111. Radial Diffusion

III.1 Violation of the Third Invariant

Whereas pitch-angle diffusion is customarily invoked as a loss mechanism
for the radiation belts, diffusion in @ is usually associated with creation
of the belts. This is especially true of radial diffusion in which M
and J are conserved, since particles then gain energy in the process
of diffusing toward the earth from an external source (see below). Diffu-
sion in @ (radial diffusion) at constant M and J thus plays the dual
role of injecting particles inte the magnetospheric interior and accelerat-
ing the particles thercby injected to the energies observed.

In addition to particles that have entered from interplanetary space
(and perhaps from the geomagnetictail), the magnetosphere also contains
protons and electrons born internally through the decay of albedo
neutrons ejected from the upper atmosphere by energetic (Z 100 MeV)
solar protons and galactic cosmic-ray particles colliding inelastically
(in the nuclear sense) with gas atoms. These internal source mechanisms
are known as SPAND and CRAND, respectively. for solar-proton (and
cosmic-ray) albedo neutron decay. These sources (CRAND is about ten
times as intense a particle source as SPAND) typically account for
the presence of energetic protons and electrons in the inner zone, but
radial diffusion plays an essential role in bringing about the observed
spatial and spectral distribution of these particles [38] In addition,
radiation-belt particles may possibly experience in situ acceleration to
high energies [44] through the absorption of plasma-wave energy. Such
an event might easily be interpreted as an “injection” of the energetic
particles into the magnetospheric interior (see Section IV.6).

Artificial radiation belts created by high-altitude nuclear detonations
(1958 —1963) once contributed substantially to the inner-zone particle
population. These artificial belts, which had decayed to an intensity
below that of the natural radiation by the year 1968, yielded some
of the earliest measurements of a radial-diffusion coefficient for radiation-
belt electrons in the magnetosphere.

In the outer zone, radial diffusion plays an all-important role in
maintaining the level of trapped radiation. Direct observational evidence
for the occurrence of third-invariant violation in the outer zone is
shown in Fig. 23, which is a tracing of data obtained by instruments
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Fig. 23. Drift-periodic echoes in outer-zone electron fluxes, as observed on ATS |
following a negative magnetic impulse [ 55] at 2330 UT (1330 LT).

on the geosynchronous equatorial satellite ATS 1 (longitude 150°W),
together with the magnetogram (horizontal, or H, component) for Fhe
same time period (1300—1400 local time) from the gmund-tl}ased station
at Honolulu. The interpretation of Fig. 23 is that a negative magnetic
impulse, presumably caused by a sudden decrease in solar-wind pressure
at the magnetopause, propagates inward from the magnetopause ‘dl;‘td
arrives at Honolulu several minutes after encountering the spacecraft **.
Upon arrival at synchronous altitude, the impulse causes a simultaneous
decrease of the electron flux observed in cach of the seven energy
channels. As time goes on, however, particles near the satellite at the
arrival time of the impulse drift toward the night side, and eleclmps
from the night side (where the negative impulse was less severe) drift
to the azimuthal position of the satellite. This accounts for the recovery
of the fluxes in each channel on a time scale of half the energy-dependent
drift period. The relative minimum in flux recurs with the return (to
the day side) of those particles most severely influenced by the impulse.

*"This delay time is in accord with the time required for a rarefactional
(magnetosonic) impulse to travel the required distance of 5.6 earth radii at approxi-
mately the Allvén speed.
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These drifi-periodic echoes in the outer-zone electron flux persist well
after the passage of the magnetic impulse initiating them. Morcover,
the fact that each energy channel “oscillates” at its own characteristic
drift frequency is convincing evidence for drift-phase organization of
the particles, which therefore (cf. Section I1.1) have been dispersed with
respect to || (=2na®Bo/L)*". The nonvanishing energy bandwidth
of each detection channel corresponds to a drift-frequency bandwidth
that thoroughly phase-mixes the observations on a time scale of three
or four drift periods. Particles initially differing in both ¢; and energy
retain their separate identities, but the detectors can no longer distinguish
among them.

The practical fact of phase mixing. and the fact that consecutive
sudden impulses are statistically uncorrelated on the drift time scale.
provide the essential degree of randomness that makes it appropriate
to speak of third-invariant violation in terms of diffusion with respect
to @. At constant M and J, i.e., with pitch-angle diffusion neglected,
the radial-diffusion equation

oT_ o[, of] a1, of
— =P = = | i 3.
ct F‘Gﬁ[ ‘p@ﬁcpJ L (:L[LI DU_ (-\L:I (3.01)

follows directly from (2.01), since Dyy = (d L/d )? Dgy. The distribution
function f'is equal to J./p? evaluated on a surface generated by the
mirror points of ions or electrons having in common their values of
M and J.

In a dipole ficld this surface coincides with the equatorial plane
(0=nr/2) for particles having J=0. For J+0 the mirror-point surface
satisfies the equation

[3/Y(3)]?=8moBoa*(M/J? L)= Boa?/K* L, (3.02)

where y is related by (1.25) to the mirror colatitude 0,. With the aid
of (3.02) and (1.31), the variation of y with L at constant M and J
is plotted in Fig. 24 for selected values of y- (the value of yat L=T),
The L=7 shell is often used as a reference location in radiation-belt
theory because it is quite near the outer boundary of stable trapping,
and therefore adjacent to a possibly important source of moderately
energetic particles (i. ¢., solar cosmic rays that have entered the magneto-
sphere). A secondary reason for the popularity of L=7 as a reference
shell [40] is that an equatorially mirroring particle’s nonrelativistic

*!This follows from Liouville’s theorem, since J3/2m (=qb/2ne) is canonically
conjugate to the drift phase ¢s.
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Fig. 24. Systematic variation of v (sine of equatorial pitch angle}bwbilh Loat
constant M and J, applicable to radial diffusion caused by magnetospheric impulses.

kinetic energy p*/2mo (measured in keV) at L=7 roughly approximates
the particle’s first invariant M (measured in MeV/gauss). o
Except at the end-points y=0 and y= L. there is a systematic inverse
variation (not proportionality) between y and L during radial diffusion
at constant M and J. This variation does not constitute pitch-angle
diffusion, but rather is an interesting property incidental to radial diffu-
sion. The change in particle energy during diffusion in L can be deduced
from the identity p*=2mo MBo/L*y* if0<y<1, or from p=J/2La Y (v)
if 0< y < 1. It follows that p* varies more strongly than L™, but more
weakly than L7, in the interval 0<y<1. )
The type of radial diffusion that conserves both M and J [ 58]
can be caused by magnetic sudden impulses (as illustrated in Fig. 23),
by substorm-associated impulses of the convection clectrostatic f{cld.
and by other magnetospheric disturbances operating on a similar time
scale (~ 100 sec). In each case the affected particles yield a bounce-aver-
aged response, since the rise time of the impulse (~ 100 sec) i.:; typig:ally
much longer than 27/Q: (~ 1sec). On the other hand, the drift periods
of many radiation-belt particles (~ 500 sec in Fig. 23) are not extremely
long compared to the rise time of a typical sudden impulse, and so
a frequency-spectral treatment of impulses is definitely in order. In
such a treatment, a particle responds resonantly to Fourier components
located at harmonics (including the fundamental) of its drift frequency,
although the impulses themselves are hardly oscillatory in character.
In addition to the type of radial diffusion that conserves both M
and J. it is possible to conceive of mechanisms that fail to preserve
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the first two invariants while violating ¢. Such mechanisms may involve
particle collisions or bounce- and cyclotron-resonant interactions with
magnetospheric waves. Radial diffusion mechanisms that violate M
and/or J often lack the ability to energize particles efficiently in the
process. and they generally play a less certain role than sudden impulses
in the overall picture of radiation-belt dynamics.

III.2 Magnetic Impulses

In the magnetic-field model specified by (1.45), sudden impulses in
B correspond to sudden changes in b, the geocentric stand-off distance
to the subsolar point on the magnetopause. The stand-off distance
b is governed, according 1o (1.43), by the momentum flux of the solar
wind. An encounter with the plasma ejected by a solar flare, for example,
canlead toa sudden contraction and/or expansion of the magnetosphere.
A decrease in b that is sudden on the drift time scale represents a
sudden contraction of the magnetosphere. This contraction consists
of both an azimuthally symmetric compression of B (the B, term)
and an azimuthally asymmetric distortion of B (the B; term). The
symmetrical compression, which is casily identified from the magneto-
grams of ground based (r=«) observatories. is adiabatic to the trapped
particles. All drift phases @1 respond identically to the symmetric part
of the sudden impulse, and so this part is reversible. It conserves @
and produces no radial diffusion.

