y
on a time scale comparable to the corresponding periodicity of afhabanc
motion (27/62). In some instances. however. spatial symmetrics may
preserve an invariant even if this condition on the time scale is satisfied.
On the other hand. spatial variations of the force field that are a_ibrll[}t
on a length scale comparable to the gyroradius can violate adiabatic
invariants, irrespective of the temporal scale. o

A variety of geophysical processes can violate the mvariants of
adiabatic motion. Collisions, for example, act on a scale that is both
spatially and temporally abrupt with respect 10 gyralio‘n. and all three
of a charged particle’s adiabatic invariants can be vmlatgx:l_ theret?y.
Electrostatic and electromagnetic plasma cyclotron waves similarly dis-
tinguish among particles having different gyration, t_)oun{.:cql ancl‘dr:ft
phases. Such waves are capable of violating all three adiabatic invariants.
Geomagnetic micropulsations typically have frequencies comparable
to particle bounce or drift frequencies. and thus can violate J and/or
@. In many of these examples, the violation of @ is not severe by
comparison with that induced by geomagnetic sudden impulses an_d
other storm- and substorm-associated disturbances of magnetospheric
extent. Such disturbances distinguish among particles instun_{ancously
present at different magnetic longitudes (having distinct drift phases
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3). but generally average over the phases ¢, and ¢», thereby conserving
the first two adiabati¢ invariants.

[f the force field responsible for violating the adiabatic invariant
associated with an action integral J; exhibits sufficient spatial and tem-
poral coherence. the distribution of particles initially having in common
their values of M. J, and @ can thereby become organized with respect
to the phase ¢, Then, assuming for simplicity that only one invariant
is violated, the associated dispersal of these particles with respect to
the conjugate momentum J;/2z can be understood as a consequence
of Liouville’s theorem (Section [.3)'%. The dispersal is deterministic
in the sense that A4J,, the change in value of J,, is a function of o©;:
but the dispersal of a particle distribution with respect to J; appears
random if one averages over (or loses sight of) the phase ¢.. In practice,
phase mixing always occurs eventually (see Introduction) because any
observational instrument has a greater-than-infinitesimal bandwidth
with respect to the three invariants. Particles having slightly different
values of M. .J, and ® may therefore be counted as being observationally
equivalent in the detector. However, since these particles have slightly
different values of Q. encompassing a bandwidth 4Q,/2n. their phases
@i will mix adiabatically on a time scale ~2n/49;. Phase memory
persists in the distribution as the particles continue to gyrate. bounce,
and drift, but this memory is hidden from an observer. to whom the
particles appear to be randomly phased (see Introduction).

For this reason, an essentially complete physical description of the
carth’s radiation environment is provided by specifying the phase-aver-
aged particle fluxes (see Introduction) in terms of M, J, &, and time.
This suppression of the phase variables ¢; introduces an essential com-
ponent of randomness that permits violation of the adiabatic invariants
to be represented by diffusion of the particle population with respect
to M, J, and/or & under most circumstances of interest. After phase
averaging, the various elements of the particle distribution, subjected
to nonadiabatic forces. usually appear to have walked randomly with
respect to the violated invariants. Thus, the ultimate inability to dis-
tinguish particle phases by observation is a simplifying virtue.

Since the action variables J/2n are canonical, the basic form of
the diffusion equation for radiation-belt particles is

AT e D cf <
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"*Since the distribution function moves “incompressibly™ through phase space
in Hamiltonian mechanies [7], a narrowing of the distribution with respect to
@ implies a broadening with respect o the Ji, and vice versa,
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where f(p.r:t) is the phase-averaged particle distribution function and
D;; is the tensorial diffusion coefficient. For practical purposes, there
are only two classes of interaction not describable in terms of (2.01).
One class involves change of particle identity. . g.. beta decay, electron
altachment, recombination, charge exchange, inelastic capture, nuclear
excitation, The other class falls under the general heading of “friction™,
e.g., the gradual deposition of energy by energetic particles traveling
through matter. Where such processes are truly important, as for the
inner-zone proton population, it is necessary (and not usually difficult)
to add the appropriate source and sink terms to (2.01). Although some
of these non-diffusive processesare included below, the primary emphasis
of the present work is on that multitude of processes under which
(2.01) very adequately describes the behavior of radiation-belt particles.
It is customary in radiation-belt physics to distinguish between pitch-
angle diffusion (which violates M or J. and usually both) and radial
diffusion (which violates @). Although some diffusive processes violate
all three invariants, the dichotomous viewpoint is conceptually con-
venient. As a rule. radial diffusion cnables the radiation belts to become
populated from an external source (or rearranges particles injected by
an internal source), while pitch-angle diffusion causes particle loss to
an atmospheric sink. There are exceptions to this rule, but it is often
fruitful to think in these terms: hence the distinction between radial
diffusion and pitch-angle diffusion. The present chapter is devoted to
pitch-angle diffusion, which arises from a variety of mechanisms.

[1.2 Collisions

Because radiation-belt particles have such high energies and low densities
(see Chapter I), Coulomb collisions between them are completely negligi-
ble. Collisions with ionospheric constituents, however, contribute impor-
tantly to the ultimate demise of geomagnetically trapped radiation.
Energetic particles traveling through matter (including the ionospheric
medium) tend to yield their energy to free and bound ambient electrons
or to the excitation of atomic nuclei. Moreover, the phenomenon of
charge exchange with an ambient atom effectively removes an energetic
proton from the radiation-belt population.

As noted above, processes involving systematic encrgy loss to the
medium are generally not describable by (2.01). Special terms must
be added to account for such non-diffusive effects, although the friction
mechanism may simultancously be responsible for diffusion in pitch
angle. Because systematic energy loss to the medium can be interpreted
as a convective flow of f (p.r:1) through adiabatic-invariant space, these
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special terms have the form of the “divergence™ of a non-stochastic
current” i the Fokker-Planck equation

[-'_)T J]. _': dJy\ = - ¢ FT
ot 23, [(dr)f]“zuf [D"‘aj;]' \202)

f \ 5]

in w_hici*! the subscript v refers to frictional (non-stochastic) processes.
Ordinarily the Fokker-Planck equation is written in the form
(@f/en=~Y [aD;T)yet]+ L[FWDyf)eser],  (203a)
i ij
where

Di=(dJ;/d1),+ Y (@D /0 ). (2.03b)
i

The relati_onship between f and the phase-averaged flux J, is given
by (1.61), in Section I.7.

Inner-Zone Protons. An important example of non-stochastic “flow™
in phase space is the deceleration of inner-zone protons (M <4GeV/
gauss) by free and bound electrons in the upper ionosphere. Because
the rest-mass ratio my/m. is so large, the protons experience no significant
range stragghng or pitch-angle diffusion (see below) in traversing the
111ed1um. In other words, the equatorial pitch angle remains constant
while M and J decrease systematically by virtue of energy transfer.
The rate of energy transfer is obtained by means of ¢laborate quantum-
mechanical calculations, which yield [37, 38]

(m vdnrg; 2NdEjdt), = N [1—y~2 - In(z,m, e/h)] (2.04)
+ Z NZ 1=y 2 =In[2m,e2 (3% -1 W1},

where ¢ is the speed of the proton, and 7 is its ratio of relativistic
mass 10 rest mass. The quantities N and N, are obtained by averaging
the densities of free electrons (N,) and gas molecules (Ni), each of
lhc_ latter containing Z; bound electrons, over the proton trajectory
(drift shell). Since the ionospheric (or plasmaspheric) Debye length ip
appears only logarithmically in (2.04), it may be evaluated anywhere
on the drift shell (¢. g., where N.=N,) without introducing substantial
error. The quantity I; has the significance of a mean excitation energy
for the bound electrons: typical values of I, along with drift-averaged
values of N, and N, [38], are given in Table 5 for selected drift shells
on which J=0. These shells are identified by the Mcllwain parameter
Ly (see Section L3), which equals (Bo/B,)'” in the case of particles
mirroring at the magnetic equator. The major contribution to each
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Table 5. Drift-Averaged Atmospheric Densities, cm ™

Phase of Solar Cycle

I1. Pitch-Angle Diffusion

by = -

Liy i 12 eV Maximum Averaged Minimum
1,150 H I 15 536x10° 7.09 % 10* 1.17 % 10*
1186 H 1 15 448x10% 5.90 % 10 9.58 % 107
1.247 H I 15 332x10° 4.34%x10° 6.93 x 107
|.349 H [ 15 223x10° 288 x 107 4.50 % 10°
1.500 H 1 13 .30 % 104 1.65 x 107 2.50 % 10?
1.900 H I 15 315x10° 5.99 % 107 9,22 x 103.
2.500 H | 15 1.95 x 10? 224 x 107 3.09% 107
1.150 He 2 41 1.26 % [0° 6,17 % 10° 1.52 % 10°
1.186 He 2 4] 5.94 % 108 283 x 10° 6.51 x 10*
1.247 He 2 41 1.74 % 10° 7.98 % 10* 1.70 x 10*
1.349 He 2 41 3.40 % 10* 1.48 % 10* 2.84 % 10°
1.500 He 2 4] 383 % 104 1.55 % 103 2,61 x 107
1.900 He 2 4] 9.64 % 10! 2.86 % 10"

2.500 He i 41 2.25x 10" 751 %107

1.150 0 8 89 4R3Ix DY 241 % 10° 8.24 % 10%
1.186 0 8 89 1.87 x 10° 841 % 10* 1.87 % 10°
1.247 0 8 89  987x10° 377 % 10° 5.92 % 10!
1.349 O § &9 282 x 10!

