
III. Radial Diffusion 

ill. l Violation of the Third Invariant 

Whereas pitch-angle diffusion is customarily invoked as a loss mechanism 
for the radiation belts, djff usion in <P is usually associated with creation 
of the belts. This is especially true of radial diffusion in which M 
and J are conserved, since particles then gain energy in the process 
of diffusing toward the earth from an external source (see below). Diffu­
sion in <P (radial diffusion) at constant M and J thus plays the dual 
rnle of injecting particles into the magnetospheric interior and accelerat­
ing the particles thereby injected to the energies observed. 

In addition lo particles that have entered from interplanetary space 
(and perhaps from the geomagnetic tail), the magnetosphere also contains 
protons and electrons born internally through the decay of albedo 
neutrons ejected from the upper atmosphere by energetic (;;:: JOO McV) 
solar protons and galactic cosmic-ray particles colliding inelastically 
(in the nuclear sense) with gas atoms. These internal source mechanisms 
are known as SPAND and C'RAND, respectively. for solar-proton (and 
cosmic-ray) t1lbdo neutron deca_I'. These sources (CRAND is about ten 
times as intense a particle source as SPANO) typiC'dlly account for 
the presence of energetic protons and electrons in the inner zone, but 
radial diffusion plays an essential role in bringing about the observed 
spatial and spectral distribution of these particles [38]. ln addition, 
radiation-belt particles may possibly experience in situ acceleration to 
high energies [ 44] through the absorption of plasma-wave energy. Such 
an event might easily be interpreted as an ·'injection" of the energetic 
particles into the magnetospheric interior tsee Section IV.6). 

Artificial radiation belts created by high-altitude nuclear detonations 
(1958-1963) once contributed substantially to the. inner-zonc particle 
population. These artificial belts, which had decayed to an intensity 
below that of the natural radiation by the year 1968, yielded some 
of the earliest measurements of a radial-diffusion coefficient for radiation­
belt electrons in the magnetosphere. 

r n the outer zone, radial diffusion plays an all-important role in 
maintaining the level of trapped radiation. Direct observational evidence 
for the occurrence of third-invariant violation in the outer zone is 
shown in Fig. 23, which is a tracing of data obtained by instruments 
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Fig. 23. Drift-periodic echoes in 0111cr-10nc dec1ron fluxes. as ob-;crvcd on ATS I 
following a negative magnetic impulse [55] at 2330 UT t 1330 LTJ. 

on the geosynchronous equa torial -.atellite ATS I (longitude 150 ' W). 
together with the magnetogram (hor i1ontaL or H, component) for the 
same time period ( 1300-1400 local time) from the ground-based station 
at Honolulu. The interpretation of Fig. 23 is that a negative magm.:tit: 
impulse, presumably caused by a sudden decrease in solar-wind pressure 
at the magnctopause, propagates inward from the mugnetopausc and 
arrives at Honolulu sevt:ral mi nu l e~ after em:ountering the spacecraft 20

. 

Upon arrival at synchronous allitudc. the impulse causes a simultaneous 
decrease of the electron flux observed in each of the seven energy 
channels. As time goes on, however. particles near the satell ite at the 
arrival time or the impulse drift toward the night side, and electrons 
from the nighl side (where the negative impulse was less severe) dr.ift 
to the azimuthal position of the satellite. This accounts for the recovery 
of the fluxes i.n each channel on a time scale of half the energy-dependent 
drift period. The relative minimum in flux recurs with the return (to 
the day side) of those particles most severely influenced by the impulse. 

2&rhis delay time is in accord with the time required for a rarefactional 
(magnctosonic) impulse to Lravcl the required distance of 5.6 earth radii at approxi­
mately the /\lfvcu six:ccL 
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T hese drift-periodic' eclwt>s in the outer-zone electron flux persist well 
after the passage of the magnetic impulse initiating them. Moreover, 
th? fact that each energy channel .. oscillates" at its own characteristic 
drift fr~uency i.s convincing evidence for drift-phase organization of 
the particles,'" h1ch therefore (cf Section II. I) have heen dispersed with 
respect to l<Pl.t=2n:a2 Bo/L) 2 1

• The nonvanishing cncrg} bandwidth 
of each detection channel corresponds to a drift-frequency bandwidth 
that thoroughly phase-mixes the observa tions on H time scale of three 
or ,f~>ur d:ift period~. Par~j~Jcs initially differing in both <p 3 and energy 
rctam their separate 1dent1t1es. but the detectors can no lo nger distjnguish 
among them. 

The practical fact of phase mixing_ and the fact that consecutive 
sudd~n impulses a.re statistically unc~rrelated on the drift time scale, 
provide the es.scn~ia l degree ?f n~ndomness that ma kcs it appropriate 
to speak of tlmd-invanant v1olatton in terms of dilTusion with respect 
to </>. ~t co~sta~t M and J, i.e., with pitch-angle difTusion neglected, 
Lhe radial-d1ff us1011 equation 

(3.01) 

~ollo~s d~·~ctly from (2.:.01)',since Du.= (dL/d<P)2 D"'•P· T he distribution 
lu~1ct1onf .1s e<1ua! to J i/rr. evaluated on a s urface generated by the 
mirror pomts of ions or electrons having in common their values of 
i\4 and J. 

In , a dipole f!cld this. surface coincides with the equatorial plane 
(U°".' n:_12) for parlldcs havmg J =0. For J ~O the mirror-point surface 
satisfies the equation 

[r/ Y(yJF = 81110Boa2 
(1\.1 /J2 L)= 80 a2/ K2 l, (3.02) 

where Y is related by (l.25} to the mirror colatitude Om. With the aid 
?f (3.02) and ( 1.31 ), the variation of y with L at constant .~1 and J 
is plotted in Fig: ~4 for selected values of y~ (the value of y at L= 7). 
The L= 7 shell ts often used as a reference location in radiation-belt 
_theory because it. is quite near th.e ot1~er boundary of stablt: trapping. 
a nd therefore_ adJa~cnt to a poss~bly important source of moderately 
energetic part 1clc!-. (1. e., solar cosmic rays that have entered the maoneto­
sphcrcl. A ~econdary reason for the popularity of L = 7 as a ref;rence 
shell [ 40] is that an equatorially mirroring particle's nonrelativistic 

~' This follows f~om Liouville·s theorem. since J J/2rr. ( = wP/2n c) is canonically 
cOnJugate to the dnfl phase <p3 • 
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kinetic energy 172/21110 (measured in keV) at L= 7 roughly approximates 
the particle's lirst invariant M (measured in MeV /gauss). 

Except at the end-points y=O and y= l, there is a systema tic inverse 
variation (not proportionality) between .I' and L during radial diffusion 
at constant M and J. This variation does not constitute pitch-angle 
diffusion. but rather is an interesting property incidental to radial diffu­
sion. The change in particle energy during diffusion in L can be deduced 
from the identity p2= 2m0 l\IIB01L3 y 2 ifO<_r::;1, or from p= J121.A Y (y) 
if O~y< I. It follows that pi varies more strongly than L 2

• but more 
weakly than l. 3• in the interval O<y< I. 

The type of' radial diffusion that conserves both M and J (58] 
can be caused by magnetic sudden impulses (as illustrated in Fig. 23), 
by substorm-associatcd impulses of the convection electrostatic field, 
and by other magnctospheric disturbances operating on a similar time 
scale (- IOO sec). In each case the alTectcd particles yield a bounce-aver­
aged response, since the rise time of the impulse (""" 100 sec) is typil-~a lly 
much longer than 2rr/Q2 (- l sec). On the other hand, the drift periods 
of many radiation-belt particles (- 500 sec in Fig. 23) are not extremely 
long compared to the rise time of a typical sudden impulse, and so 
a frequency-spcdral treatment of impulses is definitely in order. In 
such a treatment, a particle responds resonantly to Fourier components 
located at harmonics (including the fundamental) of it s drift frequency, 
although the impulses tht.:msclves are hardly oscillatory in character. 