Induced Electric Field. The accompanying asymmetric distortion (the
B; term)is not casily distinguished at r=a, where it is small in magnitude.
However, this part of the impulse does violate the third invariant,
thereby producing drift echoes (Fig. 23) and radial diffusion. A sudden
impulse in B affects the geomagnetically trapped particles by virtue
of an induced electric field E, which may be calculated term by term
from a field expansion [29] of the form [¢f. (1.46)]

E(r.0,@:0)=3 E(l.m n; /by sin'0sinme (3.03a)

Imn

Ey(r. 0, p:0)= ) E,(I,m, n;t)(r/b)' cosOsin'Osinme (3.03b)

{mn

E (r,0.p;0)=3 E_(Lm n;0)(r/bysin'0cosmep. (3.03¢)

{mn

If the Maxwell relation ¢V x E= — (¢ B/{ 1), written out in its three com-
ponents, is applied to (1.46) and (3.03). the time-dependent (but position-
independent) coefficients of [(r/b)'sin'™'Ocosme] and [(r/b)'cos0
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x sin' (sinm @] can be isolated to yield the relationships
(n+ V) E(l.m n;ty=mE, (I+1,m.n:1)
+(a/eNb/a) Bo(l.m.n—1:1) (3.04a)

(n+1)E (L mon: )=+ D E(I+1.m n1)
—{a/c)(bjay' B (L myn—1:1). (3.04b)

where B=0B/ét. The third component of ¢VxE= —(OB/d1) is redun-
dant, since V-B=0.

One more condition on E must be specified in order to solve (3.04).
[t is customary to state this subsidiary condition as E:B=0 [32]. Such
4 statement is usually justified by an appeal to the cold plasma which
is assumed to fill the magnetosphere. The cold plasma serves to short-cir-
cuit each field line, in which case the impulsively expanding (db/di>0)
or contracting (dh/dt<0) magnetospheric medium is governed by the
laws of magnetohydrodynamics (MHD). Since the impulse therefo'rc
propagates through the magnetosphere at approximately the Alfven
speed, the field model summarized by (1.46) admittedly violates the
principle of causality on time scales shorter than ~b/c,. For drift
periods exceeding a few minutes, however. the arrival time of the impulse
at any L shell is practically independent of @3, and this condition
permits the simplified (instantaneous-response) model to be used for
the time-varying B field.

For the magnetic-field model given by (1.48), application of E-B=0
to (3.04) yields the recursion relation [29]

[2n+1+2)(n+1)]E(,m n:1)

—(B,/By)[(n—1=2)/(n—2)] E (Il m,n—3:1)
+lB:;B“}[H—u+3]__f{n—3}]£',{f—1. m—1,n—4:1)
+(By/Bo)[(I—=n=2)/(n—N] E(l1=1L.m+ 1,n—4:1)
—(B,2By)[(l—-m+ ) (in—3]E,(I+1.m— 1, n—4:1)

— B2 B)[(l+m+2)/(n—3)] E(I+1.m+ t,n—4;1  (3.05)

—(4/3¢) By (a/b)* (d b/d 1)3,, 8,1 O

+(1/6¢) B, (B,/BNa/by (dbjdt) oy 8, 0,5+
where the Kronecker symbol 8;; is equal to unity (rather than zero)
only if i=j. Closure of the recursion formula is achieved by requiring
that the E induced by db/dt remain finite in the limit r=0. This require-
ment forces E(lomn:t) to vanish if n<0. From this starting point
it is possible to gencrate all the coefficients E,(I,m,n:1) by means of
(3.05). The nonvanishing E,(L.m.n:1) of lowest order n is E,(1,1.2:1)=
—(@/7c)a/b)? (db/dt) B,.
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The recursion relation yields definite algebraic values for several
coeﬁicrer_lls which have m=0, and which therefore ostensibly can have
no physical significance [see (3.03a)]. Such coefficients that multiply
zero (in the form of sinmeo) are ignored. A correct impiemcntalioﬁ
of (3.05) thus leads to a unique set of electric-field coefficients E, (Lm.n: 1),
where m>0, from which E,(Lm.n:t) and E,(l.m,n:1) are obtainable
by means of (3.04). All nonvanishing electric-field coefficients for which
n< 10 are listed in Table 7.

Table 7. Electric-Field Coefficients

EALL2:t = =(4/T) B2ia*bh/b? ¢)
EALLS:t)=—(9/90)(B,/Bo)Baa* b/b? )

g:f % g: r_: = 1,}61)?[?2{'31-.) Bilath/h*e)

vl L8t = —(135/3458) (B /By Ba(a’h/hie
@(_2. 2,9:1) = (25/273)(B2/Bu)* B, [}uJH,-’h-‘(-}' -
EL L0ty = —(11/483)(B2/By) B ta  h/h* ¢)
EA3 01,1050 = —(11/210)(B2/Ba)* B (a b/b3 ¢)
E3,3,1050) = —(11/210)(By/Bo)*Bali? B/b* ¢)

Eu (0,1.2:0)=(R/T)Bata® A/b* ¢)

E(0,1,5:0) = —(3/1821(B,/Bg) B, (a* B/b* ¢)
Eo(1,2.6:1)=(1/21}(B3s/Bn) B, tﬂ‘;ﬁ;"b“lc']

I?ﬁ!g. 1,8;1)= — { lja{3458’ [B]:rBU]:B; {ﬂ'" h 'h“{'}
Ep(1,2.9:1) = (5/273)(B2/Bo) B, (¢* b/h' ¢)
E.ulo_. L10;t)= —(1/483 11 B}_r'BoI: B:l(’l“ J;b‘ o)
En(2.1,10:2) = —(1/70)(B2/Bo)* Bata*b/b* )
Ea(2.3,10:8) = —(1,/70)( ByB;ﬂ: B, [n‘"ﬁ_.b"c]

E (1,0, 1:1)=(3/2)By(a’b/b*¢)

Eo(0.1,2: 1= (R/7)Bala* b/b* )
Eo(2,1.2;0)= —(8/3) B2la" b/b* ¢)
E,(0.1,5:1)= —(3/182)(B./By) B2 la* h/b*¢)

Eo(1,2,6:1)=(1/21)(B2/Bo) Ba(a™ b/b’ ¢)

E 0,1,8:0)= —| !53'3458"81:’8{:}: B; [(.l‘i ’i.-h‘](’]
Eo(1.2.9:4) = (5/273)(B2/By) By fa’ bib*¢)
Eg(0.1.10:0) = —(1/483)(B2/Bo)? Ba(a’* h/b* ¢)
E (2. 1.10:0) = —(1/70)(B2/Bu)* Ba{a* h/h* ¢)
E,(2.3.10:0) = —(1/70)(B2/Bo)* Ba(a* h/b* )

Response of Trapped Particles. This analytical representation of the
E field 1n5:1uced by a time-varying model B field is especially useful
for followgng the response of trapped particles to a magnetic impulse
Each particle experiences an electric drift at velocity -

vi=(c/B)ExB (3.06)

in addition to its gradiem: curvature, and other (¢f. Section I11.6) drifts.
Asa consequence, the particle may change its value of L(=2ra’ Bo|®| 7).
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Except for particles mirroring at the equator, the bounce average required
in applying (3.06) is quite onerous. A rather different approach, based
on (1.77b), is more expedient for calculating the radial-diffusion coeffi-
cient Dy to lowest order in (B2/Bs), for arbitrary mirror latitude.

The more expedient approach is based on the fact that vy, as given
by (3.06). can be identified as the local velocity of a field line if the
E field induced by ¢B/dt is everywhere perpendicular to B. In other
words, if only the Ex B drift is considered, the particle remains on
its original field line, as identified by the label Ly The proof that
field-line motion can be traced in this manner follows from the identity

B d Lydr)=B* (@ L/ct)+B*v. VI,
=B*@L,/Ch)db/dt)+cExB-VL,=0, (3.07)

which can be verified with the aid of Table 7 to each order in &
and ¢ (see Section L.7). The degree of accuracy inherent in (1.69b),

which implies
Lyx(r/asin® O)[1+(B,/2 By)(r/b)
—(2B,/21 Bysin0)(r/b)* (7 sin* 0 —3)cos @] , (3.08)

is adequate to verify (3.07) in first and second order??. A more extensive
proof (to higher order) is not required here, but could easily be generated
[32].
Whereas the ExB drift induced by a time variation of b yields
noimmediate change in a particle’s L; coordinate, the gradient-curvature
drift does. According to (1.77b) this change is of the form

d Lyjdt~ —@(B,/252 By) Li(a/by* [Q(y)/D(y)]sineg . (3.09)

The coordinate Ly to which the particle would return at @= +r/2
in a magnetosphere frozen in time (db/dt=0) properly labels the drilt
shell in the sense that

**The ficld-line label L, defined by (1.51b) is conceptually useful only if higher
internal geomagnetic multipoles. which would dominate the dipole as r approaches
zero, are neglected. More generally, a ficld line may be labeled by the point
at which it 1s anchored in the surface of an ideally conducting solid (of which
the carth is an adequate example on the time scales of interest). If due account
is taken of currents thereby induced on the surface of this conducting solid,
it can be shown that the Ex B drift induced by ¢B/@¢ impels a particle to
remain attached to its original field line, as identified by the coordinates of
its foot on the conducting surface [32]. In a model such as (1.45) there is no
provision for currents at r=a, and the conducting solid degenerates to a point
at the origin (r=0).
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|| = _l’ | Buyta/r?rdr dw
(] reAim
Ir relg)

- EE I [Bla/h) - B, (a/b) (r/bycos o] rdrde

AL

=[2na’ Bo/Ly(w/2)] 11 + Oe3)+ oo}, (3.10)

Por convenience, the third invariant has been evaluated using the egua-
torial plane (f=m/2) of the magnetosphere, in which case B ?int"
in the —@(+z) direction and has a magnitude given by {!‘ 45h). pgi :
the end result of (3.10) has no onrrcu:tion terms of ordér_a1 or r:;Cf

h clna - L - « o
dl = .