1.150 N: 14 78 245x10* .66 x 10* 6.46 x 10°
1.186 N; 14 78 R06x10! 4.61 % 10° 1.27 x 10"
1.150 O, 16 89  S557x10° 353 % 10° [19% 102
1.150 e 1 .15 x 103 1.62x 10° 1.61 % 10*
1.186 e ! 4.11 % 10* 3,34 x 10° 7.83 % 10%
1.247 e I 932 x 10°% 2.89 % 10* 4.59 % 10°
1.349 ¢ ] 3.29% 10* 3.03 % 10° 3.24 x 10°
1.500 ¢ | 2.66 = 10° 2.65 x 10? 2.66 x 10°
1.900 ¢ I 1.69 % 10° 1.69 % 104 169 % 10%
2.500 ¢ [ 7.92 % 107 7.92 x 102

7.92 % 10°

N; on these drift shells occurs at the South Atlantic “anomaly” (see
Section L.5). where each of the shells attains its perigee altitude under
adiabatic motion, .

The quantity E[d E/di| ™" is interpreted as an instantaneous e-folding
time for the kinetic energy of a proton depositing its energy in the
atmosphere. The dependence of this e-folding time on L, is illustrated
in Fig. 14 for protons having selected values of M (given in Ge_V;gauss)
and J=0 [39]. At constant M and J, the “lifetime™ against Coulomb
deceleration thus peaks at L, x~ 1.6,

In view of the great magnitude of the time scales for proton energy
loss (see Fig. 14). it is essential to re-examine assumptions concerning
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Fig. 14. Effective lifetimes against Coulomb drag (energy loss) for equatorially
mirroring inner-zone protons (dotted curves) at selected values of the first invariant
M. GeV/gauss. Solid curve shows corresponding time scale — Bo/2 Bo for energiza-
tion by present secular variation of geomagnetic dipole moment [39]. Dashed
curves show roughly corresponding time scales 22/300,,. for energization by
inward radial diffusion (see Section 111.8), assuming (a) Dir=105L'° day !
and b) Dyp=10 " L' day .

the constancy of By in (1.37) when carrying out theoretical calculations,
In fact, the present value of Bo(x> —0.016 gauss/century) leads to an
instantancous time scale —(L/L)= — (Bo/Bo)~2000yr for the secular
contraction of adiabatic drift shells. The conservation of M and J
during this secular contraction implies a secular energization of geo-
magnetically trapped particles. In a contracting dipole field the preserva-
tion of M=p*y2L*2mqBy and J=2Lap¥(y) implies dy/di=0 and

LdE__ 2 dBy[3+1] _[+1)27]

E dt By dt | 2y 1000yr
Thus, the equatorial pitch angle remains invariant, and a nonrelativistic
proton has its energy increased by a factor of ¢ on a time scale ~ 1000yr
(see Fig. 14). This time scale is comparable to that for energy loss

(2.05)
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to free and bound electrons, and so it appears that the two processes
are mutually competitive for inner-belt protons [39].

Since inner-zone protons are subject, in addition, to radial diffusion
over the time scales of interest, a theoretical analysis of the quasi-static
profile of the inner belt is deferred to a later chapter (see Section
V.7). At this point it is appropriate to discuss only the form of th,fdr}‘
and of its “divergence” with respect to J;. Since J;=2zmoclg|™"
and J,>=J, this “divergence” may be written (for a dipole f:cld} as

é ' [fam - é [{dJ\ -
Zﬁ.! [(m TI ‘MK di )"l +‘._;[(ET),;’],,_@
& [fdM " (dM
M I:( dt ) f:L, M( ) 88
_f mg \'* @ e dE f
“\2MB2) M dt &

in the limit of equatorially mirroring (J=0) protons, for which (dE£/dr ),
isgivenby (2.04)">. The unidirectional flux J (= 2m,M B,, /) is considered
a function of M and & in (2.06) and should be evaluated at the magnetic
equator, where B=B,. Of course, both y and (dE/dr), are functions
of M and @ as well; in a dipole field the fact that B.=B,L >
=(1/87%a® B3)®|® implies

P2 =1+2M By/myc*L)y=1+(M/4n*a® Bimyc?)|@*  (207)

for particles having J=0. In this case the phase-averaged distribution
function that satisfies (2.02) is given by

.fz || 34t a® Bé/mo M) j; . (2.08)

Coulomb energy loss for ions other than protons can be evaluated
from (2.04) if g, is replaced by the ionic charge and v interpreted
as the ionic velocity '

Charge Exchange. For protons of much lower energy than those repre-
sented in Fig. 14, the main collisional “loss™ mechanism is charge
exchange, whereby a proton absorbs an electron from an ambient atom

""Note that ¢(d E/dt), depends rather weakly on M. which reduces Lo (32— 1)
% (mye?/28,) for J=0. It can be shown by Jacobian methods (see below) that
(2.06) holds not only for J=0, but more generally for any constant value of
K*=J?/8my M.

4 As noted above, the explicit time dependence of By is potentially an important
effect for the inner proton belt. The time scales illustrated in Fig. 14 apply
only to the present epoch, and not to past or future centuries.
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Fig. 15. Charge-exchange lifetimes against neutralization for equatorially mirroring
protons (H ") and helium ions (He ) at selected values of M/ A. MeV /zauss-nucleon
[40].

and escapes from the radiation belt as an energetic hydrogen atom.
This process is microscopically catastrophic (a “one-shot™ interaction),
and so, unlike that described by (2.04), it is best characterized by a
true lifetime t,=/,/v, where [, is a mean free path. Typical charge-
exchange lifetimes against conversion of H* and He™ ions into H"
and He” atoms by the hydrogen-atom environment are illustrated in
Fig. 15[40] for anappropriate atmospheric model [41]. It is conventional
to compare coincident radiation-belt fluxes of distinct ionic species
at common values of E/A (kinetic energy per nucleon), where A4 is
the number of nucleons in the ionic nucleus. According to this conven-
tion'>, first invariants M for H* are directly comparable with first
invariants4 M for He*. The particles described in Fig. 15 are nonrelativis-
tic and have vanishing second invariants (J =0). The governing equation

"“Because the conventional comparisen is between ions having E/A4 in common
at the same point in space. and therefore having ¢ and y in common within
experimental error, the Coulomb “lifetimes™ [(d In E/dt),| ' scale as 4;/g7 according
to (2.04). where the subscript j denotes the species of the energetic ion.
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in the presence of simple charge-exchange losses has the form

df _ 3] < & [{dI\ 7] _ i[pi‘]:_f_ (2.09)

The charge-exchange lifetimes shown in Fig. 15 are deduced from cross
sections ¢ [40] shown in Fig. 16, applied to a model atmosphere [41]
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Fig. 16. lon-energy dependence of charge-cxchange cross sections in atomic-
hydrogen atmosphere [40].

and model field. Evidently charge transfer is a simple loss process
governed by (2.09) only for singly charged ions (with Eié}{)() keV in
the case of He™). A single cross section g governs conversion of H

into H°, and there are no competing channels open to radiation-belt
protons. Three separate cross sections are needed to describe charge
transfer in helium: a4 for the neutralization of He™ (He™—He%. 612
for the conversion of He' into He™ " (an insignificant reaction for
E<400keV), and 62, for the conversion of He ™ into He™ (the largest
cross section of the three for E<400keV). Thus, in the presence of

(9]
n

11.2 Collisions

comparable He" and alpha-particle (He ™ ") fluxes, it is necessary to
introduce coupled transport equations for the phase-averaged distribu-
tion functions of He™ ( f) and He™ ™ ( f5). viz.,

(T /d)=—(Fi/t )= ([ifti)+(Hltay) (2.10a)
(dF/dty= —(Fy/t2) + (T /712) - (2.10b)

Except for the possible reconversion of energetic H” into H' deep
within the atmosphere in the course of precipitation (see Section 11.7),
no such cross coupling occurs in the description of proton or electron
radiation belts. This lack of cross coupling is a welcome simplification
for these two major constituents of the geomagnetically trapped radia-
tion.