Tn addition to the type of radial diffusion that conserves both M 
and J. it is possible to conceive of mechanisms that fail to prcsi.:rvc 

T 
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the first two invariants while violating <J>. Such mechanisms may involve 
particle collisions or bounce- and cyclotron-resonant interactions with 
magnetospheric waves. Radial dilTusion mechanisms that violate M 
and/or J often lack the ability to energize particles efficiently in the 
process. and they generally play a kss certain role than sudden impulses 
in the overall picture of radiation-belt dynamics. 

111.2 Magnetic Impulses 

In the magnetic-field model specified by ( 1.45). sudden impulses in 
B correspond to sudden changes in b. the geocentric stand-off distance 
to the subsolar point on the magnetopause. The stand-off distance 
b is governed, according to ( 1.43), by the momentum nux of the sola r 
wind. An encounter wit h lht: plasma ejected by a solar llare, for example, 
can lead toa sudden contraction and/or expansion of the magnetosphere. 
A decrease in b that is sudden on the drift time scale represents a 
sudden contraction of the magnetosphere. This contraction consists 
of both an azimuthally symmetric compression of B (the B 1 term) 
and an azimuthally asymmetric di~tortion of B (the 8 2 term). The 
symmetrical compression. which is easily identified from the magneto­
grams of ground based (r = a) observatories, is adiabatic to the trapped 
particles. All drift phases <p3 respond identically to the symmetric part 
of the sudden impulse, and so this part is reversible. It conserves <P 
and produces no radial diffusion. 

Induced Electric Field. The accompanying asymmetric distortion (the 
82 term) is not easily distinguished at r=a, where it is small in magnitude. 
However, this part of the impul-;e doc~ violate the third invariant, 
thereby producing drift echoes (Fig. 23) and radial diffusion. A sudden 
impulse in B afTccts the gcomagnclie<tlly lr:.tpped particles by virtue 
of an induced electric field E. which may be calculated term by tem1 
from a field expansion [29] of the form [ <:f ( 1.46)] 

Er(r, 0, <p; t)= L E,.(1,111, n; t)(r/ /,Y'sin'Osinmcp 
Jm11 

E0(r, 0, <p: t) = L £ 11 (1, m, n: r)(r/b)" cos 0 si.111 Osinmcp 
,,,,,, 

E.,(r, 0. cp ; l)= L £ '1' (/, m, 11: r)(r/h)"sin1 ()cosmcp. 
,,,,,, 

(3.03a) 

(3.03 b) 

(3.03c) 

If the Maxwell relation cV x E= -(<1 B/c 1). written out in its three com­
ponents, is applied to (l.46)and (.J.03), the time~ependent (but position­
independent) coefficients of [(r/b)"sin1

- 1 Ocosmcp J and [(r/WcosO 
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x sin1/Jsinmcp] can be bolatcd to yield Lhe relationships 

(11+ l)L<P(/. m. 11: t)=m £,(/+ 1.111, n; 1) 
(3.04a) + (a/c)(l>, a)" BR(/. m. n - I: l) 

(n+ 1)EnU. 111.11: 1)=(/+ l)E, (/-:-1. 111.11: r) 

-(a!c)(b:af B.,(l. 111. 11- t; l). (3.04 b) 

where B= clB/?r. The third component of c\/x E= -(11 8 121) is rec.lun­
da nt. since \7 · B = 0. 

One more condition on E must be specified in order to solve (3.04). 
ft is customary to state this subsidiary condition as E·B=O [32]. Such 
a statement is usually justified by an appeal to the cold plasma which 
is assumed to fill the magnetosphere. The cold plasma serves to short-cir­
cuit each fidd Line. in which case the impulsively expanding (db/dt > 0) 
or contracting (d/J/dt<O) magnetospheric medium is governed by the 
laws of mllgnet.ohydrodynamics (MHD). Since the impulse therefore 
propagates through the magnetosphere at approximately the Alfven 
speed, the field model summarized by (l.46) admittedly violates the 
principle of causality on time scales shorter than --h!c,1· For drift 
period<; exceeding a few minutes, however. the arrival time of the impulse 
at any L shdl is pracrically independent of cp3. and this condition 
permits the ~implified (im.tantaneous-response) model to be used for 
the time-varying B field. 

For the magnetic-field model given by (l.48), application of E· B=O 
to (3.04) yields the n .. -cursion relation [29] 

[(211 t-/..,.. 2)/(11-1)] £,(/, m, 11: r) 

= ( B1/ B0)[l11- /- 2)/(n - 2)] £,(/. m, n- 3: r) 

+(8
2
/8

0
)((/-11+2)/ (n - 3)] £,(/-1, m- I. n- 4: r) 

+(8
2
18 0 ) [(l- 11- 2)/(n -3)] E,{1-1, m +I. 11 - 4; t) 

-(8
2
/ 2 B

0
)[(1 - m + 2)/(11- 3)] E,(I + 1, m-1, 11 - 4: t) 

- 8
2
/2 8

0
)[(1 + m+2)/(11-3)] E,(l + 1. m+1, n-4; r) (3.05) 

-(4/3 d B2(a/b)3 (d b/d /.)<511b,,,1 6n2 

+(1 /6c)B2 (B 1/B0)(a/h)3 (dhit/t)J110"' 1 ?>,.~, 

where the Kronecker symbol '5;j is equal to unity (rather lhan zero) 
only if i =J. Closure of the re<..:ursion formula is achieved by requiring 
that the E induced by cll?/dt remain finite in the limit r=O. This require­
ment forces E,(1,111, 11; I) to vanish if 11 <0. From this starting point 
it i~ possible to generate all the coefficients E,(1,111,11: I) by means of 
(3.05). The nonvanishing £,(/.m,n;t) of lowest order 11 is £,(1. l,2;t)= 

- (4;7c)(u/h)3 (db/dr) B 2. 

---
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The recursion relation yields definite algebraic values for several 
coefficie~ts w~ic~ have m=O, and which the;efore ostensibly can have 
no phrs1cal s1gruficance [see (3.03a)]. Such coefficients that multiply 
zero (in the fonn of sinm<p) arc ignored. A correct implementation 
of (3.05) thus leads to a unique set of elcctric-licld coefficients £,(1.m. n: 1 ), 

where m>O, from which £11(/.111,11:1) and £.,(/.111,11:1) are obtainable 
by means of (3.04). All nonvanishing electric-field coefficients for which 
11~ 10 are listed in Table 7. 

Table 7. Electm:-Ficld Cocffic1cnts 

£,(I, 1,2;1) = -(4/7)/)i(a·1 li/ h't') 
£,(J. l ,5:1)= - (9/91 )(81 IBolU2(G1J n,'h3 c) 
£,(2.2,6; t) = ( 1/6)(82/ 80)82 lw1 Ii /Ir ' i') 
£,(~, I, 8: r) = -! 135/345X) (8 1/ 80 )

2 B.2 (n" 6/ /J 3 c) 
£, ( .. ,2.9: I)= 12:>/273)(82/ Bv) IJ 1 (a

3h/h3 c) 
E.(I, I. IO:r)= - ( I l/483)(82/Bn)2B2 (11J l)ih.1c) 
£,(3.1, lO ;t) = -( I l/210)(/J2/B0 )2Bz(a-' /i /b3 c) 
E,.(3,3.10:1)= - (I l/2 10)182/ 13o) 282(a3 /i/h·1 c) 

t.i. I0.1,2;1) = (Xl7illi(n3 li !h\·) 
Eu(O. I. 5: I)= - (3/ I 'rl2HB 1/LJ0)l12(a3 h//> 3 C) 
£,,(I. 2,6: r) = ( 1/21)(82/80)82 (a3 lith3 C') 
~1110.1.S:t)= : (15/3458)(H1 /Bu)l81_(a 3 /i .hlc) 
ho( 1.2, 9; r) = ()/27:1)(82180)2 B 1 (a) h,'lr\·) 
£,,(0. I. 10: 1) = -( 1/4XJ)(82/Bo)l 8 2 (cr1li ·h 1 d 
£0(2.1. !0:1) = - (1,70)(82180)2 82(1J3h,'/>3c) 
£11('.!. 3. 10; t) = - ( l/70)(B21Bol2 8 1(u3 Ji,b3 c) 