Diffusion Coefficient. Since 7= Lal=7/2). it follows from (1.77b) that

L= Ly {1 —(B2/252 By)(L,a/by* [Q(y)/D(3)] cos o). (3.11)
The instantaneous shell parameter L thus changes at a rate
dlL/dt= (By/63aB,)(L u;"hlf'(r."hl.fdri[Q(_‘.‘};’D{_Fl‘] COs (p (3.12)

:S I_(_)“ u;l order in g :fmd £3. The radial diffusion coefficient
D =( l,.e:}-_ri)<[.-.’1 me 1s obtained by integrating (3.12) over an interaction
time 1> 27/Q,, dl_lrmg which cosp=cos(Q,¢ +3). It is convenient to
express the result in terms of . (/2 r), which is cicﬁned as the spectral
density function of B, (a/h)°. The procedure for obtaining D i‘\:pm ‘;1
the same as that used in Section [1.4. and the result [56, 5?]%5 o

—20% R/ 2 k)2
D, =2Q3(B,/756 B, B,)* I!%(a/b)* [QU)/ D] 2.42,27). (3.13)

When radial d?ﬂ'usion 1s caused by magnetic impulses, the energy depen-
dence of Dy, is contained entirely in Q. If the impulses risey%halrxl

aj;dgdc_uay .slowly (like a step function) on the drift time scal;e thl?:r};
-A l_- ‘. r}Z:ﬂ is rprppor!mngl to Q5 ° and all eneryy dependence disappears.
Al sulficiently high energies, the particle drift period becomes somewhat
compgrable to lh‘c rise time of an impulse (see Fig. 22) and this range
}Jf drift frequencies !“mds #-(23/27) falling more sharply than Q32
tfollowsthat D, ultimately decreases somewhat with increasing cm:r3 v.
f‘-\l c0n§ta1nt M and J, however, the drift frcquency decreases wilhhincre:;gl's-
Ing L. Thus, any inverse dependence of D;; on particle energy !end;

to strengthen the L dependence of the radial-diffusion coefficient.

" The dtfpendence of Dy on equatorial pitch angle is contained primar-
L} in the {dctor [Q(»V/D(y)]*. This factor, as approximated within ~ [ %
Y means of (1.36) and (1.79). varies by nearly an order of magnilucic
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n p=1and y=0 [36. 57]. The function Q(J!};’I?&OD_{_\:} is plotted
:): E;?ES" At cncrgi}cs sui‘%ciently high that the drift period is cpmparrzgwlc
to the rise time of a magnetic impulse. this extreme vanauo‘p o ;,;1‘
with x is slightly moderated by the fact that parhcles having v;:
drift more slowly in azimuth than those for which x=0 [see _ll.:_)}]{
At a given energy. of course, this variation of Q1 with x is very weak.

T

2
wn

. V1142
Qlyl/ 1800y = [Dydy) /0y (1]

ig. 25. Variatl 2 with v adial diffusion caused by magnetic
Fig. 25. Variation of (Dgg)'* with v for radial sed b _
qdﬁdcn impulses. Data points have been determined by nurpcnu% LOB]EUE?I;I‘;T
l[]9]‘ Solid curve is analytical upproximation [66] based on (1.36) and (1.79)

In summary, the radial-diffusion coefficient caused by 'magnet:c
impulses that rise sharply and decay slo_wly on Il"lt: drift time :{;cae
is virtually independent of energy. For particles mirroring at the equator,
the coefficient is given [29] by

Dy.=203%(5B2/21 By Bo)* L*° (a/b)* #.(Q3/27) (3.14)
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since Q(1)=180D(1). In the case that £.(Q3/27) falls off as Q3 2, there
is no energy dependence in Dy, Thus, the diffusion coefficient depends
on y through the factor [Q(y)/D(y)]* in (3.13), and on L through the
factor L'°. But since y and L are related via (3.02), the factor [Q(y)/D o]?
exhibits an inverse variation with L. Fxcept at y=0 and y=1. this
factor tends to moderate the variation of Dy, with L. With the aid
of Fig. 25, it is possible to evaluate the ratio of Dy at any L to
Dy at L=7 and y=1 for selected values of y+, under the assumption
that ® #.(w/2n) is a constant. The results, plotted in Fig. 26, are
principally of interest for high-energy protons and helium ions. which
may in fact escape pitch-angle diffusion during their period of residence
in the magnetosphere.
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Fig. 26. Radial variation of Dy, driven by magnetic impulses. for selected values
of yat L=7 (y,=0. 04, 0.6, 1.0). Dashed line (y-=0) is not realized in practice,
because of the loss cone.

The magnitude of the spectral density function 4. (w/2n) is likely
to vary with magnetic activity (as measured by an index such as K,
or Dg), and so the otherwise arbitrary interaction time t used in this
chapter is limited by the time scale of several days characteristic of
changes in magnetospheric “weather”. However, if the observations
of f are sufficiently coarse-grained as to average over genuine temporal
variations of Dy ;. it may be possible to identify a mean diffusion coefli-
cient applicable to a much longer time interval (see Chapter V). Particle
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lifetimes in the inner proton belt are even long enough (see Fig. 14,
Section 11.2) to permit averaging Dy, and f over a large number of
solar cycles.

111.3 Electrostatic Impulses

Abrupt temporal changes in the electrostatic potential associated with
plasma convection are characteristic of geomagnetic storms and magne-
tospheric substorms. Impulses of this type can be represented by a
time-dependent coefficient E, in (1.52). For particles ol radiation-belt
energy (W3lg V.|) the drift-shell asymmetry caused by the mean value
of E, can be neglected in the calculation of Dy to lowest order in
q EcaLy/W. Moreover, the magnetic field is assumed to be given by
(1.16). In this situation it 1s evident from (1.66) that |®|=2ma* Bo/La(0).
with no first-order correction in g E.aLy/W. Thus, the instantancous
shell parameter L is given in lowest order by

L=L1—[3/* =g E.aLy/3 my e[ T(y)/D(y)] sin @)
=L 1 —(E./By)lc/Qa) Lising| . (3.15)

in view of (1.35). Since (1.65a), to the order of accuracy inherent in
(3.15), implies that

d Lyjdt=o(E./By)(c/Q3a) Licosp (3.16)

for a particle drifting in azimuth under the influence of (1.52), it follows
that .
dL/dt= —(EJBo)c/Q5a)Lising {3.17)
for this particle. With E. represented as the sum of purely temporal
Fourier components [¢f. (2.28)]. the particle selects that component
for which = Q5 after an interaction time 3 2n/Qs.
The diffusion coefficient Dy =(1/27){(4L)*> obtained from (3.17)
by the methods of Scction 1.4 is given by
Dy=2(¢c/4aBa)* L® 6.(Q3/27), (3.18)
where & (w/27) is the spectral density function of E, (see Section L6).
A particle’s energy and equatorial pitch angle enter (3.18) only via
Q. For electrostatic impulses that rise sharply and decay slowly on
the drift time scale, the spectral density &.(Qs/2n) falls as Q3 2 In
this case. the functional form of Dy is

D, =2(qa/24 Byl L[ T(y)/ D] 03 /MY
s [14 QM By/my y* Y] o &/ 27), (3.19)
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v\:hcre w/2n is any frequency whose reciprocal lies well between the
rise and decay times of the typical electrostatic impulse.