Pitch-Angle Diffusion. In addition to atmospheric deceleration. radiation-
belt electrons undergo both pitch-angle diffusion and range straggling
to a significant degree. These latter two effects urise because the mass
of a radiation-belt electron is equal (apart from relativistic effects) to
the mass of the atomic or plasma electrons with which it collides.
The result is that deflection (pitch-angle scattering) becomes comparable
inimportance with energy loss. Moreover, the energy lost in an individual
collision strongly depends on the scattering angle. which is a random
variable. Thus, atmospheric collisions cause radiation-belt electrons to
diffuse not only in pitch-angle cosine (x) but also in energy with respect
to the mean value of (d E/dr),. This latter phenomenon (energy diffusion)
is known as range straggling, because (in nuclear-physics experimenta-
tion) it permits the constituent particles of a monoenergetic beam to
traverse statistically varying total path lengths before coming to rest
in some material medium. For radiation-belt electrons, range straggling
has the effect of smoothing the energy spectrum, which typically arises
from a relatively unstructured source spectrum anyway. Thus. range
straggling is usually neglected altogether.

In this and other problems for which third-invariant violation is
unimportant, the variables E and x (kinetic energy and pitch-angle
cosine) are usually more convenient than M and J. The corresponding
diffusion matrix

D= (g“" g““) (2.11)
xE XX

is diagonal because, in individual collisions, AE and Ax are statistically
uncorrelated: the change in energy is an even function of the change
in x. Since the ensemble average {4 EAx)> therefore vanishes, so do
the off-diagonal components of (2.11).
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In general, the transformation of (2.01) and (2.02) fl:OITl the set of
action variables J; 1o some set of new variables Q; requires cvaluation
of the Jacobian [5] G(J::Q,)=det(¢ /¢ Q;). The diffusion operator then
has the property that

7 271 1 2 .= @f
T.L_ et __-—[GD,..,—'—|. (2.12)
‘I."r.'l-.f‘ [D”rh.}‘,:] G E('Qi ' Q;‘_

In a dipole field it is easy to calculate the .iaoolbian G(M.J:E.x), wh;re
M=p>y?L32moBoand J=2Lap Y (y). According to (1.30), the function
Y (v) has the property that Y(y)—y Y'(y)=2 T(v). The energy and momen-
tum are related as in (1.60), and x*+y*=1. The partial derivatives
needed for calculating G(M.J:E,x) are

(OM/OE),=2mM/p* (2.13a)
(@ M/ExX)p=—2xM/y? (2.13b)
(OJ/CE),=(2mLa/p) Y(y) (213¢)
(@J/ox)e=—(2Lapx/y*)y Y'(y), (2.13d)

and it follows that
G(M.J;E.x)=@7pL*a/Bo)xT(y). (2.14)

Moreover. the “divergence” of the non-stochastic “current” introduced
in (2.02) may be transformed to read

& T(dIN] 1« & [.fdo) - X
i iR, & 2 I (2.15)
; (“J;[( d'r)..'f] G ST: cQ; [G( dr )»'r:\

and so the Fokker-Planck equation for radiat_ion—belt_p_arlit.:les subject
only to atmospheric scattering (radial diffusion explicitly ignored) is

of 1 ol (dE\ ] 1 i[whw _r.-,_f"]
ot yp @E L'p(u‘r v'f L xTy)yéx|” 7 Téxy

1 @ af
i E[WDMFI—;] : (2.16)

8 ]

The first term of (2.16) represents a non-stochastic (mean) energy loss
to the atmosphere, as described by (2.04). The second term represents
pitch-angle diffusion, and the associated transport coefficient 1s given

[42] by
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D.=Y {25 e N, [x*—1+(B,/B)]

“1
x | {2[x*—1+(B/B)](1—cosh)? (217)
o
+(1—=x%)sin* 0} (d o /d Q)d{cos 0)>

where da;/dQ is the differential cross section for an energetic electron
incident on atmospheric constituent f at scattering angle ¢/ in the “labora-
tory” frame. Debye shielding is considered in the specification of da;/d Q.
The third term of (2.16) represents range straggling (diffusion with respect
1o energy).

The derivation of (2.17) is straightforward. If an electron initially
traveling in the z direction with local pitch angle « relative to B (which
lies locally in the xz plane) is scattered through an angle 0. the resulting
change in its value of cosz is

Acosx=coszlcos— 1)+ sinzsind cos e, (2.18)

where ¢ is the azimuthal coordinate about the direction of z Since
da;/dQ is independent of ¢, the expected value of 2(4cosz)? is 2cos?a
x (1—cos0)*+sin’«sin’0. In terms of the equatorial pitch angle
cos” ' x. one obtains sin’x= | —cos 2= (1 —x*)(B/B,). It follows that
(Ax)*=(B./x B) cos?z(4 cos2)>. (2.19)
Finally, the diffusion coefficient Dy, is defined as half the rate at which
(Ax)* grows with time.
The factor of one-half that enters the definition of D, can be under-
stood in terms of a simplified prototype diffusion equation of the form

fjet=Dg (/0 &%), o

which applies in one-dimensional problems for which Dg: is constant
with respect to the rectilinear coordinate & The use of (2.20) is chosen
over (2.16) for illustrative purposes only because (2.20) is satisfied by
the simple unit-normalized Green's function

FED=2ra®)" 2 exp[—(E—E0)*2a%], (2.21)

where a 1s a function of time and measures the "width™ of the distribution
in the sense that

g
at= j (E—EP L (E Dk, (2.22)

Direct application of (2.20) implies that

d (a*
D..= ) ; 2.23
=gl ( 2 ( )
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as indicated. Moreover. the distribution f (£,1) given by (2.21) becomes
the Dirac function 6(¢—&p) in the limit a=0. In view of (2.22), Ihb
quantity a* also represents the net mean-square migralinp of an 'llldl\e'l-
dual particle (averaged over the ensemble) from tt_le point ‘if=<';o: Fhe
elapsed time of this random migration is a*/2Dzz This §Implc illustration
epitomizes a general principle that is extremely useful in the calculation
of diffusion coefficients from dynamical information. Of course, the
metric in (2.16) is not as simple as that in (2.20), and so the Grcf:n‘s
function is not easily identified. The basic relationship (between a d}ﬂ’U-
sion coefficient and the ensemble-averaged square of the random migra-
tion with respect to a kinematical variable) holds true nevertheless.

Inner-Zone Electrons. Even with the inclusion of Debye shielding, the
differential Coulomb cross section da;/dQ is strongly peaked in I'avoE
of forward scattering (0 1). It follows that the mean value of (1—cos ff]--
in (2.17) is much smaller than that of sin®6. The distribution of terrestrial
atmosphere causes the bulk of the scattering in (2.17) to occur near the

FUNCTIONS, sec

I1SION
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Fig. 17. Magnitudes of —(r/moc?)d E/dt), (solid curve) and [2p-“,f].':I::8¢-’_u-"3]ID.\
(dushed curve) for inner-zone electrons subjected solely to atmospheric collisions

[42]

mirror points, i.e., where Bx B,. Moreover, the mirror points must
not lic too deep in the atmosphere at any longitude if the phasg»avcragud
treatment explicit in (2.01). (2.02), (2.04). (2.16). and (2.17) is 1O have
any meaning. Other methods of analysis, preserving ¢ as a variable,
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must be employed unless 27D < (23| and 2 n|(d E/d!),| <|Q:| E. Granting
these conditions, it is clearly permissible to neglect the term 2[x?—1
+(B./B)](1—cos*@) in (2.17) by comparison with (I—x?)sin’(. The
main energy dependence both of (d E/di), and of d6;/d Q can be factored
out, leaving the quantities —(t/moc’)d E/dt), and (2p3/ymdc3 y?) Dy
that are plotted [42] against x in Fig. 17 for selected values of L,
in a model atmosphere. The plotted functions. whose variations with
energy are extremely weak, are evaluated here for Ex1.5MeV. Both
functions have the dimension of frequency.