E.,(J.0.1:1)= (3 2)8i(w1 h1bJc) 
£.,(0, I. 2: r) = (8t7) H 2 (11 3 Ii h3 t) 
E.,(2. l.2:r)= -(8/3JB2 (u3 fi,bJf) 
C.,.(O. I, 5: t) = - C3d 82)(81180)82(11 3 Li'h3 c) 
£.,,(I. 2. 6: 1) = ( 1/ 21)(82/ 80)82(a3 /)/b3 c) 
£.,,(0. I. 8: tl = -(I 5'3458)(81/ /Jol2 Bi (a3 /j ,h3 c) 
£.,.(I, 2. 9: I)= (5l273HB 2/ 8 0)2 B, (n 1 fj ,bJ c) 
E.,(O, I, 10: 1) = -(I 1483)(82/ Blll2 82(ll'1 li1h-' f) 
£.,.(2, I, 10: 1) = -( l /70)( 82/ 80 )2 82 (a 3 h·h3 c) 
£"'(2,3, IO ; I) = - (1170)182/8~)2 

8 2 (11
16/b·'c) 

R~ponse of Trapped Particles. This analytical representation of the 
E field m?uced by a time-varying model B field is especially useful 
for follow~ng the re.sponse of trapped particles to a magnetic impulse. 
Each particle expenences an electric drift at velocity 

(3.06) 

in addition to its gradient. curvature, and other (cf Section IIl.6) drifts. 
Asa consequence, the particle may change its value of L(=2na2 Bol<P( 1 ). 
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Except for particles mirroring at the equator, the bounce a veragc required 
in applying (3.06) is quite onerous. A rather different approach, based 
on ( 1.77 b), is more exped ient for calculating the radial-diffusion coeffi­
cient D1.L to lowest order in (81/80 ), for arbitrary mirror latitude. 

The more expedient approach is based on the fact that '°"· as given 
by (3.06). can be identified as the local velocity of a field line if the 
E field induced by ?B,'t c is everywhere perpendicular to B. ln other 
words, if only the E x B drift is considered, the particle remains on 
its original field line, as identified by the label Ld. The proof that 
field-line motion can be I raced in this manner follows from the identity 

B1 (d Ldftl t) = B2 (11 Ld/,- l) + 8 2 ~ c1· V L,1 

=B2(i'' Ld/i1 h)(d hid 1) + c Ex B · V Ld =0, (3.07) 

which can he verified with the aid of Table 7 to each order in B1 

and r, 2 (see Section 1.7). The degree of accuracy inherent in (l.69b). 
which implies 

Ld~ (r, a sin2 U) [l + (81/2 B0)(r/b):1 

- (2 B1 /:21 B0 sin 0)(r/b)4 (7 sin2 0- 3) cos cp J , (3.08) 

is adequate to verify (3.07) in fir st and second ordcr 22• A more extensive 
proof (to higher order) is nor required here. but could easily be generated 
L32J. 

Whereas the E x B drift induced by a time variation of h yields 
no immccLiate cha nge in a particle's Ld coord inate, the gradient-curvature 
drift does. According to ( 1.77 b) this changi.: is of the form 

ti Ljd t.::::; -<j>(R2 /252 80 ) Lj(a/b)4 [Q(J)/ D(_r)] sin <p. (3.09) 

The coordi nate L,, to which the particle would return ar <p = ± rr/2 
in a magnetosphere frozen in time (dh/dt = O) properly labels the drift 
:,hell in the sense that 

21The field-line labd Ld defined by ( 1.51 bl is conceptually u.scful only if higher 
internal gcomugnetic multi poles. which would dominate thi.: dipole as r approaches 
zero. arc neglected. More generally, a field line may be labeled by the point 
al \Yhtch it 1s anchored in the surface of an ideally conducting solid (of which 
the earth is an adequate example on the time scales of interest). If due account 
b lal-en of currents thereby induced on the surface of this conducting solid, 
it can be shm~n that tbe Ex 8 drift induced by c B/i' t impels a particle lo 
r..:mai11 all<Lchoo to its original field line. as identified by the coordinate~ of 
its foot on the conducting surface (32). In a model such as (l.45) there is no 
provision for currents at r= a. and the conducting solid degenerates 10 a point 
at the origin lr = O). 
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l<PI--' J J 80 (<1/ 1·)Jrdrd(f) 
0 ,,.(,~. 

2r. '~~ft') 

- J J [B1 (u/h)3 -82 (a /h)3 (r/b)COS<0]rdrd<p 
0 0 . 

-I 2na2 Bo/ LA1t/ 2)] [ I+ 0(1:3>+ ... l. (3.10) 

Fo~, con~enicnce, the third invariant has been evaluated using thee ua­
~on~J plc1!1e ~-J= :r/2). of lhe magneto~phere, in which case B ~ints 
int ie -(}!, :) dJrcct1on and has a magnitude given by (l.45b). Since 
the end ~:suit of (3.10) has no correct ion terms of order 81 or c 
the defimtton L=Lc11±n'2) suffi ces for ' l cal I 1· f D i, 
order. < cu a ion o LL to lowest 

Diffw.ion Coefficient. Since L= Lc1( ± n/2 ). it follows from (1.77 b) that 

L = Ld ,( I (B 15,, B .i 
2 - - .,)(Ldah) [Q(JJD(l)]cos1p ' . (3. 11) 

The instantaneous shell parameter L thus changes at a rate 

d l./d I = ( B2163 a B0)(La:h)~ (d h/d l) [Q( r)/ D(v)] co~ <p (3.12) 

to 10\n:st order in F.1 and ,., The rad1'al d1·fli . ffi . 
D = (I 'I ( .? · • ·~·. us1on coe 1c1ent 
. LL- I ;<), (AL) ~JS obt~111ed by mlegrating (3. J 2) over an interaction 

time r~~rr,Q3. during \.\-h tch cosq>=cos(Q c+ m) It. - . 
ex press th It · 3 ..,,J · is convenient to 
d .;· f e r~su in tenm of f!fi,(w/ 2rr), which is defined as the speclr'-tl 

cns1 y unction of 811a1hV The procedure for obtaining D :. •h 
the same as ti l d · S ' LL 1" muc 

rn use m ection l l.4. and the result [ 56, 57] is 

D - ., QJ(B '7'i6B lJ )'LIO , 
II -- J 2 - t o ~ (ll/h)- fQ(J),'D(yff .fi=(QJ/2 7!:). (J.13) 

When radial d~ITusion i_s caused by magnetic impulses, the energy de en­
dence of Du. is con.tamed entirely in QJ. If the impu lses ris~ sha~ I 
~1ds:~ca.r _slowly (h~e a s.tcp function) on the drift lime scale. ti~~ 
. :!_ 3,?.rr) is pr?portiom~l to Q3 ~and at/ energ.r dependence disa' ears. 
Al sufficiently high energies lhe particle d 'fl · d b / (J 
co , . bl ~ . . · · ' ri pcr10 ecomes somewhat 

m~r.t e to the rise time.· of an impube (sec Fig ""} a d th' . 
of drift fr · fi d - _.., ' n ts range 

equcnc.:1es _111 s dd:(QJ/2nJ foiling more sharply than Q:;2 
Tt follows that Du, ultimately decreases somewhat \"1.th u· icrea . . 
At t· M d ' ' :,m g energy. 
in()'c~n~.tnt an .J. however, the drift freq uency decreases with~increas-

o . hus, any inverse dependence of Du on particle energ tends 
to strcngl~en the L dependence of the radial-diffusion coefficie/i. 

il 
.Th

1
edcpendenceof DLL on cqua(oria l pitch angle is contained primar 

Y 111 t icfactor [Q(r) 'D(1·)] 1 Th1's "· r · -b . ' . · 1ac or, as approx1m·1t<..'CI within I o/i 
y means of (1.36) and (1.79), varies by nearly an order of mag1~lud~ 
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between v= J and .r=O [56, 57]. The funct ion Q(y)/l~O~lV) is plotted 
in Fig. 25. Al energies sufficiently h igh l hat the drift period 1_s c?mparablc 
to the rise time of a magnetic impulse, this extrem~ vanauo~ of D1.L 

with x is slightl} moderated by the fact that ~trllcles havmg ~- 1 
drift more slowly in azimuth than those for which_ x-0. [see ( L 5}]. 
At a given energy, of course, this variation of Q3 with x 1s very weak. 