" It 1src§‘gyenlm-na]_to compare spatially coincident magnetospheric
: uxes of dillerent 1onic species at common kinetic energy per nucleon
:.he., :il comlm_on particle velocit}_’._This convention greatly simplifies'
the comparative analysis of collisional effects (see Section I1.2). The
wns_of Interest are typically nonrelativistic, and so the con:;;-ne{rison
applies esseptmll.y. at common y, L, and M/A, where A is the number
of nucleons in the ion. The respective electrostatic radial-diffusion coeffi-
cients thus scale as (g/4)*. The magnitudes of Dy, for H* :He " *:He~
therefore scale as 16:4:1. When coupled with the cxpcctalion' that
magnetospheric helium nuclei (originally interplanetary alpha particles)
spend up to half their radiation-belt lifetimes as He* by virtue of
charge exchange_ (see Section T1.2), this property of electrostatic diffusion
provides a pqssmly interesting explanation [40] for the obscrvaliénal
fact (see Secpnn IV.5) that ratios of helium-ion flux to proton flux
(often abbreviated o/p and He " /p) at common E/4 in the magnetosphere

{wgll pﬂ‘ the equator) are orders of magnilmie smaller than lh? /
ratio in the solar wind [59]. b
Among particles of_tl_w same species, the diffusion coefficient given

by (3.19) is rather sensitive to particle energy, but notably insensitive

Dby, L) 4Dyt 7)
i

Fig 27. Radial variation of Dy, driv y ici

B : e driven by electrostatic impulses. [i atvistic
ﬁlrﬁ({:)lei} llawng a common value of E at £.=7 and selcgti:\d“::lg:;g?r:ﬂ:: ':[.IT;
¥7=0, 0.2, 04, 0.6. 0.8. 1.0). Dashed line (y;=0) is not realized in practice.
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to equatorial pitch angle. Neither energy nor pitch angle 1s mvanal:t
during radial diffusion at constant M and‘ J. however. IThus_. a pr‘opc.r
comparison should follow the spirit of Fig. 26, wherlem pqrtlcles al];Ic
distinguished according to their values of yat L=71in a dipole _ﬁe ;
In electrostatic diffusion it is logical to compare particles havm% a
common kinetic energy E; at L=7, i.e, a common value of \M,-yﬁ.
The derivation of (3.19) assumes that w? & w/2m) is c_opst_ant to_r all
frequencies of interest. If attention is limited to nonrelativistic particles,
such as radiation-belt ions, the variation of Drr w.nh [ is that of
LT (/D ()] (v/y7)". With the aid of Fig. 24, which indicates the
variation of y with L for selected values of ys. the ratio ol Dyp at
arbitrary L to Dy, at L=7 and y=1 has been evaluated lor these
selected values of v+ The result is shown in Fig: 27. _The common
value of E- that forms the basis of this comparison is assumpd_ to
be such that 270 E-<mgc? in order to justify using the uomelat!wst:c
form of (3.19) down to L= 108, where the dense atmosphere terminates
the inner belt (see Section 11.2).

Spectral Density. Extrapolation of (3.19) to ring-current energics and
below is forbidden on a variety of grounds,_Conmder‘{for ex:fmjp!e}
a random sequence of impulses, each consisting of an ideally mslan-.
tancous jump from E. to E.+A4E. followed by an cxponcntlal_ decay
o E, with an e-folding time t,. The spectral density & (wf2m) is then
riven?? by

: : 22 /7)Z(4E,)

Ele2n)=—7

(3.20)
1+’

where >0 and (4 E.)? denotes the sum of the squares of all ‘su‘dden
increments in E. initiated within an arbitrarily long (but statistically
homogencous) time interval of duration 7. The validity of (3.19) thus
requires ?ti> | at w=[R2s] It is presumed tha}l tq~2hr, ;qd that
most radiation-belt particles therefore comply with the ;opdltlons 'ol'
(3.19). At ring-current (hot-plasma) energies and below, it is es;enlia]
to reconsider the radial-diffusion problem in terms of (1.65), without
making the simplifying approximation that W> g Vel _
On the other hand, the spectral density &.(23/27) falls more rapidly
than Q32 for particles having drift periods compara_ble to or SI‘nal_ler
than the rise time of a typical impulse. The approximation of a va_mshmg
rise time. as used in (3.20), is appropriate only if the particles of interest

23The spectral density function given by (3.20) has been cn'nsm}%‘ml .m.£
manner easily generalized to other types of impu]sc:s: For example, il E. 15 re]‘.)ldt:_ ’
by Bia/m?® m (3.20), the result is a formula for #-(w/2n). the spectral density
function for magnetic sudden impulses (Section T11.2).
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wn

have drift periods well in excess of the true rise time. Moreover, the
magnitude of &.(x/27) is likely to vary with the level of geomagnetic
activity, as measured by an index such as K, or Dy (¢f- Section IT1.2).

Harmonic Resonances. Large-scale electrostatic fields in the magneto-
sphere presumably may fluctuate in other than the simple mode assumed
in (3.17). For example, it may be impossible to represent the flucruating
Velr,th ;1) as in (1.52), but quite reasonable to represent it as

Vo(r, 0, 0:0=Y E,(L;, NaLgsin(me+i,). (3.21)

i

The case culminating 1n (3.18) i1s included in (3.21) if E{(Lat)=E.(1)

and ¥ =0. The more general expression for F.(r, 0, ¢: 1), however, yields

a diffusion coefficient of the form [56]
Dy =2c/4aBy) Iy m* &,

m

(L, mQy/2m), (3.22)

where &,,(L.w/27) is the spectral density function of E, (La1). The addi-
tional spatial structure present in (3.21) thus partially transfers the
burden of causing radial diffusion to the higher harmonics of the drift
frequency. The entry of these higher harmonics 1s remumscent of a
similar effect in bounce-resonant pitch-angle diffusion (see Section [1.4)
and occurs for an analogous reason (lack of positive long-range spatial
correlation). Magnetospheric observations of a fluctuating electrostatic
field must therefore be treated with caution in terms of extracting a
diffusion coefficient, unless the extent of spatial coherence is known.

111.4 Bounce Resonance

Resonance of an MHD or electrostatic wave with harmonics of a par-
ticle’s bounce frequency has been invoked previously (see Section 11.4)
asa mechanism for pitch-angle diffusion. There it was noted that confine-
ment of the electric-field perturbation e to a meridional plane would
prevent contamination by radial-diffusion effects. Conversely, a com-
ponent of e in the azimuthal direction provides for the possibility of
radial diffusion. The case of an electrostatic wave (for which e is parallel
to k) propagating purely in the azimuthal direction (see also Section
I11.5) is essentially covered by (3.21) and (3.22). The resonance condition
is found to be m=mQs Even il m is a very large number (~g™!
for a resonant particle), the resonance condition is unaffected by the
bounce motion if k is everywhere normal to B for an electrostatic
wave,
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If, however, the electrostatic wave is such that field lines are not
equipotentials, e g.. as in (2.37), then the condition for resonance takes
on the form [64]

w—m3—12,=0. (3.23)

Just as in (2.33). the various values of [ enter the diffusion coefficient
weighted by J7(kypx/ymyQ;). which is small if the order (/) is much
larger than the argument (k) px/ymo Q). If m<g| ', it may be instructive
to define an azimuthal wavenumber k,= (m/r)cscf) and a bounce-aver-
aged particledrift velocity v, = Q37 sin 0 in the dipole field. The resonance
condition then reads

W—KpUp=123, (3.24)

which may be interpreted as a Doppler-shifted bounce resonance by
analogy with (2.38). On the other hand, . it may be
instructive to view (3.23) as a bounce-modified drift resonance, Since
the two interpretations are fully equivalent for any m and [, however,
the connection with radial diffusion (Section IIL2) is quite evident.

A similar connection may be drawn between the magnetic impulses
of Section 111.2 and an MHD wave propagating partly in the direction
of V Lyand partly in the directions t}fg and ¢. The electric-field perturba-
tion e for an MHD mode is normal to k and B (in the cold-plasma
approximation). and thus lies in the p!:me of @and V L. The ¢ component
of e leads to radial diffusion, the ¢ component of k to drift resonance,
and the B component of k to bounce resonance. The condition imposed
by (3.23) includes both bounce resonance and drift resonance. Either
can be isolated by assigning m=0 or [=0, respectively.

I11.5 Cyclotron Resonance

Because it leads to substantial pitch-angle diffusion, the Doppler-shifted
(k r))) cyclotron resonance considered in Section 115 is principally a
loss mechanism for geomagnetically trapped particles. Cyclotron
resonance is not known to be an important mechanism for radial diffusion
in the radiation belts. A particle is perhaps displaced by one gyroradius
in the course of diffusing by one radian in pitch angle. In the absence
of shell splitting (see Sections 1.7 and 111.7), the resulting radial-diffusion
coefficient is of order &* L? D,,. This is rather insignificant for radiation-
belt (Je] < 1; Section 1.1) particles, since the root-mean-square displace-
ment in L is only of order &L during the lifetime of a particle (in
weak diffusion; see Section I1.7). The most energetic radiation-belt ions
(for which |¢| is nearest to unity) tend to deposit their energy in the
tenuous atmosphere without significant change of pitch angle.
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The conditions under which radial diffusion might occur by virtue
of eyclotron resonance are quite different from the conditions explored
in Section IL35. Consider. for example, a wavelike electrostatic potential
of the form

Vetr, o t)=a E,,(La)sin(mo— ot +4,,) (3.25)

where o/2x is of the order of a particle’s gyrofrequency. A wave of
this type may be generated by virtue of an unstable spatial gradient
of f. e.g.. Of}d Lu<0, with the conserved quantities held constant. Such
an aznnuth.lll}' propagating wave is called a drifi wave, whether or
not cyclotron resonance is involved.