Figure 17 illustrates a sharp distinction at L,,= 1.9 between electrons
for which x <£x,20.9 and those for which x = x.. The former are scattered
almost negligibly on time scales for which the latter experience virtually
immediate absorption by the atmosphere. Equatorial pitch angles for
which |x|> x, are therefore said to constitute an atmospheric loss cone
in momentum space. In mathematical terms, the coordinates x= +x.
represent perfectly absorbing boundaries at which f is forced to vanish.
Energy loss and pitch-angle diffusion satisfy the conditions
2nl(d E/dt),|<|Q3E and 2nD, < |Q;| extremely well for |x|<x. at
E~ 1 MeV, thereby justifying the phase-averaged approach. The ultimate
sink for inner-zone radiation, however, is quite localized at the South
Atlantic “anomaly™ (see Section L.5), where drifting particles having
xxx. must dip deep into the atmosphere to find their mirror-field
intensity B,

A rough estimate for the loss-cone angle cos™ ' x, can be obtained
by postulating total absorption at altitude h{>0.024) and displacement
of the dipole by rq(x0.074) perpendicular to its axis. This eccentricity
of the dipole plays an important role in cutting off the inner zone.
The indicated parameters predict that

1—xZ=[(a+h)/Lal*[143ro(La)™ " a+h)~"7]
+[4=@/La)a+h)=3ry(La) *2(a+h)'2]'2  (2.24)

as a function of L. This formula yields x.~0.940 at L=19 (¢. Fig
17), x.x0.567 at L=1.185, and x,=0 at L= 1.085. Thus, the function
[ should vanish for all pitch angles if Z< 1.085: in fact. a true South
American anomaly accidentally near the eccentric-dipole “anomaly”
raises the lower boundary of the inner zone to .= 1.10, approximately.
According to Fig. 17, the loss cone is a poorly defined feature at
Ly=1.185, and so this simplifying concept is inapplicable there. The
loss cone, however, is sharply defined over most of the magnetosphere
(at least for L2 1.9, according to Fig. 17), and is known to play an
essential role in the dynamics of geomagnetically trapped radiation.
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11.3 Wave-Particle Interactions

The atmosphere alone is quite incapable of accounting for the decay
rates observed following temporary enhancements of the electron flux
beyond L=x1.25 (sce Chapter 1V). The situation is indeed extreme at
L4, where storm-associated enhancements of the flux at E~0.5MeV
characteristically decay by a factor of ¢ on a time scale ~5 days [43]:
in situ deceleration and pitch-angle scattering into the loss cone, if
caused solely by collisions with the tenuous atmosphere, would require
thousands of yearsto produce the same amount of decay. The discrepancy
is qualitatively similar for outer-belt protons, although the observational
data are considerably less extensive than for electrons. It is therefore
natural to invoke non-collisional mechanisms for pitch-angle scattering.
These mechanisms are classified under the generic term wave-particle
interactions.

Magnetospheric waves may arise from a variety of sources. Some
waves may enter the magnetosphere from the turbulent magnetosheath
(see Introduction) [44]. Waves known as whistlers originate from light-
ning discharges in the atmosphere. Whistlers propagate in a plasma
wave mode that can also conduct VLF (very low frequency, 3-—30kHz)
radio transmissions through the magnetosphere. Man-made (Morse)
signals often trigger new VLF emissions in the magnetosphere, as illus-
trated in Fig. 18. Moreover, plasma instabilities in the whistler (electro-
magnetic electron-cyclotron) and other wave modes constitute a pro-
digious magnetospheric source of wave energy. The VLF phenomenon
known as chorus (see Fig. 18) apparently arises from one such instability.
Other plasma instabilities may give rise to waves known as continuous
(Pe)and irregular (Pi) geomagnetic micropulsations, which are commonly
observed on the ground and in space at frequencies from ~2mHz
to ~1Hz A summary [4. 47] of the magnetospherically important
frequency classifications is provided in Table 6.
Table 6. Classification of Magnetospheric Signals

Name Frequency Name Period or Rise Time

SHIY 3—30 GHz Pe i 2mien=0.2—5) scc
UHF 0330 GHz Pe 2 2n/i=5—10 sec
VHF 30—300 MHz Pc3 2a/w= 1045 sec
HF 3—30 MHz | Pc4 2r/ia=45—150 sec
MF 0330 MHz Pc 5 2m/en=150—600 sec
LF 30—300 kHz I

VLF 330 kHz Pl = 1—40 sec

ELF 33000 Hz Pi 2 1, =40—150 sec
ULF <3 Hz sc. si 7o~ 300 sec
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Fig. 18. Examples of magnetospheric wave phenomena observed at r=a [43]
and r=6.6a [46]: (a) multiple-hop whistler initiated by nearby lightning stroke
(arrow) and reflected between conjugate points along a single magnetospheric
path: (b) chorus, characterized by elements of sharply rising fru[ucn;:\r: {¢) Tising
and falling VLF emissions triggered by Morse-code transmission from NAA
(2n=14.7kHz, A=756") and detected by mobile station at Ax50 in the South
Allantic; (d) coherent Pe-4 micropulsation (o) 2m~ 107* Hz) observed at syn-
chronous altitude in the compressional () component, but absent in the transverse
(p and o) components relative to the unperturbed B field there.

~ Not all magnetospheric waves and disturbances can interact effec-
tively with trapped particles; each trapped particle exhibits the three
fundamental periodicities of adiabatic motion, and so tends to suppress
(filter out) spectral components of applied forces that are distant in
frequency from its natural resonances. Thus, trapped particles yield
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a net diffusive response to forces that have spectral power within a
narrow band about some natural resonance frequency in the frame
of the particle’s adiabatic motion. The width of the passband is deter-
mined by the duration of interaction, according to the classical analogue
of Heisenberg's uncertainty principle. More specifically, the bandwidth
Ae is equal to 2m/7. where 7 is the interaction time. The interaction
time may be limited by the duration of a wavelike signal or noise
burst, by the time required for a particle to traverse a spatially limited
region of wave activity, by temporal variation of the wave frequency
required by a particle for resonance, or (more generally) by the eventual
breakdown of phase coherence between a particle and the Fourier
component of the wave spectrum with which it is resonant.

To the extent that the wave spectrum is smooth (structureless) over
a bandwidth ~2r/t about a resonance frequency, the interaction is
truly resonant in the sense that the “line shape” resembles a Dirac
delta function. More generally, the particle accepts a Lorentz-weighted
mean of the wave-spectral density over a bandwidth Alw/2m)=1/t about
the resonance frequency '°.

In the interest of completeness, Table 6 includes such disturbances
as stormtime sudden commencements and magnetic impulses that are
only vaguely wavelike in character. More precisely, the “wavelengths™
associated with such disturbances are comparable in size to the magneto-
sphere itself. Since their time scales are so long (~minutes), these distur-
bances violate only the third invariants of radiation-belt particles: such
processes are considered in Chapter 111 The present chapter is concerned
with processes that violate either or both of the first two invariants.

I1.4 Bounce Resonance

A force field can violate the second invariant (while preserving the
first) through a resonant interaction with the bounce motion of a trapped
particle [48]. A force fj(s,1) that perturbs the bounce motion could
typically originate from a compressional (magnetosonic) micropulsation,
in which case fjj=—(M/p)(@hy/ds), or from an electrostatic wave
(fy=4q,¢). The field perturbations b and e are understood to project

oViolution of an adiabatic invariant is the classical analogue of the breakdown
of Ehrenfest's theorem in quantum mechanics. This theorem holds that the quantum
numbers of & particle, as given by the action integrals of its quasi-periodic motions
in the old (Bohr-Sommerfeld) quantum theory, do not change by as much as
4 unit of h if the applied force field varies only on a sufficiently long time
scale. Forces violating this condition lead to diffusion with respect to the classical
adiabalic invariants.
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nonvanishing components by =b-B and ¢ =e-B along the unperturbed
B ﬁelq. Il the normal (to B) components of b and e are confined to
the azimuthal (@) and meridional (¢ x B) directions, respectively, then
bounce resonance will not contribute to radial diffusion in an azimi:thally
symmetric B field.

[n.lhis case only the second invariant is violated and the governing
equation of motion [3] is )

(dpy/dt)+(M/pNEB/0s)=fi (s.t) (2.25)

?vhere pi=ymovy=7mes. Since the unperturbed geomagnetic field B
is taken to be static, it follows that

dw/dt=(py/mo) fi (s.1), (2.26)

where W={Pﬁf2mo)+MB=pl,.’2mn. The oscillatory force fj(s,1) thus
threatens te alter the particle’s energy. leaving M and ¢ invariant.

This is equivalent to the violation of J only, and the relevant Jacobian
is

GIM.J.&: M w, @)=(0J/dwWh.p=4La(mo/p) T (y) (2.27)

if Bis gjveq by {l.lé_r}, i e., for a dipole field.