.... .... 
0 ..... -- ::: 
0 

1.0 

o. ~ -

Fi . '.!5. Variation of Wu.)' .z with .\' for radia~ di1Tu:.ion c;n1~:ci by magn:tic 
su~den impub.:s. Data points have bc~n d~lcrm111ed by numcm.:a! comput::lt~?n 
( 19]. Solid curve is analytical approx1matton (66] bas~-J on lL16) and (1. ~). 

ln summary, the radial-ditTusion coefficient caused. by _magnetic 
impulses that rise sharply and decay slowly o~ th: drift ttme scale 
is virtually independent of energy. For particles mtrrormg at the equator. 

the coefficient is given [29] by 

Du.= 2f.H(5Bi/2 LB180}2 L 10 (a/ /1)2 51B: (Q3/2rr) (3. 14) 
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since Q(J)= 180D(l). I n the case that &8=(Q3/2n) falls o tT as Qj' 2, there 
is no energy dcpcndence in Du .. Thus, the diffusion coefficient depends 
on y t hrough the factor [Q(y)/Dty)] 2 in (3.13), and on L through the 
factor L 10

. But since J' and Lare related via (3.02). the factor [Q(y )/D(y)]2 
exhibits an inverse va riation with l. Except a t r =O and y= I, this 
factor tends to moderate the variation of Du with L. With the aid 
of F ig. 25. it is possible to eva luate the ratio of Du. at any L to 
Du. at L =7 and y = J for selcdcd values of _1'7, under the assumption 
that w

2 .14= (w/2 n) is a constant. The results. plotted in Fig. 26. arc 
principally of interest for high-energy protons and helium ions, which 
may in fact escape pitch-angle diffusion during their period of residence 
in the magnetosphere. 
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Fig. 26. Radial "ariation of D1,1 driH' ll by magneuc impulses. for selected valut.-:. 
of .rat L = 7 t.1·1=0. 0.4. 0.6, 1.0~. Da~hoo line (_r- =0) is not realized in practice, 
because of the los~ cone. 

The magnitude of the spectra l density functio n . .Jli:(lu/2n) is likely 
to vary with magnetic activity {as measured by an index such as Kp 
or D,,). and so the otherwise arbitrary interaction time r used in this 
cha pter is limited by the time scale of several days characteristic of 
changes in magnclOspheric "'weather''. However. if the observations 
off are sufficiently coarse-graim..'Cf a~ to average ov~r genuine temporal 
variations of Du,. it may be possible lo identify a mean d itTusion coeffi ­
cient applicable to a much longer time interval (see Chapter V). Particle 
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lifetimes in the inner proton belt arc even long enough (see Fig. 14. 
Section ll.2) to permit averaging Du. and Jover a large number or 
solar cycles. 

111.3 Electrostatic Impulses 

Abrupt temporal changes in the electrostatic pot~ntial associated with 
plasma convection are characteristic of geomagnd1c ~torms and magne­
tospheric substorms. r mpulses of this type can . be rcprese~te? by a 
time-dependent coefficient F., in ( 1.52). For parucles or rad1auon-belt 
energy ( W~l'i l~ i). the drift-shell asymmetry caused by the t11t'Ull vah.1e 
of £, can be neglected in the calculation of DLL to lowest ~rder m 
q E,.a LJ/W Moreover, the magnetic rield is assumed to be, given by 
p.16). ln this situation it is evident from (1.66) that l'''I = ~7tW Bo/ lc1(0). 
with no first-order correction in t/ E,.a L4/W Thus, the mstantancous 
shell parameter L is given in lowest order by 

L= Ld l 1 - [:', (~·! - 1 J ]le/£," Ld/31110 , .. :-)[T(1·)/ DM] sin <Pl 
=Ld{1- (E, 80J(c, QJ a)L~si11 cp 1 • (3.15) 

in 'view of ( 1.35). S111ce ( l.65a). to the order of accurnq inherent in 
(3.15), implies that 

(3.16) 

for a particle drifting in a7imuth under the influence of ( 1.52). it follows 

that 
d L/tlt- (.3.17) 

for t h.is particle. With £~ represented as the sum of purcl} temporal 
Fourier components [cf. (2.28) ]. the particle selects that component 
for which w=Q3 after an interaction time r?J;>2n,!h 

The diffusion coefficient Du= (I 12 r) ( ILi L)2
) obtained from (3.17) 

by the methods of Section 11.4 is given by 

Du.= 2(r/4a Bo)2 L 0 Sc(!l3/2rr), (3.18) 

where 8~((o/2rr.) is the speclral density function of£, (sec Section I.~). 
A particle's energy and c4uatorial ,pitch angle enter (3. l8) only via 
.Q.

1
. For ekctrostatic impulses that rise sharply and dcrny ~lowly on 

the drift time scale, the spectral density 6, (.Qy 2 n) falls as Q3 
2
. ln 

this case. the functiona l form of Du, is 

DLL = 2(l/ct'2480 ).!/.! 0 [7ly) D!_1lfl1:? 1\./)
2 

, ' '] , "I x [ 1 , (2 M /30'' 1111, c· J - U) w- t, ("'' - n) • (3.19) 
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"'.here w/2n is any frequency whose reciprocal lies well between the 
nse a~d decay ti.mes of the typical electrostatic impulse. 

It JS co.nvenllo~1al_ to compare spatially coincident magnetospheric 
~uxes of d1JTcrcnt 10111~ species at common kineti<.: energy per nucleon, 
1. e., at comm~m parucl~ velocity. This convention greatly simplifies 
~he com.parat1ve analysis of collisional elTccts (sec Section II.2). The 
10ns. of mtere.st arc typically nonrelativistic. and so the comparison 
applies essentially al common y, L. and M/A. where A is the number 
o.r nucleons in the ion. The respective electrostatic radial-diffusion coeffi­
cients thus scale as (q/ A)2

. The magnitudes of DtL for H + :He- + : He ­
lherefore seal~ as ! 6: 4: 1. When coupled with the expectation that 
magnetosphenc hehun:i nuclei (originally interplanetary alpha particles) 
spend up to half their radiation-belt lifetimes as He+ by virtue of 
charge exchange (sec Section IJ.2), this property of electrostatic diffusion 
provides a po.ssibly interesting explanation [ 40] for the observational 
fact (see Scc~1on IV.5) that ratios of helium-ion nux to proton flux 
(often abbreviated cdp and He.,. /p) at common £/A in the magnetosphere 
(w~ll ?ff the equator) are orders of magnitude smaller than the 'X/p 
ratJO m the solar wind [59]. 