The unperturbed motion of an equatorially mirroring particle may
be represented by

(p=Qst+@a+(pc/qgBLaa)sin(Qyt+,). (3.26)

The postulated drift wave does not alter the equatorial pitch angle
(m/2) of such a particle. The particle’s interaction with the wave specified
by (3.23) yields a ¢s-dependent drift in L (=L, in a dipole field) given
by
dLjdt=—(c/a)(2/By)mE, (L)Y J(—mr /Q, La)
t

xeos[{w—1Q, —mQ)t—(p, +lp,+me,)].  (3.27)

The resonance condition m= wy,=16; +m Q5 leads to a radial-diffusion
coefficient of the form

Dy =2(c2aByP I? Y m* I (mr /Q, La)6, (L., /27),  (3.28)
lm

where &,,(L,w/2r) is the spectral density of all waves having the form
of (3.25). Note that m represents an azimuthal index, not a mass, in
(3.25)—(3.28). The leading factors in (3.22) and (3.28) differ only because
each term in (3.21) is a superposition of two waves having the form
of (3.23).

In the dr;,umem of the Bessel function J,, the factor m/La plays
therole of k, in (3.24) or of k., in (2.43). Thus, for azimuthal wavelengths
comparable to a particle’s gyroradius, a drift wave can resonate with
the gyration of the particle in a manner that leads to radial diffusion.
The pitch-angle of an equatorially mirroring particle is unaffected by
this process, but the energy of a resonant particle changes in accordance
with the relation

d(p?)/dL=2qp-eld L/dt) '=2qwa*Byymo/me L? (3.29)

in a localized region where d E,/d L ~0. The ratio m/q is negative for
a wave (m) propagating in the direction of the resonant particle’s azi-
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muthal drift. Thus, an outward diffusive flow of trapped particles (arising
from an inward gradient of [ with respect to L) leads to a transfer
of particle energy to the wave?®. The interaction evidently conserves

p*—2(q/m)(a* Bomo/c) [ (y w/L*)d L=constant , (3.30)

and so this is the quantity that must be held constant in evaluating
of)2 L. Although not known to play an essential role in radiation-belt
dynamics, drift waves represent a potentially significant mechanism
for extracting free energy from magnetospheric particle distributions
by causing diffusion across field lines.

I1L6 Bohm Diffusion

Electric Drift Velocity. In the absence of collisions and wave-particle
interactions, the response of a charged particle to an electric field E.
imposed across B is the drift given by (1.53) or (3.06). For a simple
derivation of this fact, consider that the transverse (to B) electric field
vanishes in a Lorentz frame moving at velocity vo such that

cE | +vyx B=0. (3.31)

If B is uniform, a particle can only gyrate in this frame and execute
translational motion along B. The cross product between B and (3.31)
then yields (1.53) or (3.06) as the velocity of the Lorentz transformation,
i.e.. of the guiding-center motion across B. If B is not uniform, then
there are additional guiding-center forees equivalent to ¢ E. Replacement
of ¢E in (1.53) or (3.06) by the sum of all forces F acting on a particle
yields a drift velocity

vi=(c/qB*)F x B. (3.32)

The validity of (1.53) or (3.06) requires only that r<¢. Guiding center
forces requiring an average over gyration, e.g., the forces —(M/7)VB
and —(pf,/m)(8 B/ 5) leading to gradient and curvature drifts (see Section
1.5), limit (3.32) to drift velocities much less than £€, La in absolute
value. Since the gradient-curvature drift velocity 1s in fact of order
282, La, this means only that the general validity of (3.12) 1s limited
to lg]<€ 1, as previously assumed.

Effective Collision Frequency. In causing diffusion with respect to energy.
pitch-angle, and L value, wave-particle interactions have an effect quite
analogous to that of interparticle collisions. For this reason it is often

**Drift waves can be destabilized under a variety of conditions [60]. The
present caleulation illustrates only one example.
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convenient to think in terms of a effective collision frequency 1/7,
to which the various diffusion coefficients can be related. just as if
interparticle collisions were the agent responsible for the diffusion. This
t_aquwalenl collision frequency is said to produce anomalous transport,
in the sense that the diffusion exceeds that which would result from
Coulomb collisions acting alone. Thus. the quantity 1/r. generally
exceeds the Coulomb collision frequency. ' -
_ Tlln: mean (phasc-averaged) force exerted by collisions and wave-par-
ticle interactions can be represented by —(m/r )vs If B is uniform,
therefore, the net drift velocity resulting from the imposition of E

across B is given by "

"d:{{'-‘JB]El * ﬁ+' i,"lQ] T ]"‘JX E

T - =
1 +@ )7 [ xB-E£], (333)

where Qi = — g B/me. This result indicates a Hall mobility

Ha=(c/B)(, T )*[1+(21,)%] ! (3.34a)
in the direction of E, x B and a Pedersen mobility

po=—(c/BIit)[1 +(R17)*] ! (3.34b)
in the direction of E,. The Pedersen mobility approaches zero in the

3 2

limit ol_' no “mllis‘inns“ (277> 1) and approaches gz, /m in the limit
uf“co].hsmn dominance (@7 t? < 1). The maximum absolute value (¢/2 B)
of gt is attained when Q772 =1,

Diﬁtlg;ion Coefficient. The purpose of calculating the Pedersen mobility
is ulpr‘nately to obtain the diffusion coefficient related to it, i e., the
coefficient for the stochastic transport of particles across adiabatic drift
shells. The connection between mobility and diffusion is given [61]
by D, = (p7/2gm)u,. Since L is a dimensionless variable scaled by the
carth radius a, the quantity D | must be interpreted as a> Dy, It follows
that

Die=(pi/may(t [ 1+(@Q 7 )] 1. (3.35)
If t, is now considered an adjustable parameter, the magnitude of

Dy1. can be maximized by setting t.=|,|"". In other words. there
exists an upper bound, given by

Dir=(p1/2maf2,)?|2,|, (3.36)

on the coefficient of radial diffusion. No adjustment of 7, can produce
avalueof Dy larger than D/ A process in which Dy~ D/ is character-
1zed as Bohm diffusion [62]. Tt represents the most expedient means
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available to a hot plasma for erasing an unstable spatial gradient (¢f.
Section 111.5) in the distribution function, and in this sense is analogous
to strong pitch-angle diffusion (Section 11.7), which has the same property
relative to unstable gradients of fin momentum space.

There is, however, no reason why Bohm diffusion must cause strong
pitch-angle diffusion. As in Section 1I1.5, the “collisions” could easily
act preferentially in the direction normal to B, an option not available
to interparticle collisions. Thus, the anomalous Ohmic mobility
iy =(v-B)(E-B) s given by gt,/m. where ry may be entirely different in
magnitude from z, in (3.34). In the event that ;>1,, there may be
very few particles scattered into the loss cone in the course of Bohm
diffusion. Conversely, strong diffusion requires only that 2,7, <1 and
Q,7,<1. These conditions do not necessarily imply [€/t.~1. as
required for Bohm diffusion.

An examination of (3.36) indicates that D~ L?€23]. No radiation-
belt observations are known to require nearly this large a value of
D,.. but the storm-time ring current occasionally appears to exhibit
Bohm diffusion in the vicinity of the plasmapause. The plasmasphere
tends to destabilize the ring current against electromagnetic ion-cyclotron
turbulence (see Section I1.6) by drastically reducing the minimum
resonant energy given by (2.69b). Bohm diffusion is sometimes invoked
[63], in addition to the adiabatic gradient-curvature drift. as a means
of transporting ring-current protons into the plasmasphere from the
exterior region in which N, is very small (~0.1em™? during a magnetic
storm). Even in the presence of strong pitch-angle diffusion, which
the resulting ion-cyclotron turbulence causes, the Bohm diffusion coeffi-
cient would transport ring-current protons (e~ 10~ *) a root-mean-square
distance ~0.5a relative to the plasmapause during the lifetime 1/4
given by (2.77).

I1L7 Shell Splitting

As described in Section 1.7, drift-shell splitting is a purely adiabatic
phenomenon that violates none of the invariants. Radial diffusion, by
definition, violates the third invariant. Pitch-angle diffusion violates
cither or both of the first two invariants, usually both. In a symmetrical
magnetosphere. the incidentally associated radial diffusion coefficient
Dp(~&2 L2 D) would be too small to be of significance for radiation-belt
particles (¢2<1). In the presence of azimuthal asymmetry and shell
splitting, however, pitch-angle diffusion automatically produces an addi-
tional violation of the third invariant. The shell-tracing results obtained
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in Section 1.7‘pcrmil this effect to be evaluated for arbitrary values
of the equatorial pitch angle.

bThe_basu: equation governing the process under consideration is
(¢f. Section I1.2)

Dio={(@L/EXY Dix)y=Cx/yP(O LIy D). (3.37)

Thus, 11‘:11? valuesof (=2na’ Bo|®| '), among identical particles having
mirror points on a common field line, vary with equatorial pitch angle,
then pitch-angle diffusion of these particles on this field line automatically
produces diffusion with respect to L [5]. The partial derivatives are
cva]ualeq by holding constant the quantity conserved by D... typically
the particle energy or first invariant. The drift average denoted by
the angle brackets necessarily yields a positive-definite Dy, [65].