The 05c1_1}at0_ry force f)|(s.1) is conveniently represented as a super-
position of Fourier components applicable to the time interval 0<t<rt.
This means that

fils,0=Y fcoslhys—w,t+u,), (2.28)
n=1

where w,=2mn/t, k(k-B) is the parallel wavenumber corresponding
to frequency w,/2r, and i), is the corresponding phase (ultimately a
rando_m variable) of the wavelike Fourier component. Each comporﬂ:nt
contributes (1/2)f; to the mean-square force perturbation <[ fj(s,1)]*>.
and this contribution resides in a frequency interval 4(w/2m)= ¥
[t is therefore appropriate to introduce the spectral density ’

‘¥|| (€2 ?I)E{‘Cf:}lf;.z (2.29)

as an optimal characterization of the foree field fj(s,1). Moreover, by
virtue of (2.29), each Fourier component acts separately from the others.
The unperturbed bounce motion may be represented

sty (px/m82;)sin (€22t -+ ¢2) (2.30)

f(l)r particles having x* < | (see Section 1.4). It follows from (2.26)—(2.30)
that

0 T

Aw=(px/mg)Re Y [cos(2,1+@,) (2.31)

n=1 0

% foexp[ilk, px/m,)sin(Q, r+¢,)—icw, 14y, Jdr.
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If 7 is interpreted as a large (ultimately infinite) integral number (N)
of bounce periods 27/€,. then it follows that mn=(n/N)Q2 and
# e
Awx(px/my)t Y (z)Ji(z)costl @y + i) hy (2.32)
I= ra
where 7=k px/m&; and J; denotes the Bessel function of order I
In the evaluation of Duw=(1/27)<{(Aw)*), where the angle brackets
denote the ensemble average over the phases @: and tuy, the cross
terms vanish and the result is

D, ~(px/myt ¥ (/=) J(z) FU2:/27). (2.33)
=1
Since (w/0x)y.r.=2M Box/L>y*, it is logical to define a diffusion cocefTi-
cient
D, =[(@w/@x),.]™* Dy
(v 2meM By) Y (Yz) JH () Z 12,/ 2m). (2.34)
=1
The corresponding diffusion equation
ML

ot xT(y) éx 3

v = Px
is constructed from the canonical formalism by inserting_ l%lc .lacoblzgn
G(M.J:M.x)=(0J /2w (e w/C X)ar 1.=(Bamo ;ifBg,‘gz}[.t,ﬂp_\' )T(y) in
(2.12). The diffusion coefficient D, displays a strongly inverse dependence
on x2(= 1—y?), if only because of the factor y*. !n addition. the Bessel
functions act to suppress Dy for particles that mirror beyond a “wave-
length” from the equator, i. ., for miz [ This justzﬁe;s 1_hc approximation,
inherent in (2.30), that bounce resonance acts principally on particles
having x* < L. ‘ _
If the origin for fj;(s,1) is a spectrum of compressmnz_al {rna_gnclosor}lc}
micropulsations, then (in a cold plasma) the relevant dispersion ‘rcl.atmn
is w—=c,k, where ¢, is the Alfvén speed [49] In this case it is found
that z=I(k/k)(px/mc,) and that by=(k,/k)b. Since fils,0)=
— (M /9)(0by/s), the spectral density #(w)/2m) has the property that

F 2= [ﬂff,""}’)z .!\.ﬁ B(wf2m) (2.36)

where 4, (/2 n)is the spectral density of the magnetic-field pertur_bauorz
by. It is tacitly understood that (2.34) represents an average mur'lhu
direction of propagation k, weighted according to the relative contribu-
tion of each k to 4, (w/2n).
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Alternatively. if the oscillating force f) (s.r) arises from a spectrum
of electrostatic waves, then the force is given by f}(s,t)=—g(¢ @/ s),
where @(s.1) is the oscillating electrostatic potential. For this situation
it follows that z,=[{px/m)(ky /), where e»=1Q 5. and that

F(/2n)=q* ki) ¥(w/2m), (2.37)

where ¥ (w/2n)is the spectral density of @ (s,1). The values of k appearing
in (2.36) and (2.37) are related to o by the dispersion relation appropriate
to the wave mode in question,

Pitch-angle diffusion by bounce resonance has the distinctive property
that particles having x? < | are much more strongly affected than those
for which x*~ 1. This means that bounce resonance may diffuse the
mirror points of trapped particles to perhaps ~20° latitude from the
magnetic equator, whereupon some complementary process, acting pref-
erentially upon particles for which x*~ 1. must complete the task of
diffusing their equatorial pitch angles into the loss cone [43, 48].

IL.5 Cyclotron Resonance

Particles that do not mirror at the equator often satisfy a resonance
condition of the form

t'}—kif‘-i—’Q|=nZ !Zi[,il... (238]

with electromagnetic or electrostatic plasma cyclotron waves. This condi-
tion is known as Doppler-shifted local cyclotron resonance. If the wave
frequency /2 is held constant. then k) varies with position along
the field line. Both ¢ and €, vary with the position of a particle’s
guiding center in the course of its bounce motion. This is the sense
in which cvclotron resonance is a local phenomenon; the conditions
that satisfy (2.38) do not persist over the entire bounce path. Cyclotron
resonances therefore have an intrinsic breadth Aw=2n/1, where the
optimal interaction time 7 is estimated from the expression

2n/r=Max [, (05/8) 1] = Max [(2n) ' %, (n%e/2)'*]. (239)

The symbols o and ) represent time derivatives of the value of w
required for resonance as the particle proceeds to execute its adiabatic
bounce motion. Since (=0 at the equator and at the mirror points,
the optimal interaction time is then given by v°=167/w. Very roughly
speaking, this means that Aw~¢*?Q,. Local resonance, other than
near points where @=0, has an optimal interaction time given by
*=2n/w) and a minimum bandwidth dw~¢'?Q,. The case &=0
appears somewhat the more favorable for sharp resonance, i.e., for
minimizing A .
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Electrostatic Waves. Both of the above cases find 7 to be substantially
smaller than the bounce period (since & < 1), and so the analytical problem
can be treated in terms of a locally uniform B field. Diffusion of the
local pitch angle o is equivalent to diffusion in x by virtue of (2.19).
In a uniform B ficld containing only particles and electrostatic waves,
the equation of motion for each Fourier component s

p+Qi(px B)= qe'af:exp{fk-r— it i) (2.40)

where @, = —qB/me. The component D of the diffusion tensor [see
(2.11)] is obtained from the local diffusion coefficient for cosx=p/p,
where py=p-B. There is no loss of generality in taking k=0 and
ky=k_ in the equation

Afcos 2= Re [ (a/p* ke[l ky —kepy =k mypy]
x explik x+ik y+ik z—iot+igdt, (2.41)

which follows from (240). TInsertion of the unperturbed orbit
[x=(prc/gBycos(Q:1+@1): y={p ¢/gB)sin(Qit+¢@); z=ujr] then
yields
Alcosa)= Y (g/p*KleJ(k py c/gB)pi ky
I= ag
+ (g Blc)py]rcostley -+ (242)

to the required first order of accuracy in ex. upon application of (2.38).
Evaluation of the phase averages over ¢, and  finally implies

D, .= {(B./B)(y/x)(q*/2p*)cos’ &

x Z Jflklrl‘-Q,H'[m_-'EJr][kfisina—l{Q,,-‘i-Jcoa‘x]:}. (2.43)
T

-

where the angle brackets denote a bounce average. The spectral density
¥ (w/27) is evaluated at the resonant e given by (2.38) for each [
The weighted average over the various directions of k present in the
spectrum is tacitly understood in (2.43). as in (2.34).

The three remaining components of (2.11) do not vanish, but Dy,
is the component of primary significance in the analysis of pitch-angle
diffusion. Components such as Dgr and D enable the waves to exchange
energy with the particles. The direction of this energy exchange depends
upon the form of the particle distribution function f (p.r). and leads
accordingly either to amplification or attenuation of waves having a
given value of k in the mode of interest. Thus, the free energy present
in a non-Maxwellian particle distribution can be extracted by the avail-
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able wave modes under certain conditions. This can lead to the spon-
taneous generation of plasma waves in the magnetosphere.

Electromagnetic Waves. The electromagnetic cyclotron modes of a
plasma are of great geophysical interest in the context of spontaneous
wave generation. For propagation along the magnetic field, these modes
are circularly polarized. such that the magnetic-field perturbation is
given by

b,=b cos(kyz—wt+y,) (2.442a)

b,=+b sm(kyz—et+y,). (2.44b)
Particles in a locally uniform unperturbed B ficld follow the equation
of motion

p+QipxB=ge+(g/mcipxh (2.45)

when subjected to (2.44). The induced electric-field perturbation e is
given by ne= —Bx h, where n(=ck /o) is the refractive index.

~ Ifzisthe interaction time, then the first-order change in cosa(=py/p)
is given by

Alcosu),=(q/np?) [n(p/mec)—cosa] | (p b, —p, b)dt
0

=(g/mnp)[nip/mc)—cosa]rb, sing (2.46)

X COs(Y+@); w—Kkjry=FQ,.