Amon~ particles of the same species, the diffusion coefficient given 
by (3.19) 1s rather sensitive to particle energy. but notably insensitive 
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to equatorial pitch angle. Neither energy nor pitch angle is invariant 
during radial diffusion at constant M and J, however .. Thus,~ proper 
comparison should follow the spirit of Fig. 26, wher.em pa_rucles are 
distinguished according to their values of y at L= 7 m _a dipole .field. 
In electrostatic diffusion it is logical to compare particles havmg ; 
common kinetic energy £ 7 at L=7, 1.e., a common value of M/y7. 
The derivation of (3. 19) assumes that w2 $c(w/2 n) is c_o~s~ant fo~ all 
frequencies of interest. 1~ attention is l~m~ted to nonrel~ttv1st1~ par~1cles, 
such as radiation-belt ions, the vanat1on of DLL w_1th !-- 1_s that of 
L1 o[T (vl/D(y)]2(y/y1 )4. With the a id of Fig. 24, which _md1c:ates t~e 
variation of r with L for selected values of y7, the ratio ol DLL ,1t 
arbitrary L io DLL at L=7 and y= I has _been_ evaluated for these 
selected values of .117- T he result is shown m F ig_. 27. _T he common 
value of £ 7 that forms the basis of this comparison 1s assum?d. t_o 
be such that 270 £ 7 ~m0c2 in order to justify using the nonrelat~v1st1c 
for m of (~.19) down to L-;::;:, l.08, where the d ense atmosphere termmates 

the inner bell (see Section II.2). 

Spectral Density. Ex lrapolati~n of (3. L9) to ring-cu~_Tent energi~s and 
below is forbidden on a variety of groun~s . . Consider. (for ex~n:1~1e) 
a random sequence of impulses, eacb cons1stmg of an idcall~ . mstan­
lancous jump from £" to Ec+LI £, .. followed by an exponential_ decay 
to £,.with an c>-fold ing time rd. The spectral density 6',luJ/2n) is then 

given 23 by 
(3.20) 

where O)> ()and :E(LI Ec)2 d enotes the sum of the squares of all _su_dden 
increments in £,. initiated within an arbitrarily long (but slat1st1cally 
llomogcneous) time interval of duration i:. The validity of (3.19) thus 
requires w2d 3> I at w= IQ31. It is presumed th~l r d ...... 2br, ~~d that 
n1ost radiation-belt particles therefore comply with the ~o~d1t1ons _of 
(3.19). At ring-current (hot-plasma) energie~ and below, it 1s essential 
to reconsider the radial-diffusion problem 111 terms or ( 1.65), w1thout 
making the simplifying approximation that W3> IC/ 1\, I. . 

On the other hand, the spectral density rf,.(Q3/2n) falls more rapidly 
than Q3 2 for particles having drift periods comparnble to or s~a~ler 
than the rise time of a typical impulse. The approx1mat1on of a va~11sh111g 
rise time. a s used in (3.20), is appropriate only if the particles of interest 

23Thc ~pet:Lral density function give1~ . by (3.20) has been co.nstn~:tcd .in. a 
manner easily generalized to other types ol impulses. For example. if £, b replac~ 
by B i (n/h)3 i n~ (3.20.). the result is a for~uul~ for ?il:(o)j2 n), lhe spectral density 
function for magnetic sudden impulses (Scct1011 IT 1.2). 
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have drift periods well in excess of the true rise time. Moreover, the 
magnitude or 6',.(w/2n) is likely lo vary with the level of geomagnetic 
activity, as measured by an index such as Kp or Dsr (c/ Section IJI.2). 

Harmonic Resonances. Large-scale electrostatic fields in the magneto­
sphere presumably may fluctuate in other than the s imple mode assumed 
in (3.17). For example, it may be impossible to represent theflucruating 
Ve(r ,fJ,cp; t) as in (1.52), but quite reasonable to represent it as 

V.,(r, e, <p; l) = L Elll(Ld. c)a Ldsin(m <p + t/Jm). (3.21) 
Ill 

The case culminating in (3. 18) is included in (3.21) if Ei(Lc1,t)=E,.(t) 
and l/11=0. The more general expression for V,.(r.fJ,cp;t), however. yields 
a d iffusion coefficient of the form [56] 

Du. =2(c/4a 8 0 )
2 JJ L111.2 d,,,(L. mQ3/ 2rr). (J.22) 

Ill 

where $,,,(L,w/2 n) is the spectral density function of E,,,(L,1,I). The addi­
t ional spa tial structure present in (3.21) thus partially transfers the 
burden of at using radial diffusion to the higher harmonics of the drift 
frequency. T he entry of these higher harmonics is reminiscent of a 
similar effect in bounce-resonant pitch-angle diffusion (see Section lJ .4) 
and occurs for an analogous reason (lack of positive long-range spatial 
correlation). Magnetospheric observations of a Ductuating electrostatic 
field must therefore be treated with c.aution in terms of extract ing a 
diffusion coefficient, unless the extent of spatial coherence is known. 

lll.4 Bounce Resonance 

Resonance of an MHD or electrostatic wave with harmonics of a par­
ticle's bounce freq uency has been invoked previously (see Section H.4) 
as a mechanism for pitch-angle diffusion. There it was noted that confine­
ment of the electric-field perturbation e lo a meridional plane would 
prevent contamination by radial-diffusion effects. Conversely, a com­
ponent of e in the azimuthal direction provides for the possibility of 
radial diffusion. The case of an electrostatic wave (for which ~ is parallel 
to k) propagating prrre/y in the azimuthal direction (see also Section 
I IJ.5) is essentially covered by (3.2 l) and (3.22). The resonance condition 
is found to be o.>= mQ:1. Even if m is a very large n umber (~e- 1 

fo r a resonant particle), the resonance cond ition is unaffected by the 
bounce motion if k is everywhere normal to B for an electrostatic 
wave. 
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If, however, the electrost<ttit: waw is such t hat field lines are 1101 

cquipotentials, e.g .. as in (2.37). then the condition for resonance takes 
on the form [ 64] 

(3.23) 

Just as in (2.33 ). the various value~ of l enter the diffusion coefficient 
weighted by Jl(l,11 px;ym0 Q 2 ), which is small if the order {f) is much 
larger than the a rgument (/<11f'X/ym0Qz). Tf m~lel 1

, it may be instructive 
to define an ::wimuthal wavenumber k,p:(m/r)cscO and a bounce-aver­
aged particle drift velocity rep= Q3 1· sinO in the dipole field. The resonance 
condition then read~ 

(3.24) 

which may be interpreted as a Doppler-shifted bounce resonance by 
analogy with (2.38). On the other hand, if lmQ3IP IW2I, it may be 
instructive to view (3.23) as a bounce-modified drift resonance. Since 
the two interpretat ions are fu lly equivalent for any m and I, however, 
the connection with radial diffusion (Section IIJ.3) is quite evident. 

A similar connection may Ix: drawn between the magnetic impulses 
of Section 111.2 and an l\.lliD wa \IC propagating partly in the direction 
ofV Ld and partly in the directions of Band [p. The ~Jcctric-field pert urba­
tion e for an MHD mode is norma l to k and B (in the cold-plasma 
approximat ion),and thus lies in the plane of q, and \l Ld· The (p component 
of e leads to radial diffusion, the (p component of k to drift resonance, 
and the B component of k lo bounce resonance. The condition imposed 
by t3.23) includes both bounce resonance and drift resonance. Either 
can be isolated by assigning m- 0 or l=O, respectively. 

III.5 Cyclotron Resonance 

Because it leads to substantial pitch-angle diffusion, the Doppler-shifted 
(k1 r:1) cyclotron resonance considered in Section 11.5 is principally a 
loss mechanism for geomagnetically trapped particles. Cyclotron 
resonance i5> not known to bean important mechanism for radial diffusion 
in the radiation belts. A particle is perhaps displaced by one gyrorad ius 
in the course of diffusing by one radian in pitch angle. Jn the absence 
of shell splitt ing (see Sections 1.7 and lll.7), the resulting rndial-diffusion 
coelTicient is of order e2 L 2 D_,_,. This is rather insignifican t for radiation­
belt (lei~ l: Section I. I) particles, since the root-mean-square displace­
ment in L is only of order e L during the lifetime of a particle (in 
weak diffusion; see Section Tl.7). The most energetic radiation-belt ions 
(for which Ir.I is nearest to unity) lend to deposit their energy in the 
tenuous atmosphere without significant change of pitch angle. 
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The condition~ under whi<.:h radial diffusion might occur by virtue 
of cyclotr'on resonance are quite <.liffcrent from the conditions explored 
in Section Il.5. Consider. for example, a wavelike electrostatic potential 
of the form 

I ;.(r,O.<p: I)= a E,,,(Lt1) srn (111 q>- u1t ~If;,,,) (3.25) 

\\here w/2rr i~ of the order of a particlc·s gyrofrequeney. A wave of 
thi~ type n:ay be generated by 1;irtue of an unstable :-.patial grad ient 
off. e. y., ('!/<~ Lc1 < 0. with the conserved quant ities held constant. Such 
an azimuthally propagating wave is called a drift wcwe, whether or 
not cyclotron resonance is involved. 