External Mullipoles. In_thc case of magnetic shell splitting, as summarized
b.y (3.11), pitch-angle diffusion leaves Lyand ¢ invariant at the scattering
site, and so the quantity ¢L/¢y is given by
O L/0 y=—(B,/252 Bola/b)* L[ D(y)] 2
x [Q'(MD(y)—D(1O(y)]. (3.38)
If pitch-angle diffusion is distributed uniformly with respect to longitude,

r e.if Dy cisindependent of o, then to lowest order in e2= (B1/Bo)(Lsa/b)*
it follows that

Dy =(x%/2?)(B,/252 Byl (a/b) IO [D(y)] *

x [Q'(MD)—-D'(MA(y]* D,,. (3.39)
With _the aid of (1.36) and (1.79), the function (x?/98y%)[6D(y)]~*
x [Q'(y)D(y)— D'()Q(y)]*. which expresses the pitch-angle dependence

of Dp1/Dix, has been plotted in Fig. 28 [66]. This function reduces
to 25x7/18 in the limit x*=1—y?<1, in which case (3.39) reduces
to the expression

Dy ~(x*/18)(5 B./B,P(a/b) '° D
2061 x*(a/bf LD . (3.40)

A§ anupper bound on radial diffusion induced by magnetic shell splitting,
this expression remains valid for [x|<0.9997; it fails only deep within
the loss cone. As an approximate expression for Dy, equation (3.40)
remains valid within a factor of two only for |x|<0.6, while (3.39)
1S correct to within a few percent for all x when evaluated via (1.36)
and (1.79). :

~ The complete Jacobian entering (2.12), when pitch-angle diffusion
violates @, depends upon the nature of the quantity conserved in the
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-

Fig. 2%, Relation between Dyy and D, for shell splitting caused by noon-midnight
magnetic asymmetry [66], as given by harmonic-bounce approximation (dashed
curve) and by improved approximation (solid curve) based on (1.36) and (1.79).

process. If the conserved quantity is particle energy, then the relevant
Jacobian is
G(M,J,|®|: Exx,L)=—8mypL*a*xT(y), (341a)

as deduced from (2.14) and (1.37). If, as in the case of bounce resonance,
the conserved quantity is M, then the relevant Jacobian is

G(M.J,|®|; M.x,L)=—8xBoa®(p/y* L)x T (y), (3.41b)

which follows from (227). (1.37). and the fact that (fw/@x)y
=2M Box/L3y* [¢f. (2.33) and (2.34)].

In (3.41a), the distribution function f is considered to depend on
E, x, and L. Since E is conserved by the process. the distribution

function satisfies | 65]
& 4 8| guw BF 1 @ af
o A : Y oD | ¢ (il
gt I ¢?L|:L D"'?L]f xT(y) ﬁx[‘ )P f-x],_ A
where Dy, is given by (3.39). This equation contrasts strikingly with
(3.01), which applies to processes that conserve M and J.

Electric Shell Splitting. In the case of electric shell splitting. caused

by superposition of (1.52) upon the dipole field (1.16). the relation between
L and y at constant Ly and ¢ is expressed by (3.15), provided that

—
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W3 g l{,I.amund the entire drift shell. The connection between Dy
and a @-independent D, is then given by

Dy =(GE.aZ/W)(mgc? + W) (Qmy e + W) #[6D(y)]*
x[YTO)=TmYW]P (20D, (343)

for pitch-angle diffusion at constant particle energy W, With the aid
of (1.28), (1.31), and (1.36). the function (x*/8y)[6D0)] Y1) T
—T'(y)¥(y)]* has been plotted in Fig. 29. This function indicates the
puch-angle dependence of D;1/D.. in the presence of electric shell split-
ting, and approaches x?/162 in the limit x?*<1. The nonrelativistic
limit (W<emgc?) of (3.43) therefore reads

D> (x*/162)(q E.aL?/W)? Dy, (3.44)

for xzél: and represents a serious (factor-of-two) underestimate for
Dy, only if x| =2 0.6,

Fig. 29. Relation between Dy and Dy for shell splitting caused by dawn-dusk
asymmetry of electrostatic potential [66]. as given by harmonic-hounce approxima-
tion {dashed curve) and by improved approximation (solid curve) based on (1.28).
(1.31), and (1.36).

A oorr'lparisnn between (3.40) and (3.44), assuming h=10a and
Eca=4KkV, suggests that magnetic and electric shell-splitting effects are
comparable at M/y?~7 MeV/gauss, i.e. at first invariants typical of
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the ring-current particles. In the true radiation belts, magnetic shell
splitting effects exceed those of electric shell splitting**.

At particle energies below those typical of the ring current, it is
necessary to reconsider the shell-splitting problem in terms of (1.65).
Beyond the plasmapause, such drift shells do not close within the magne-
tosphere, and the corresponding third invariants are undefined (cf. Fig.
12. Section 1.6). Within the plasmasphere, all shell splitting disappears
in the cold-plasma limit, since “zero-energy™ particles drift on field-
aligned surfaces of constant electrostatic potential.

Internal Multipoles. At very low L values, certain internal geomagnetic
multipoles associated with true field anomalies, may cause significant
shell splitting among inner-belt particles [67]. If electric fields are negli-
gible, the existence of magnetic shell splitting in general can be demon-
strated (¢f. Section 1.7) by showing that (2% B/@ %), varies with ¢ around
a path of constant B, on the equatorial (¢ B/¢ s=0) surface. This criterion
follows from (1.26) and (1.32a), in the sense that the drift shell (which
conserves M and J) must depart from the constant-B, trajectory for
x40 if Q5 varies with ¢: to lowest order in x, the bounce frequency
is given by Q3=(M/ymNc® B/¢5°)..

In a dipole field, the value of (2?B/s). is given by 9By/a* L,
where Lj=(Bo/B.) at y=1 [¢f (1.38)]. It proves convenient to display
the azimuthal variation of (¢2 B/ s%), at constant B, and L,, by plotting
LA[(L5a%/9 Bo)(@® B/ds).— 1] against geomagnetic longitude. This is
done?® in Fig. 30 for L,,= 1.2, and 7. The sinusoidal asymptote, approxi-
mated by the curve L=, results from an internal octupole. The
octupole corresponds to n=—35 in (1.46) and the dipole to n= -3,
hence the factor L3 in Fig. 30. Higher multipoles produce the broad
South African anomaly (longitude 30—120°) and the narrow South
American anomaly (longitude 0—30"). The latter disappears between
Ln=1 and L,=2. The fact that the dipole is off center by ~0.07a,
toward longitude 217°, necessarily contributes nothing to shell splitting
as this is not a field asymmetry. Components of the geomagnetic quadru-
pole that survive the transformation to offset-dipole coordinates can
only warp the equatorial (0 B/0s=0) surface as a lowest-order effect.
Their second-order (shell-splitting) effects are not discernible in Fig.
30 [67].

25 owever. the demarcation between ring-current and radiation-belt para-
meters is somewhat arbitrary (Fig. 13, Section L7).

20The shell L.=1 is unphysical in the sense that it intersects the earth’s
surface (see Section ILT)
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Fig. 30. Normalized shell-splitting function associated with internal geomagnetic
multipoles. shown for selected contours of constant B on the equatorial surface

[67].

‘ True field anomalies (including the octupole) that significantly split
drift shells thereby subject the inner radiation belt to radial diffusion
coincident with pitch-angle scattering. A lower bound on the resulting
Dy is provided by the inequality

D,, 2 (L, x/3F(L2a*9 B,)?

¢ Miii <.[‘“~_.’. Bié S"]" _t.;_: Br,(‘:_sl}.‘]z D“:} ) 1345}

where the angle brackets denote an equatorial drift average, which
must be minimized with respect to some reference longitude ¢q at
which (0% B/ds%).=(¢? B/@5?)o. The minimizing operation (Min) assures
that (3.45) is a lower bound on the radial diffusion cocfficient, regardless
of the reference longitude that ultimately proves suitable for aef'mjng
L [¢f. (3.10)]. If the pitch-angle scattering is principally atmospheric
(e.g.. at L, <125 for inner-belt electrons), then the magnitude of D,

is _slrongly ¢-dependent, with a peak near geomagnetic longitude 20"
(¢f. Section 11.2),

IIL.8 Diffusion in More Than One Mode

Fpr gach diffusion mechanism considered in Chapters 11 and Il the
dlffI:ISkDr‘t tensor Dy (see Section IL]1) can be diagonalized by a proper
choice of variables. i.¢.. by transforming from the coordinates (M,J,®)
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to an equivalent set of functionally independent variables. Mixed partial
derivatives in (2.12) are thus eliminated. Vanishing eigenvalues (diagonal
clements, i=j) of the transformed diffusion tensor D;; correspond to
conservation laws of the diffusion mechanism [68]. For example, pure
pitch-angle diffusion. i e, diffusion at constant particle energy, corres-
ponds to Dgg=0 and (in the absence of shell splitting) Dy, =0. Pure
third-invariant diffusion (Sections I11.1—IIL3) has the property that
Dagar=Dy;=0. A summary of various diffusion mechanisms, their conser-
vation laws, and the Jacobians of their respective diagonalizing transfor-
mations is given in Table 8.