The upper sign_in (244 b) therefore leads to cyclotron resonance for
@— ke + €2, =0 the opposite polarization implies the resonance condi-
tion o— kyjv)— €, =0. The required phase averages yicld

D, = {(B,/B)y/x) cos* x(q*/2n* p?)

x [n(p/me)y—cosu|* # (w/27)) (2.47)
upon _application _uf{ll‘)}, (1.22), and (1.05). The term np/mc dominates
cos .111' m«_@l!z,l. in which case the diffusion is approximately elastic
(PP > p).

It is instructive to recast the equation of motion as
f)” f-'” =q (P“!{FH (‘H_pr b‘. — Py hx} {243 a)
PPy =g/m)[1—(npy/me)](p.b,—p.b,). (2.48b)

In terms of the phase velocity v,=ew/ky, it follows that

d(p?)/dt=2(me/n) py=(v,/v)) [d(pf)dt] (2.49a)
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or
pl+2] (p—mu,)d p,=constant . (2.49b)

It is understood here that >0, that 2, <0 for ¢>0, and that £,>0
for g<0. (This convention is not universally accepted.) The case kv <0
corresponds to the normal Doppler shift (particle and wave traveling
in opposite directions). It allows ions to resonate with ion-cyclotron
waves (sometimes called LH for their left-handed polarization relative
to B)and electrons to resonate with clectron-cyclotron waves (otherwise
known as RH or whistler-mode waves). According to (2.49), the wave
gains energy from any resonant particle whose pitch angle thereby
decreases. In other words, the conversion of p? into pj is accompanied
by the loss of particle energy to the wave, since d(p?)/dr<0 (see Fig.
19 [54]).

A

yle

ra

l | !

Y f Cp
Fig. 19. Velocity-space trajectories of nonrelativistic protons resonant with electro-
magnetic proton-cyclotron waves propagating parallel to a uniform magnetic
field [54).

Since pitch-angle diffusion tends to drive the distribution f toward
pitch-angle isotropy. the anisotropy caused by the presence of a loss
cone (see Section I1.2) at »~0 represents a source of free energy for
the amplification of ion- and electron-cyclotron waves. This is true
because the pitch-angle diffusion produces a net diffusive flow of pitch

[——
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angles into the loss cone, thereby converting pi into pi for the typical
resonant particle!”,

For A =0 the electromagnetic cyclotron modes in a cold plasma
satisfy dispersion relations of the form

(r;'x"\'”,"u.i}2 =1- E [_mf,’w{m +92)] (2.50)
I

where the subfscri ptjdenotes particle species. The ion or electron pliasma
frequency /27 is given by wj=4nN;qi/m;, where N, is the particle
number density, q; 15 the particle charge, and m; is the particle rest
mass. The ponrelalmst:c gyrofrequency Q;/2x is given by the formula
Q,-=I—q,-B,fmjc. S0 as to agree in sign with the definition of @, (see
_Sec_txon L.1; many authors define Q;= +4;B/m;c). The choice of sign
in t2.§0; depends upon the sense of circular polarization relative to
B, as in (244). The upper sign corresponds to an fon-cyclotron mode,
a:1d the lower to an electron-cyclotron mode. In a two-component

plasma (/= ¢ for electrons and j=i for ions) it is customary to simpli
! g ; s s mplif
(2.50) thus: ' it
(cky /o) =} /o (R, — m); 0> | (2.51a)

('w,'k||}2 >3l —|en/82,)); @<|2]. (2.51b)
The Alfvén speed ¢, =(B*/4mmN))''* is presumed to be much smaller
than the speed of light ¢.

Various Tyb[.’es of Cyclotron Resonance. Resonance via the “normal”
!.)opp‘lcr shift oceurs for kv =w— [2,/7|<0. For electrons thus resonat-
ing with [l_ﬁlaL the required whistler-mode wave frequency is related
to the particle kinetic energy (y— 1)m,¢2 and local pitch Eingie 2 by

| (m,/m)(w/Q)(y*—1)

(2.52a)

For i_ons of velocily v resonating analogously with (2.51b), the corres-
ponding relationship is

= - lre/@lr A —lo/a)

cos?y - s
(v/e ) (w/82,)

(2.52b)

A word of caution is in order here. The path along which particles diffuse
N momentum space (p,pL) is not a path of constant p. Thus, wave growth
requires essentially that —V,f point toward increasing p; (decreasing p ) along
the path of diffusion. This condition is somewhal more stringent than the minimal
requirement ofl pitch-angle anisotropy [i.e, u”f}'z?_rlp‘:-ﬂ] at constant energy. A
more quantitative stability analysis is given below (see Section 11.6). '
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Figure 20 indicates the normalized frequency l/Qj required for
resonance according to (2.52). The two cases of interest, clectrons (j=¢)
resonating with (2.51a) and nonrelativistic ions (j=1) with (2.51b), are
plotted separately.

0
|‘Ja o

':’Cn) cos &

Fig. 20. Wave frequencies required for electromagnetic cyclotron resonance with
protons (solid curves) and electrons (dashed curves) via the “normal™ Doppler
shift. assuming k parallel to B. Termination of electron-wave contours at m~ 2|
is dictated by use of (2.51a).

For a given particle, the minimum wave frequency w/2n required
for resonance is that required at the equator, where v attains its maxi-
mum valueand |€2;] its minimum along the bounce path. The distribution
of particle density (hence, refractive index) along the field line cannot
overcome this tendency unless B%/N; decreases with increasing B. Such
a distribution of N; oceurs only in low-altitude regions where Coulomb
collisions are already more important than wave-particle interactions
in radiation-belt dynamics.

To the extent that #, (w/27) tends to fall with rising frequency
in the resonant region, the “normal™ Doppler-shifted cyclotron resonance
acts preferentially upon particles that mirror away from the equator
(see Fig. 20). This mechanism for pitch-angle diffusion is thus complemen-
tary to bounce resonance, which acts preferentially upon particles having
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5 o
x*< 1, in disposing of the particles that t 4 iati
y $ ulate the earth
et [43] pop s radiation
“A second {arm of cyclotron resonance involves the “overtaking™
?r fanomaI01ls‘ Dc_:npplcr shift (ky vy, = e+ |2;/7|>0). whereby the parlicic
sees a wave with its sense of circular polarization apparently reversed
[50]. Thc anomalous™ Doppler shift enables ions to resonate with
(2.51a) if
cos® ax (¢/me)? x(m/m)(@/Q)[1—(/Q)](c,/v)*,  (253a)

where n{zvcku,-‘ml is the refractive index. Moreover, electrons can thus
resonate with (2.51 b)

(c/eal cos? 2= (Qu/w) (= 1) Y1 —|w/@))~". . (253b)

This la:lst‘m'tcraction is believed to be responsible for the precipitation
of re]atmsncleleclrons {y=4) during the main and early recovery phases
of a magnetic storm [51]. Figure 21 indicates the normalized wave
frequencies |w/€2;| with which protons and clectrons can resonate via
the “anomalous™ Doppler shift.

le/e,l cosa

e 21, Way T i

Fig. _L‘ \’\.fa‘w.- frequencies required for electromugnetic cyclotron resonance with
i:iz_of:o‘n?_(mllid curves) and electrons (dashed curves) via the "anomalous™ Doppler
.b ift. assuming lt parallel to B. Extension of proton contours to < €] is effected
v using (2.50) in place of (2.51a) o
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For the pitch-angle anisotropy characteristic of a loss-cone distribution
7 the “anomalous™ Doppler shift leads to a resonant pitch-angle diffusion
that extracts energy from the wave spectrum. Moreover. the restriction
that k=0 makes (2.44)—(2.53) a somewhat oversimplified description
of geophysical reality. The acceptance of k. %0 introduces cyclotron-har-
monic resonances (/% + 1) accompanied by squared Bessel functions
J#(k, v./@,) in Dy, Often these resonances also extract energy from
the wave spectrum. Such wave-absorbing resonances are called parasitic
[53], since they detract from the wave-amplifying properties of (2.52)
in the presence of a loss-cone distribution. Ordinarily, however, the
parasitic resonances account for only a fraction of the energy transfer
between the particle distribution and wave spectrum, since they tend
to be associated (at a given w) with the more sparscly populated (high-
energy) portion of f than the primary resonances described by (2.52).
Thus. the wave-amplifying properties of f remain largely intact.