The unpcrturh~'Ci motion of an equatorially mirroring particle may 
be represented h) 

1p = Q31+1p3 +(pc/q B L0a) sin (Q, 1 +<pi). (3.26) 

The postulated drift wave does not alter the equatorial pitch angle 
(n/2) of such a particle. T he particle's interaction with t he wave specified 
by (3.25) yields a cp3-dependent drift in L l=L" in a dipole field) given 
by 

d Lill t = -(c,. a)(JJ/ B0 )m E,,,(L) 2: J1( -m r_,'Q 1 Lt1) 
I 

xeos[(w -IQ1 - mQ3)1 - (1/!,,,+i<p1 +m<p3)]. (3.27) 

The resomrnce condition w=<•J1,,,: /Q 1 +m Q3 lcads to a radial-diffusion 
coefficient of the form 

DLL - 2(c,2a 8 0 )
2 L" I: 111

2 Jf (111 rL1Q 1 La16;"( L. UJ1..,12 rc), (.128) ,,,, 
where 6m(l,w/2n) is the spectral density of all waves having the form 
of (3.25). Note that 111 represents an a::imuthal i1uf t:x. not a mass. in 
(3.25)- (3.28). The leading factors in (3.22) and (3.28) differ only because 
each term in (.121) is a superposit ion of two waves having the form 
of (3.25). 

In the argument of the Bessel fu nction Ji, rhc factor m!La plays 
the role of k"' in (3.24) or of ki. in (2.43). Thus, for azimuthal wavelengths 
comparable to a particle's gyroradius, a drift wave can resonate with 
the gyration of the particle in a manner that leads to radial diffusion. 
The pitch-angle of an equatorially mirroring particle is unaffected by 
this process, but the energy of a resonant particle change~ in accordance 
with the relation 

d(p2),cf L = 2q p·e(d L/clt) 1 =1 qwa! Bo}' mo/ 111£ L2 (3.29) 

in a localized region where d E,,,/d L:::: 0. The ratio 111/q is negative for 
a wave (111) propagating in the direction of tbe resonant particle's azi-
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mutha l drift. Thus, a n outward diITusive flow of trapped particles (arising 
from a n inward gradient of J with respect to L) leads to a transfer 
of particle energy to the wave24

. T he interaction evidently conserves 

p2 -2(c1/m)(a2 lJ0 111 0/ c)J()'<u/ L 2)d l=constant , (3.30) 

and so this is the quant ity tbat must be held constant in evaluating 
flf/c L. Although not known to play an essential role in radiation-bell 
dynamics, drift waves n :pn.:senl. a potentially signifit.:ant mechanism 
for extracting free energy from magnctospheric particle distributions 
by causing diffusion across field lines. 

IlI.6 Bohm Diffusion 

Electric Drift Velocity. In the absence of collisions and wave-partide 
interact ions. the response of a charged particle to an electric field E_ 
imposed across B is the c.lrift g i\·en by (1.53) or (3.06). For a simple 
derivation of this fact, consider I hat t he tra nsverse (lo 8 ) electric field 
vanishes in a Lorentz frame moving al velocity v0 such that 

cEJ. + ~ 0 x 8=0. (3.31 ) 

ff B is unifonn. Ci particle can only gyrate in this frame and execute 
translational motion along B. The cross prod uct between B and (3.31) 
then yicldc; ( 1.53) or (3.06) a-; the velocity of the Lorentz transformation, 
i.e., of the guiding-center motion across B. If B is not uniform, then 
there arc add itional guiding-center forecs equivalent to'/ E. Replacement 
of q E in ( 1.53) or (3.06) by the sum of a ll forces F' acting on a particle 
yields a drift velocity 

(3.32) 

T he validity of ( 1.53) or (3.06) requires only that L'<c Guiding center 
forces requiring an average over gyration. e.y .• the forces - (M/i•)VB 
and - (111Vm)(8 B/C: s) leading to gradient and curvature drifts (sec Section 
1.5), lim it (3.32) to drift velocities much less than 1; Q, La in absolute 
value. Since the gradient-cur"ature drift velocity is in fact of order 
r. 2 f21La, this means only that the general valid ity of (3. 12) is limited 
to lcl ~ l, as previously assumed. 

Effective Collision Frequency. In causing diffusion with respect to energy. 
pitch-angle, and L value, wavc-partidc interactions have an effect quite 
analogous to that of interparticle coll isions. For this rl.!~1son it is often 

1 
.. Drifl waves can be <.ksLubilizoo under a varict) of condiuons (W). The 

present calculation illustra tes only one example. 
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conve~ient to thi_nk in terms of a effective collision frequency 1/ rl. 
~o which_ the v~ri.ous diffusion coefficients can be related, just as if 
mterparllde collisions were the agent responsible for the diffusion. T his 
~ui valcnl collision frequency is said to produce anomalous transport, 
111 the sense that the diffusion exceeds that whieh would result from 
Coulomb coJLisions acting alone. Thus. the quant ity l ,'r~ generally 
exceeds the Coulomb collision frequency. 
. Tl~e mean. (phase-a veragcd) force exerted by collisions a nd wave-par­

t 1clc 111teract10ns c;an be represented by -(mlr_)\'J. Jf B is uniform, 
therefore, the net drift velocity resulting from the imposition of E 
across B is given by ~ 

VJ =(cf8)E.L x B + (1/ Q 1 r )v,ix B 

- (t-E.L,'B)(Q, T.L) - - ... 
- 'l+(Qi r .1.)2- [Q 1 r .1. (E.1.x B)-E J, 

where Q, = -qB/mc This resul t indicates a Hall mobility 

/111 =(c/ B)(Q1 TJ.)2 [I + (Q 1TJ.)2] - 1 

in the direction of EJ. x B and a Pedersl!n mohility 

11 1 = -(c/8)(Q1 r.L)[ I l-(Q 1 r.1.)2] - 1 

(3.33) 

(3.34a) 

(3.34b) 

in the direction of it. The Pedersen mobility approach1.:s zero in the 
limit of no "collisions" (Qid ?>1) and approaches qr1 /m in t he limit 
of"collision·· dominance (Qr r 2 ~ I ). The maximum absolute value (c/28) 
of µ i is attained when f2fri = l. 

~iffusion Coefficient. The purpose of calculating t he Pedersen mobility 
is ulti mately to obta in the diffusion coclTicicnt related to it. i.e., the 
coeITicient fo r the stochastic transport of particles across adi<t batic drift 
shells. The, connection between mobility and diffusion is given [61] 
by D.i=(p -:2qm)J1 1. Since Lis a dimensionless variable scaled by the 
ea rth rndius a. the quantity DJ. must be interpreted as a 2 Du,. Jt follows 
that 

Du.= (pJ./ma)2 (rj 2)[ 1+(f21r )2] - 1 . (3.35) 

Tf r 1 is now considered an adj ust<1ble parameter, the magnitude of 
Du, can be maximized by setting r_=lf21l- 1. ln other words. there 
exists an upper bound. given by 

Di'L=(fJJ./2maQi)2 IQ1I, (3.36) 

on the coeffi cient of radial diffusion. No adjustmen t of r 1 can produce 
~value of DLL largcr than D1~ .. A process in which Du.~D1~. is character­
ized as Bnhm dif.Jl1sicm [62]. ft represents the most expedient means 
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available to a hot plasma for erasing an unstable spaual gradient llf 
Section 111.5) in the distribution function. and in this sense 1s analogous 
to strong pitch-angle diffusion (Sc:_tion 11.7), which has the same property 
relative to unstable gradients off in momentum space. 