Table 8 Diffusion Variables and Associated Jacobians

Interaction Invariants Relevant Jacobian

Elastic Collisions E.(®) IGIM. J. & E, x, L)
{without recoil) =Snypa*xT(y)
Cyclotron Resonance (E), (®) |G(M, J. . E, x, L)|
=8nyplla®xT(y)
Bounce Resonance M. (D) G(M.J, &; M. x. L)|
=Rata/v)’(2m, B} M/ 2Ty
Drift Resonance M. K IG(M, J. .M. K, L)|
=(8m,M)'"*(2nB,a*/)
Bimodal Diffusion () IG(M.J, @0 x. L)

=8na’Qmy, By LY P x T(y)

(Parenthesized “invariant” quantities are either approximately or conditionally
conserved),

No special difficulty of concept arises when two or more diffusion
mechanisms act simultaneously. If the concurrent processes satisfy the
same conservation laws, then a single transformation of variables will
suffice to make the diffusion tensor diagonal. If not, i. ¢., if the conserva-
tion laws for kinematical variables are not common to the various
diffusion mechanisms acting concurrently, then the problem is said
to involve more than one mode of diffusion. In this case, the diffusion
equation is at least two-dimensional with respect to the kinematical
variables. This property presents no special difficulty, since two-dimen-
sional diffusion equations, e.¢., (3.42), have already appeared in the
context of unimodal diffusion, In constructing a bimodal diffusion equa-
tion, however, it is essential to evaluate the partial derivatives in accord-
ance with the conservation laws of the respective modes. For example,
if radial diffusion at constant M and .J (coefficient Dyy) is superimposed
upon pitch-angle diffusion at constant E (coefficient D) in the presence
of magnetic shell splitting, the equation governing this bimodal process
is
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o1 . BT af 1 @ li¥a
=P =Dy +— — [ xTp. L
ét gL [t y r'f.]_,,._, xT(y) éx I} (1) Dy ?'x]E_L

L1 [,\'Q_L”[Q'U'JDU’J-D'(.I'JQ]J-'JJID_‘-_‘ ar
I} OL| 2(252By/B.Y (b/aP[D()]*y* &Ly,

(3.46)

a result obtained by consolidating (3.01). (3.39), and (3.42).

The right-hand side of (3.46) has the form of minus the “divergence”
of a diffusion current for each mode (¢f. Sections 1.1 and I1.2). The
radial (trans-L) component of the diffusion current has the form
=Dy (€f/eL)y ; for the sudden-impulse mode and the form
— X/ @L2Y) D) (0 f/é L)y, for the shell-splitting mode [¢f. (3.37).
Section IIL7]. For outer-belt electrons at L5, it is interesting that
(€f/@ L)y s s typically positive, while (2f/0 L) is typically negative
(see Fig. I and Section IV.6). The diffusion current across L thus consists
of an inward part conserving M and J. which tends to energize the
diffusing particles, and an outward part conserving F. The net result
1s that, for particles diffusing “bimodally” from an external source into
the outer belt, the gain in energy typically exceeds that predicted on
the basis of constant M and J [69] (see Section II11).

Even if shell-splitting effects are neglected, e.g., by taking B,>=0,
the diffusion equation (3.46) is two-dimensional in the sense that no
overall conservation law relates x and L. Thus, an individual particle
_from the distribution f(E,x,L:t) may random-walk a complete cycle
in x and L, as illustrated in Fig. 31. In the absence of shell splitting,

L

0 . ' 2
I L
Fig. 31. Schematic illustration of particle cycles in bimodal diffusion.
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the radial diffusion in (3.46) occurs at constant M and J. According
to (1.34b). the variation of particle energy with L is governed by the
relationship

(@Inp/@1n L)y.= —3[D)/T(y)]. (3.47)

It follows that a clockwise cycle in Fig. 31 (inward dilfusion at generally
smaller v than outward diffusion) represents a net loss in particle energy,
while a counter-clockwise cycle causes a particle to gain energy. In
this context. bimodal diffusion acts as a “thermalization™ mechanism,
whereby an initially narrow energy spectrum of particles can become
distributed to both higher and lower energies than pure conservation
of M and J would allow [69].

Reduced Diffusion Equations. For many problems involving radiation-
belt diffusion, it is considered appropriate to simplify (3.46) by means

of approximations that reduce the diffusion equation to one spatial

dimension. Simplifying approximations of this type are often indicated
when the observational data are not sufficiently complete to impose
meaningful boundary conditions on (3.46). In many cases the observa-
tions cover too limited a range of parameter space to make full use
of (3.46). Reduction of the diffusion equation to one dimension, however
justified, does require that bimodal cycles of the type illustrated in
Fig. 31 be neglected. This is part of the cost of analytical simplification.

A naive means of reducing (3.46) is to neglect shell-splitting effects
and to replace the pitch-angle diffusion term by a simple loss term
of the form —f/z. In this approximation [70] the diffusion equation

reads [¢f. (2.09)]
af @ |t= BF i
R e LT 1 R 3
a1 FLLE LL;L14 : S

and applies to f (M, L:t) at J=0. The pitch angles of particles having
in common their values of M/y* and L are mixed thoroughly on a
time scale ~1t/5 (see Section I1.7). The representation of pitch-angle
diffusion as a simple loss term, as in (3.48), essentially requires that
5f/z greatly exceed ¢/t in absolute value®”. The diffusion coefficient
Dy is then interpreted as an average over particles sharing the same
values of M/y? and L, respectively.

A more sophisticated view of the reduction described in the paragraph
above is that a new variable {=M/y? has been introduced, and that
C is approximately conserved by both Dy; and Dy, [71]. From this

2"This requirement is often overlooked in the interest of expedience.
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viewpoint, the form of (3.48) should be governed by the Jacobian [ 5]
G(M, 1,|®];{, x, Ly= —(8na’ B/ x T(3)(2m, B, OV, (3.49)

which has been included in Table 8. With this Jacobian. the reduced
(to one dimension) diffusion equation evidently has the form

o o B & 9F &
= [2/2 =52 - _ =
ot aL [L Dus @L:L T (3.50)

The practical discrepancy between (3.48) and (3.50) is slight. amounting
only to a square root of L in the metric. Since Dy, typically varies
as L' (see Sections 1112 and 1I1.3) for radiation-belt particles, it is
difficult to imagine that seriously different geophysical predictions might
emerge from (3.48) and (3.50), although (3.50) is perhaps preferable
in terms of self-consistency.

In either representation the transport coefficients may certainly vary
with L, and perhaps also with { (=M at J=0) and/or time. Since
Dy and 7 arise [rom operations on the entire pitch-angle distribution,
it would be meaningless to give either a dependence on x or y. This
degree of freedom has been sacrificed in reducing (3.46) to one dimension.
The conservation of { is clearly an idealization that breaks down for
x~1, but the presence of a loss cone (see Section IL7) assures that
f is small there®®. Thus, the effective radial-diffusion coefficient D,
is heavily weighted by the behavior of particles for which v?<1.
i.e., for which radial diffusion at constant M and J very nearly con-
serves ¢

If the time scale for pitch-angle mixing (~t/5) is comparable to
that for radial diffusion, then a simplified equation such as (3.50), which
assigns to f the lowest mode of pitch-angle diffusion (see Section I1.7),
cannot apply unless Dy is substantially independent of x (¢f Sections
I11.2 and 111.3). Thus, radial diffusion caused by electrostatic impulses
may lend itsell to analysis via (3.50), but that caused by magnetic
impulses will ordinarily bias f toward higher modes of pitch-angle
diffusion. In this case a more general treatment is required.