1.6 Limit on Trapped Flux

Plasma instabilities driven by radiation-belt particles are of special impor-
tance in that they can sometimes enforce an upper limit on the particle
flux trapped by the geomagnetic field [52]. An instability analysis of
the electromagnetic cyclotron modes is best formulated in terms of
the plasma dielectric tensor derived from (1. 12). The required operations
can be simplified by taking k| =0, ¢;=0. and

e,=+ie explikyz—imt+iyy) (2.54a)
e,=e expliky=—iot+iy). (2.54b)

The real part of (2.54) agrees with (2.44) if e, = —(@/cki)b .. The Maxwell
equations for this Fourier component of e and b thus read

k.e=k:-b=0, (2.55a)
ckxe=wb, (2.55b)
ckxb=—4rniJ—we, (2.55¢)

where J is the current-density perturbation. The vanishing divergence
of e is characteristic of the electromagnetic cyclotron wave modes at
k, =0, since the perturbation of net charge density vanishes.

Dispersion Relation. It follows for these wave modes that

(2P —wm?e=4rinld. (2.56)
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!f the distribution function fj(p.r:f) for species j is decomposed into
a phag—averaged part f;(p.r) plus an oscillatory part f;(p.r:1). the Vlasov
equation (1.12) can be written in the linearized form

—ilw _k; r-"]',f-.- _(QE,",'_,HJ x ﬁ \“‘,f,

:—f!,-e'v,._!_',—q,(k].jr:Jl\'x(ﬁxe}-VrT_i (2.57)
=—lgy/o)m—k eV, 'f': — gk, Jenle-v) F_Tj.-f' Py

where 3; i:s the ratio of relativistic mass to rest mass. By transforming
to the variables p; and ¢, such that p.= —p, sing, and p,=p, cose,
during unperturbed gyration, it can be shown that

(/700 f;.""‘: py)—ilm—=k ) f;
=—|lqg Jerp e — k” FIIHP.}T};EPJ )

+ [q,f\||;;" HIJ I‘”Hf.!‘!—;’_f'lf.j 'n” , (‘J.\' px + (J-rp.‘..] ‘258]
Hafe pDer—ky )@ F/e @ ecpy—eyp).

The final line of (2.58) vanishes because f; is phase-averaged. and therefore
independent of ¢;.

It is u_ssumed that ¢ has a small imaginary part that describes
the damping (Im«<0) or growth (Imw>0) of the wave. It is proper
to view (2.58) as an ordinary differential equation for fi(¢1). subject
to the “boundary” condition lhal_f}l —oo)=0for Im @>0and fil+)=0
for Imm<0. Thus, the solution of (2.58) may be written e

St )=(a, 20—k y)@T/ep, ) +ke @T/epy)

- |:le‘\—-f'o_‘|cxp[np,_l e +ie)exp(—ig,) 555
o) — k” l'" — (QJ-;';'F-] a)y— k" 1'.'“ o 'Q_ir'r}'_l;’ i [L" )

The electric current-density perturbation J can thus be written

J= Z g;f v, (Fcosp, —Rsing,) f(@)d*p (2.60)
5

=) (gj2iw)e [ [(w—ky o) (@ [;/0p.)+kyu (@ fyépy)]u d’p
7 i @ =kt £(2;/7)
where d’p; pLrdpidpyder.and where the choice of sign ( +) corresponds
to tl}e cho_lce‘of pp[arizalion (ex= +ie,) in (2.54). In terms of the unit-nor-
malized distribution function F,= N; ' f;, the dispersion relation deduced
from (2.56) for k, =0 is therefore

r'lkzz-m"+zrszft. (2.61a)
!



74 11. Pitch-Angle Diffusion

where

J [ [l —kye)@F/0p.) +kyv CE/ep)1pidpdpy (5 o1
-0

In the rest frame of a cold plasma whose various components j exhibit

no relative streaming along B, the integration of each [; by parts allows

(2.50) to be recovered from (2.61).

Growth Rate. If the cold plasma is augmented by @ comparatively
small density of hot plasma or of radiation-belt particles, then (2.50)
remains approximately valid for relating kj to the real part of . The
growth rate Im follows directly from (2.61). If V, fis free of substantial
variation in the velocity interval extending ~ (3 Imw/ky)| to either side
of the resonant velocity t.=(w/k;)£(Q;/yk). then the integral over
py, can be simplified by means of the formula

[yl —kyv) £ Q1 ' =P{[y(w—kvy)+ 21"
—immylky |~ Slpy —7im;t) s (2.62)

where P denotes the Cauchy principal value and é the Dirac function.
It follows that

Pl T z [I‘-’Jf w/lem+ Q}-l]

!

—4ntilly| " L aj | [F (Q/r N2 T2 p) (2.63)
I
+ l\“ U ‘{3};:’5 p“ ]] Pf f.pr s

where the integral follows the path pu=Trim;le/ky) F(q;B/eky).

It is inconvenient to evaluate (2.63) in its full relativistic generality.
Since the resonant protons and electrons that tend to amplify magneto-
spheric cyclotron waves are typically nonrelativistic, it is reasonable
to adopt the nonrelativistic (y;=1) approximation for evaluating (2.63).
in which case the integral follows a path of constant py. In this approxima-
tion, a particle distribution whose energy spectrum follows a power
law (E~ 1 and whose pitch-angle distribution approximates sin®*a over
the unit sphere (/ and s are not necessarily integers) may be represented
as

Filp.r)=pi/pY (pu/p)** p~ 2 J L (p7/2my), (2.64)

where p; is the scalar momentum that corresponds o a kinetic energy
p3/2m;. The form of f) given by (2.64) is observationally realistic, as
well as algebraically convenicnt. It leads (2.63) to predict a growth
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rate Ime, given in lowest order by taki i '
. 8 s y taking the imaginary 2
The result is e it b

Imamx —4x k| ' Y g (p,/m; v,)* B(s Ls 2
| 2 qi(py/m; )™ B(s+ L) [w+s(w+Q)]J . (p}/2m))

+{2mF Z [(r)f Q,»'I(ui!);]z]}, (2.65)
F

wher_e Bis+ I._J’]sl"ls+ NE(/T(s+14 1) is the beta function. The de-
no;‘lnm?tﬂE 0!';5.65) can be expressed as 2w(c?/v,r,), where vy(=ea/ky)
and vy(=dw/dk)) respectively represent the phase and group vel i
of the wave in the direction of B. £ i
If parasitic resonances (see Section 11.5 i
parasit S s (see § .5) are neglected, as is usuall
pernussible in the magnetosphere, the growth rate o

Imw=x —2n o), tfr,,"c"'}! k™ * qf(p,.,-’mjr,)“
X B{s+1, D[ +s(w—[Q)]J, (p}/2m)) (2.66)

ll_ms follows from the interaction of electrons with the whistler mode
(j=e) or from the interaction of protons with the proton-cyclotron
mode (j=1i). The growth rate is therefore positive at frequencies such
!hat _ch<is§?ja’|s+ 1) Since (2.66) is based on the dynamics of an
infinite homogeneous plasma, however, a positive value of ll‘!‘lt:J is not
synonymous w i than instability that spontaneously generates app-rcciable
wave intensity in the magnetosphere. Instability in this latter sense
requires at least a small coefficient R of internal reflection, as inl-i
maser. to prevent all the wave energy from escaping [52]. If the ty ice;l
path ‘l_ength between the points of wave reflection is ~ La lhenpth*
condition for spontaneous wave generation (maser action) is’ )

2Lalmo> |t InR]. (2.67)

This con_dilion imposes an upper limit on the particle flux that the
mdgn:elo.sphcre can stably contain. Instability in the sense of (2.67)
g(’:nl(}:]rdtcﬁ wave energy that, by virtue of (2.47), causes the pitch angles
of the excess particles to diffuse into the loss cone until (2.67) i I
longer satisfied [52]. pon e

Limiting Flux. The upper limit on stably trapped particle flux is customar-
ily expressed as a bound on the integral omnidirectional flux
3 g : %
L.(pj2m)=4n [ sin*xd(cosx) | J,(p}2m)p,/py*'dE

0 Pjf2imy

=[2*2(p}/m)D(s+ D= 1) (s+ ]I (02/2m)  (2.68)
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above the minimum particle energy with which a wave having Imw=>0
can resonate, i. ¢., for a value of p; given by pf = (m/ky Me—|24]). where
= sQ;/(s+1)|. The critical nonrelativistic particle energies for electrons
resonant with (2.51a) and protons resonant with (2.51b) are therefore
given respectively by
E*=B*8nN.(s+1)s (2.69a)
E*=B?/8nN,(s+1)s°. (2.69b)

An estimate for the critical (maximum) value of 1s:(E*) is obtained
from (2.66)—(2.68) by replacing + sl — [2;]) with the value that maxi-
mizes [m /v, This prescription tacitly ignores any frequency dependence
of InR, i. e., it isassumed that the internal-reflection coefficient is indepen-
dent of wave frequency over the band of interest. It is thus estimated
that Imen/v, peaks at

w+s(w— |2, = = (21| [ =1, /v,) +5 n- (2.70)

if s1+(/= D(wy/vy) 3 1/2

If the particle spectrum is at least moderately steep (/2 4), then
the value of Imw/, does in fact descend sharply from a peak [where
o is given by (2.70)] to zero [where w=|sQ;/(s+ 1)[], as required. The
limiting flux is then given by

{ o)+ [sI1-1]jeBTU+s5+ )|InR|

e T TR T T (2.1
2052 || (s+ 1)L T (s+3) La )

LX(E®) =

with v,/v, evaluated at @+ slw—|Q)=0: thus v,/r,=(s+1)/2 for clec-
trons and 1+4(s/2) for protons. For practical application, it is usual
to insert apparently reasonable values of the various parameters (¢.g.
vplog~1, I~4, s~1/2, InR~—3) and to cite a common upper bound

LA (E*)~ (10" /LY em™ 2 sec ! (2.72)

for the equatorial integral omnidirectional flux of stably trapped particles
(cither electrons or protons, separately) exceeding the appropriate critical
energy given by (2.69).