There is, however, no reason why Bohm d iffusion must cause ~trong 
pitch-angle d iffusion. As in Section III.5, the "'collisi~ns'' could ~asily 
act preferentially in the direction normal to B. an option n?t avail~~le 
to inlerparticle collisions. Thus. the anomalous Ohmic mob1lny 
,_111 ::(v·B) '(E· B) is given b) </T 1111. where r may be cntircl) different in 
trutgnitude from ri. in (3.34). In the event that r11Pr1 . there may be 
very few particles <;cattered into the loss cone in the course of Bohm 
diffusion. Conversely, strong diffusion requires only that Qir ~ I and 
Q2 ,11 ~ l. These condition~ do not necessarily imply 1!2ilti. -1. as 
required for Bohm diffusion. 

An examination of (3.36) ind icates that D d- L2i!2.il· No radiation­
belt observations are known to requ ire nearly tl1is large a value of 
D1..1..· but the storm-time ring current occasionally appears to exhibit 
Bohm ditTusion in Lhe vicinity of the plasmapausc. The plasmaspherc 
tends to destabilize the ring current against electromagnetic ion-cyclotron 
turbulence (see Section 11.6) by drastically reducing the minimum 
resonant energy given by (2.69 b). Bohm diffusion is ~omctimes invoked 
[63], in addition co the adiabatic gradient-curvature drift. as a means 
of transporting ring-current protons into the plasmasphcre from the 
exterior region in which N" is very sma ll ( ~0. 1 crn - 3 during a magnetic 
storm). Even in the presence of strong pitch-angle d iffusion, which 
the resulting ion-cyclotron turbulence ca uses, lhe Hohm diffusion coeffi­
cient would transport ring-current protons (e~ 10- 3

) a root-mean-square 
distance -0.5a relative to the plasmapause during the lifetime 1/). 
given by (2.77). 

Ill. 7 Shell Splitting 

As described in Section 1.7, drift-shell splitting is a purely ad iabatic 
phenomenon that violates none of the invariants. Radial diffusion. by 
definition, violates the third invariant. Pitch-angle diffusion violates 
either or both of the first two invariants. usually both. In a symmetrical 
magnetosphere, the incid1.:ntally associated radial difTusion coefficient 
Du(-r.2 L z Dxx) woul<l be too small to be of significance for radiation-belt 
particles (r. 2 ~ l). In the presence of azimuthal asymmetry and shell 
splitting, however. pitch-angle d iffusion a11tomacica/ly produces an addi­
tional violation of the third inv<1riant. The shell-tracing results obtained 
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in Section f.7 permit this effect to be evaluated for arbitrary values 
of t he equatoria l pitch angle. 

The basic <..'quation governing the process under consideration is 
(lf Section Tl.2) 

Du.= ( (8L/i7x)2 D.u)= ((x/y)2 (<' L/D,1')2 D"x)- (3.37) 

Thus, if the values of L( = 2rw2 B01<1r '),among identical particles having 
mirror points on a common field line. vary with equatorial pitch angle, 
then pitch-angle dilTusion of these particles on this field line automatically 
produces dilTusion with respect to L [5]. The partial derivatives arc 
evaluate~ by holding constant the quantity conserved by Du. typiC'ctlly 
the particle energy or first invariant. T he drift average denoted by 
the angle bracket~ necessarily yields a positive-definite Du [ 65]. 

External Multi poles. In the case of magnetic shell splitting. as summarized 
~y (3.1 1), pitch-angle diffusion leaves Ld and q> invaria nt at the scattering 
site, and so rhe quantity oL/o y is given by 

i' Ut r - -(B~/252 B0 )(a/b)4 LJ[ D(r)]- 2 

x [Q'(yJD(r)- D'(l')Q(rl]. (3.38) 

If pitch-angle diffu~ion is d istribuled uniformly with respect to longitude, 
i.e .. if Dx., is independent of cp, then to lowest order in c2 = (B 2,'B0 )(LJtilb)4 

it follows that 

Du. = (x2 /1 y 1 )(B2/252 8 1,)2 (a/h)8 L1 o [ 0(.1')] 4 

x [Q'(y) D(y) - D'(y)Q(y)] 2 D"". (3.39) 

With the aid of ( 1.36) and (l.79). the funclion (x2/98y 2)(6D()')] - -a. 
x [Q'(y)D(y)- D'ly)Q(y)]1, which expresses lhe pitch-angle dependence 
of D1..1..!D,cx. has been plotted in Fig. 28 [66]. This function reduces 
lo 25x2; 18 in the limit x 2 = l-y2 ~1. in which case (3.39) reduces 
lo the expression 

D1.1. ::::(x2/ l8)(5 B2/B,)2(a/h)8 L.10 D.u 

::::0.61 x 2(a/b)8 L' 0 D"'. (3.40) 

As an upper bound on radial d iffusion induced by magnetic shell splitting, 
this expression remains valid for lxl :S0.9997; it fai ls only deep within 
the loss cone. As an approximate expression for Du., equation (3.40) 
remains valid within a factor of two only for lxl ~0.6. while (3.39) 
is correct to within a few percent for all x when evaluated via ( 1.36) 
and (J.79). 

The complete Jacobian entering (2.12), when pitch-a ngle diffusion 
violates cJ>. depends upon the nature of the quantity conserved in the 
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i'ig. 28. Relation between D1,1• and [)"·'for shdl splitting c.:auscd by noun-midnight 
magnetic asymmetry [66] , as givc.:n by harmonic-bounce approximation (dashed 
curve) and by improved approximation (solid curve, ba~cu on ( 1.36) and ( 1.79~ 

process. If the conserved quantity is particle energy, then the relevant 
Jacobian is 

G(M,J, l<PI; C,x,L)= -8 7LY pL2 a 3 x T(y), (3.41 a) 

as deduced from (2.14) and ( l .37). If, as in the case of bounce resonance, 
the conserved quantity is M , t hen the relevant Jacobian is 

G (M,J,l<PI; M,x, L)= -81rBoa 3 (p/y2 L)x T(r). (3.41 b) 

which follows from (2.27), (1.37). and the fact that (i"il'/rx),\1.t. 
= 2M B0x/L3y~ [<:f (2.33) and (234)]. _ 

In (3.41 a), t he distribution function f is considered to depend on 
E. x, and L. Since E is conserved by the process. th\! distribution 
function satisfies [65] 

oJ _ _!_ ~ [IJD t.7] +-1- a [xnl')D rZJ, (3.42) at - I3 ,., L I. I ? L \ x T(y) ,1x . . ·"' flx /, 

where Du. is given by (3.39). This equa tion contrasts strikingly with 
(3.01), which applies to processes tha t conserve Mand J. 