If the need to circumvent (3.46) is compelling, it may be possible
to expand f({,x,L:t) in pitch-angle eigenfunctions g,(x) that are even
in x (even parity required because of homogeneity over bounce phase).
An expansion [71] of the form

F&xLity=Y Gl Lit)g,{x) (3.51)

_ ”Thc{:m}staljt—.: approximation means that particles diffuse radially at constant
b in weak violation of (1.34a), (3.02), and Fig. 24,
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with the boundary condition g,(x,)=0 is justified if x. is independent
of L, and the L dependence of D, is factorable, i.e, if D is the
product of a function of L, {, and ¢ times a function of x. These
conditions on x. and Dy, are probably well satisfied in the outer zone.
It is convenient to assume further that D, and Dy, are time-independent.
In this case the approximate diffusion equation [¢f. (3.50), (3.49), and
(3.46), with B2=0 (i. ¢., without shell splitting)]

f- 5/2 é — 52 ” 1 ¢ !-T 57
=P ___| 2D . XT(Y) Dy = | (3.52a)
Pl EL[ “:L . xT(y) éx D0u7x ),

-
1

can be simplified by virtue of the eigenvalue property

1
xT(y @

where /,((. L)is thedecay rate characteristic of the pitch-angle eigenmode
ga (cf. Section 1L.7).

The normalized eigenfunctions corresponding to distinct eigenvalues
/n are orthogonal in the sense that

[‘ Tf'»’mnri,.(ﬂ] — A&, LY g, (x) (3.52b)

_f xT(Myg,(x)g,(xydx=3d,, . (3.53)

4]

Application of (3.52) to (3.51) therefore implies that

_'ﬁ;_ri_zf‘ﬁ:‘_{‘[! 5D “L] i (3.54a)

where
Xe

D= [ xT(y)Dypg,.(x)g,(x)dx. (3.54b)

0

If Dy is independent of x, as is approximately true in radial diffusion
caused by electrostatic impulses (see Section 1IL3), then the matrix
Dy is diagonal in the sense that Dy} = Dy, Sy In this case the functions
am(C, L:t) and au((,L3t) in (3.54a) are decoupled for m+n and diffuse
separately with respect to L [71]. If f({.x,L;t) is initially in its lowest
pitch-angle eigenmode g (x), therefore, it will continue in this eigenmode
and diffuse according to (3.50) as time goes on. On the other hand,
off-diagonal elements of D74, which are obviously substantial in radial
diffusion caused by magnetic impulses (see Section 111.2), serve to couple
distinct pitch-angle eigenmodes and thereby “excite™ modes not present
in the initial configuration of f({,x.L:r).

I11.8 Diffusion in More Than One Mode i1

Inner-Zone Protons. For particles that do not undergo significant pitch-
angle diffusion, the fundamental radial-diffusion equation is (3.01). Very
energetic (EZ 100 MeV) inner-zone protons are believed to be in this
category. The principal source for these particles is known as CRAND
(see Section II1.1): cosmic rays incident on the upper atmosphere eject
high-energy neutrons that beta-decay with a mean life 7, (~ 107 sec)
in therr own rest frame. At low latitudes the vertical flux J, of these
“albedo™ neutrons is believed to be given [72] by

J.2 0044 (E/1 MeV) "*°cm~2sec™ ' MeV ! (3.55)

at the top of the atmosphere (r=a+ h, ¢f. Sections 11.2 and I1.7). The
presence of these decaying neutrons®” requires that a proton source
term [38]

Sx(L.2nyn.p)y (3.56a)

be added to the right-hand side of (3.01). The geometric injection coeffi-
cient y for equatorially mirroring protons is estimated by the expression
[73]

1 =(2/m)sin™ " [(a+h)/La]. (3.56b)

Thearcsine represents the half angle subtended by the carth’s atmosphere
at the site of proton injection (neutron decay) in a model centered-dipole
field 3.

The inner-zone protons injected by CRAND lose energy to free
and bound ionospheric electrons [¢f. (2.04)] but gain energy from the
secular decrease of By [¢f. (205)]. Both processes leave the equatorial
pitch angle invariant. The energy gain is an adiabatic effect, and so
is automatically included if the problem is posed in the invariant coor-
dinates M, J, and @, i. .. in the form that reduces to

of i} / {4:"{; /m,) NCT) )
& = 0@ [Dw‘ ¢:|u K 2 (2M B3 /m }' 2 [ oM :lx.q; (3.57a)

*'The mean free path of a 100-MeV neutron before beta decay is of the
order of one astronomical vnit, Decay within the magnetosphere therefore does
not significantly deplete the flux of cosmic-ray-albedo neutrons.

Lo 1]

*®For this derivation of S, it is assumed that the neutron flux is isotropic
at the top of the atmosphere. so that the omnidirectional neutron flux Ja, is
twice the vertical flux J,. The unidirectional neutron flux above the atmosphere
remains (1/27)J 2, by Liouville’s theorem (Section 1.3), for gyrophase angles compat-
ible with gjection from the atmosphere. The result is a gy rophase-averaged proton
source (dJ /dt),=(1/2ay 2 M7/2))1x. ie.. a source for fi=J,/p?) given by (3.56).
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where [¢f. Section 11.2]

C=N[?—1—*In(ipm,v/h)]
+¥N.Z {7 —1—yn2m. 37— 1)y1]) (3.57b)

The mirror field B,, is given in terms of the invariant coordinate @
by B,=(1/8n%a®y* Bj)|®|?, and thus contains an explicit time depen-
dence (that of By?). Expressed as functions of K2 (=J?/8mgM) and
@, the drift-averaged atmospheric densities N; also vary with time.

The drift shell corresponding to given values of K and @ not only.

contracts temporally (since Bo/Bo<0), but also moves laterally relative
to the earth so as to remain concentric with the dipole axis*' (apart
from the effects of magnetic anomalies, ¢f. Section 111.7). A growing
dipole-offset distance imparts an additional increase to N; with time
for atmospheric constituents whose densities decrease with altitude.

The secular variation?? of By on a time scale ~2000yr prevents
(3.57) from having a steady-state (¢f/0t=0) solution with which the
inner proton belt can be identified. Thus, the present state of protons
in the inner zone is the result of a long and continuing process of
evolution. According to Fig. 14 (Section 11.2) protons presently trapped
in the inner zone may well have resided there for the past thousand
years or more. An integration of (3.57) over this geomagnetic history
may be fraught with uncertainty, in view of the available observations.
Such a treatment appears to be necessary, however.

In much of the inner zone, the secular decrease of By cnergizes
trapped protons more efficiently than does inward radial diffusion at
constant M and J. Typical time scales for the latter process at J=0
have been indicated by broken lines in Fig. 14 (Section I1.2). For this
purpose, the diffusion “current”™ — Dy (6f/¢ L)y identified following
(3.46) has been utilized to construct an effective “velocity™

L=—Dy (@InfioL).;. (3.58)

Insertion of 10/L as a likely upper bound [38, 39] for Iﬂlnﬁf- Lo
leads to the estimate [ ¢f (2.05)] that

I dE L [y+1]éB, _30[y+1
E ;a}=s,[z;.—-]ﬁsﬁ [z—]“ .

STAL present the distance between the dipole axis and the geocenter is growing
at a rate ~2km/yr.

N

32 (Other axially symmetric internal multipoles (2%) of odd-n order (¢. g., octupole)
may also contribute a significant secular variation having similar consequences

[39]
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il secular variation is neglected. The diffusion time scales shown in
Fig. 14 (Section IL1.2) are obtained by inverting the right-hand side
of (3.59) for representative values of Dy, at constant M and J (f.
Chapter V). These diffusion time scales are generally comparable to
the secular and atmospheric time scales for e-folding the kinetic energy
of an inner-belt proton having M ~ | GeV /gauss.

Other Diffusion Velocities. Since radial diffusion is a macroscopically
random (rather than deterministic) process. it may be possible to identify
“velocities™ other than (3.58) by following the temporal evolution of

Jin its various aspects. For example, the expansion of (3.01) as

é 1 éef
P ) G 3.
oy bk 5T, [E 5LL_J (4

suggests the inward motion (at “velocity” —¢Dpr/@0L) of a diffusing
profile of /, viewed at an “inflection point™ where 2*//¢(L*?=0. Alterna-
tively. if the distribution function has a symmetrical “crest™ shell at
which (0f/6 L) y=(6f/0 L)y, ;=0 this “crest” can easily be shown
to move at “velocity”

Le=—2(@Dyi/e L)+(2/L)Dyy, (3.61)

when observed at fixed M and J. Finally, if (3.01) is recast as a Fokker-
Planck equation [¢f. (203)] of the form

(_;_r 2 ¢ ) r i) D“' ] 5 (ﬁ i E‘--TD.LL:'
=i (g S LT | S W) L e
ci '.'L|‘L‘ cL J\u . '-L|:L' L |y, i54)

the “velocity™ @Dy, /L 1s seen to represent a mean displacement in
L per unit time for the typical particle contained in f(M.J.L:1). Of
course, in the presence of competing modes of diffusion the significance
of such “velocities™ is rather obscure. In general, the analysis of radiation-
belt diffusion requires a complete application of the governing equations
(see Chapter V). The direct identification of “diffusion velocities™ from
observations at fixed energy has enjoyed some historical popularity
(see Section IV.6), but is no longer regarded as an adequate quantitative
treatment of observational data.
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