Observational evidence for such a limit on the flux of trapped elec-
trons is shown in Fig. 22. For s~ 1/2. the value of E¥ given by (2.69a)
approximates the magnetic energy per plasma electron (=40 keV if
N.xdem ¥ at L=>5). Data points representing the omnidirectional
flux of electrons greater than 40keV in energy are distributed generally
below 1% on the logarithmic scale: the flux exceeds 12 only in isolated
(unstable) instances (see also Section 1V.4).
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s ny i : ;
|I;‘ill,gl :12,. Canoprllatmn f\t near-eq natorial electron-flux measurements (magnetic
Hudes <30" at L=5Sand <15 at L=6) from Explorer 14 [52].

IL7 Weak Diffusion and Strong Diffusion

Allhoygh some degree of inelasticity is essential for wave growth or
dam_pmg, cyclotron-resonant interactions of energetic (radiation-belt)
parlicles are qﬂen preponderantly elastic in the sense that Dyg <E|D, |
<E-D... This property has been illustrated schematically in F;:_z
19. The degree of inelasticity 1s of order (y;/Q))* in the felecm-}magncli‘:‘
case, and the more energetic particles tend to resonate (Figs. ’Ov—"’ll
with the lowcr-_r'requency waves. Thus, the Jacobian given b; (2.1_4]
remains approximately applicable to the cyclotron-resonant pitc'h~angle
diffusion of radiation-belt particles, and the equation

er 1 7 0T
— : [-\I T{I'} D.x.t :*; { ] {3?3)

S 4T WA :
e xT(y) dx X

approximates their dynamical behavior at constant energy.

Since T'(y) varies only moderately with y=(1 —x)'2 the solutions
of [2‘.73] must somewhat reesemble those for symmetric diffusion m
a cvlinder. Il_' D, 1s approximately constant in x, the decaying cigénﬁmc—
tions of pitch-angle diffusion must then resemble the sequence
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exp| = Dyt /x )%t | Jolk, x/x ) in order to satisfy the boundary conditionr: .
that /=0 at x=x, [43]. Here the x, (x2.40), Ky (x5.52), K2 (<8.65).
etc., denote the roots of the Bessel function Jy(x) in ascending sequence.
This means that a suddenly injected distribution of trqpqu particles
settles toward the lowest ecigenmode of pitch-ungle dlffu:‘:mn at the
e-folding rate ~(ki—k3)(Dy/x?) upon removal of the partlglt: source.
Once the lowest cigenmode is attained, the pitch-angle d:strlbu-imn
ceases to change its functional form, but proceeds_lo dwfw exponem:qily
in time at a rate ~ &3 (D.,/x?). The characteristic lifetime of a‘pa:t.lcle
against pitch-angle diffusion into the loss cong, i e., the c-'fuldmg time
for the lowest eigenmode, thus exceeds by a factor ~4 the time rgqu_lrcd
for attaining the lowest normal mode from an initially abnormal distribu-
tion of pitch angles (see Section IV.2). ’ ‘ -

A pitch-angle distribution of the form y** (see Section 11.6) 23.1&:!ds
a decay rate of 45D, at x=0 in either (2.35) or [2;;’3). If xfs~1,
this rate is quite comparable to the estimate K& (Dxx/X?2) basr.:_cl on the
cylinder analogy (see above). For comparison, the lowcsit mgc_nvalue
of (2.20) is (72/4)(D::/E2) if f is required to vanish at {=t<& Thc
numerical consistency of these estimates enables the particle lifetime
to be characterized as xZ/5 D« within perhaps a factor of two.

The above considerations apply to a condition known as weak diffu-
sion, in which the lifetime x?/5D,, is sufficiently !ong _compared‘m
the bounce period 27/Q:. The reason for this cautious interpretation
is that the dense atmosphiere is typically distant I['rom the site olj plIFh-
angle diffusion caused by a wave-particle interaction. Thus. the dlﬁ"us:pg
particles are unaware of a loss cone in momentum space (see Fig.
19) until they attempt to enter the dense atmosphere in _lhe subscqugnt
course of bounce motion. The requirement for applying (2.73) with
the boundary condition that [=0 at x= +x,_amounts to the demand

that . .
‘?T,-JQJ}D_\'.\'QH '_xl"‘- (2'74'

This means that a typical particle originating at x= +x. must be unable
to wander (diffuse) across any substantial fraction of the loss-cone aper-
ture during a single pass between mirror points. If {:2.?41 fails to hold.
then the boundary condition that f=0 at x= 4 x, appl:cs_nnly to upward-
bound particles between the dense atmosphere and the site of puch-angl'e
diffusion. not to the entire bounce orbit. In such a case. the :?na!ysls
based on (2.73) must take account of the substantial probability that
a particle’s pitch angle may wander into and back out of the loss

- ""This discussion is facilitated by the tacit assumption of a cenlcredﬁimlc
field, for which the loss-cone angle docs not vary with longitude. The generalization
to an offset-dipole model is indicated below.
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cone (perhaps several times) during a single transit of the (typically
equatorial) region where the wave-particle interaction oceurs,

The foregoing considerations are based on the tacit assumption
of a centered-dipole field. When the eccentricity of the dipole is taken
into account, it is necessary to distinguish between the bounce loss
cone, which contains particles that will precipitate (lose their energy
to the dense atmosphere) within one bounce period. and the drifi loss
cone, whose aperture is given by (2.24). The aperture of the bounce
loss cone varies with azimuth, and attains its maximum (identical with
the aperture of the drift loss cone) near the South Atlantic “anomaly™,
Particles within the drift loss cone, but outside the local bounce loss
cone, proceed todrift inazimuth but are doomed to precipitate somewhat
prior to visiting the “anomaly™,

An estimate for the bounce loss-cone angle cos ™ 'x, follows from
generalizing (2.24) to arbitrary longitude ¢ relative to the “anomaly”,
where ¢ =, The result, viz.,

V=i > [(@+h)LalP[143rg(La)~ 2 (a+ )12 cos(p—q,)] (2.75)
+[4=G/Laa+1)=3ry(La) > (a+h)">cos(p—p,)]",

suggests a rather pronounced azimuthal modulation of the aperture
of the bounce loss cone'® at 1.<3. As a result, particle precipitation
tends to concentrate in azimuth near (slightly prior to) the “anomaly™
in the absence of a counteracting variation of Dy, with ¢ (see Section
IV.2). Since the meaning of (2.74) is somewhat ambiguous under azi-
muthal asymmetry. it is customary to regard weak diffusion as a condition
applicable to any longitude at which

(1/€22) Dy < (1 — xp)2. (2.76)

In the opposite extreme, if D3 (2:/m), then the distribution f is
immune from boundary conditions in x throughout the region in which
pitch-angle diffusion occurs. On a single pass through this scattering
region,a particle’s probable pitch angle becomes thoroughly randomized
over the unit sphere. This condition, known as strong diffusion [53],
causes f to exhibit virtual isotropy in pitch angle within the scattering
region. In the limit of strong diffusion, the decay rate of f is limited
not by the magnitude of D, (of which @£/t is actually independent),
but rather by the solid angle of the bounce loss cone and by the
bounce frequency ©,/27. Under strong diffusion, a fraction 1—x, of

“Thus. x. is defined as the maximum valuc attained by the azimuthally
varying parameter xj.
2 pa
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the trapped particles will precipitate during each half bounce period,
since the solid angle of either bounce loss cone is 2n(1 —x4). The loss
rate is therefore given by

i=—0Inflet=(Q:/m)(1—=xp) (277

in the limit of strong diffusion. This limit represents an ultimate standard
by which all diffusive precipitation mechanisms can be judged for
effectiveness. Several storm-associated phenomena (e g., ring-current,
relativistic-electron. and auroral precipitation) are actually observed
to approximate the limit of strong diffusion [51, 52, 54].