Electric Shell Splitting. In the case of electric shell splitting. caused 
by superposition of ( 1.52) upon the dipole field ( l.1 6). the relation between 
L and y at constant Ld and <P is expressed by (3. 15), provided that 
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W~ lq Vel around the entire drift shell. The connection between Du. 
and a (J1-i ndependenl Dxx is then given by 

Dt.t.-:::: (q E,a L2 / W)(m0 c
2 + W)2 (2 m0 c

2 + W) 2 ( 6 D(y)]- 4 

x [Y'(y) T(y)-T(y) Y(y)]2 (x2/ 2y2) D"' (3.43) 

for pitch-angle difTusion at constant particle energy W With t he aid 
of (1.28), (I.JI}, a nd (1.36). the function (x 2/8y 2)[6D(r)] - .1[Y'(_r)T(y) 
- T'(y) Y(r)]2 has been plotted in Fig. 29. This function indicates the 
pitch-angle dependence of D1.t./D.,.r in the presence of electric shell split­
ting, and approaches x2 / I 62 in the limit x2 ~ I. The nomelativistic 
limit (W~moc2) of (3.43) therefore reads 

(3.44) 

for x 2 ~I. and represents a serious (factor-of-two) underestimate for 
Dt.t. only if lxl ~0.6. 
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Fig. 29. Relalion between Du, and D~.,, for shell splitt ing caused by dawn-uusk 
a.symmetry of electrost<ilic potc.:ntial [66], as given by harmonic-bounce approxima­
tion (dashed curve) and by improved approximation (solid curve) based on t 1.21(,, 
( 1.31 ), and ( 1.36). 

A comparison between (3.40) and (3.44), assuming b= lOa and 
E,a=4 kV. suggests that magnetic and electric shell-splitting effects are 
comparablt: at M /.1'2 -7 MeV/gauss. i.e .. at first invariants typical of 
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the ring-currcnl part ides. In the true radiacion belts_. magnetic shell 
splitting cff ects exceed those of electric shell splitting 

2 ~. . • 

At particle energies below those typical of the ring current, 1t ii. 
necessary to reconsider the shell-splitting problem in .te~ms of ( l.65). 
Beyond the pla!>mapause. such drift shells do not close \\.1thu.1 the mag~e­
tospherc. and the corresponding third invariants are u~d.cfin~ (cf. Fig. 
12, Section 1.6). Within the plasmasphere, all shell sphttmg disappears 
in the cold-plasma limit, since "zero-energy" particles drift on ficld­
aligned surfaces of constant electrostatic potential. 

Internal Multipolcs. At very low L values, certain internal geomagnetic 
multipoks associated with true field anomalies, may. cause signific:ll~t 
shell splilling among inner-belt particles [ 67]. If electric fields arc negli­
gible, the existence or magnetic shell splitting in general 0t.n be demon­
strated (c;f Section I.7) by showing that (0 2 B/o s2

)., vanes with. <p a.rm~nd 
a path of constant B" on the equatorial (0 B/es =O) surface: Tlus cntcri.on 
follows from ( 1.26) and ( l.32a), in the sense that the drift shell (which 
conserves tvf and J) must depart from the conslant-8~ trajectory for 
x +O if ~h varies with <p; to lowest order in x, the bounce Frequency 
isgi\'en by D~= (M/1•111-,i,.t 2 8/r s2) •• 

In a dipole fi eld, the value of (i1 2 B/f s2
)., is given .by 9 Bo/~2 L~. 

where L,;, ::(80 /B,.) al J'- I [cf n .38)]. It proves convemenL to display 
the a1.imuthal variation of (t 2 B/t s·\. at constant B., and Lm by plotting 
L;. [IL.~a 2:9 B0 )((2 B;c-i s2 )~ - I] against ge?mag.nctic longitude. This i.s 
donc2C> in Fig. 30 for L111 = 1.1. and 7. The sinusoidal asymptote. approxi­
mated by t he curve Lm= .£. results from an intern~] octupole. T he 
octupole corresponds to n= -5 in (l.46) and the dipole to 11= - 3. 
hence the factor U. in Fig. 30. Higher multipoles produce the broad 
South African a nomaly (longitude 30 - J 20-) and the narrow South 
American anomaly (longitude o~-30 ). The latter disappears between 
Lm= I and Lm=2. The fact that the dipole is off center by -0.07u, 
toward longitude 217 , necessarily contributes nothing to shel! splitting 
as this is not a.field asymmetry. Components of th~ geomagnetic quadru­
pole that survive the transformation to offset-dipole coord111ates can 
o nly warp the equatorial (ti B/t s= 0) surface as a lo~est-~rdcr. effe~t. 
Their second -order (shell-splitting) effects are not d1sccrmblc 111 Fig. 

30 [67]. 

~~ I lowc\'Cr. the demarcation between ring-current and radiation-belt para­
meters is so1m:what arbitrary Wig. 13, Section I.7). 

~~The shel l /.,.. - I is unphysical in the sense that it intersects the earth's 
surface t~cc Sc<.:tion 11.n 
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Fig. 30. Normalized shcll -~ rlitting function associated wi th internal geomagnetic 
multipole~. shown for ~clcc1cd contour~ of consta nt B on the 1..-qu~1torial surface 
L 67]. 

True field anomalies (including the octupole) that signific-<1ntly split 
drift shells thereby subject the inner radiation bell to radial diffusion 
coincident with p1tch-angk ~callcring. A lower bound on the resulting 
Du. is p ro .. idcd by the inl.X}ualit)' 

D1,1. <tL111 x1 3 11 ( L,~ n1;9 B0 )
2 

x \1in ((!t1 8 t \1
)11 -(t

2 B, t> s1
), ]

2 Dn) (3.45) 

where the angle brackets denote an equatorial drift average, which 
must be minimized '" ith respect to some reference longitude <po at 
which (C2 B:c~s2 )., = lt2 8 '<,, 2 )0 . The minimizing operation (Min) assures 
that (3.45) i:5 a lower bound on the radia l difTusion coefficient, regardless 
of the reference longitude that ultimately proves suitable for defining 
L [lf (3.10)]. If the pitch-angle sca ttering is principally atmospheric 
(e. y .. at Lm :::: 1.15 for inner-belt electrons), then the magnitude of Dx., 
is strongly cp-depende nt, with a peak near geomagnetic longitude 20 
(cf Section 11.2). 

111.8 Diffusion in More Than One Mode 

For each diffusion mechanism con~idcrcd in Cha pters 11 and III, the 
diffusion tensor D;; (sec Section ll. l ) can be diagonalized by a proper 
choice of variables. i.e .. by transforming from the coordinates (M,J, </>) 
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to an equivalent set of functionally independent variables. Mixed partial 
derivatives in (2.1 2) are thus eliminated. Vanishing eig~nvalucs (diagonal 
clements, i = j) of the transformed diffusion tensor D11 <.:om:spond to 
conserva tion laws of the diffusion mechanism [68]. For example, pure 
pitch-angle diffusion. i.e., diffusion at constant particle energy, corres­
ponds lo DEE=O and (in the ahsence of shell splitting) DL.L= O. Pure 
third-invariant diffusion (Sections III. l-111.3) has the property that 
D,,.,, = DJJ=O. A summary of various d iffusion mechanisms. their conser­
vation laws. and the Jacobians of their respective diagonali.dng transfor­
mat ions is given in Table 8. 

Table 8. Diffusion Variables ancl A~sociated Jacobians 

Interaction 

Elastic Collisions 
(without r~oil) 

Cyclotron Rc~onancc 

Bounce Re~onance 

Drift Resonance 

Bimodal Diffusion 

Invariants 

E, (<I>) 

(E),(<P) 

M ,(<I>) 

M.K 

(i'.) 

Relevant Jacobian 

IG(M. J. <!> ; E, x, Lll 
= X n "/ I' IJ al x T(y) 

IG(M. J. <!> ; E, ·'· L)I 
. 8n}'p13 al x T(v) 

IG(M. J. <P; M, x. LJI 
=8n(w y)3 (2 m0 8~ M,'1!) 1

'
2 x '/ (.r) 

IG(i\1. J. <I> : '\I. K , Ll 
=(8m0 1\1)1 2(2n B0 a l 1 J.!) 

IG(M, J. <P; ~ •• \. Lll 
=81w-'(2m0 Bri{/C}1

'
2 x T(y) 

( Parenthc~izcd "invananl" quantitic:. arc either approximately or conditionally 
con~crvc<l ). 

No special difficulty of concept ar1ses when two or more d!ffusion 
mechanisms act simultaneously. lf the concurrent processes satisfy the 
same conservation laws. then a single transformation of variables will 
suffice to make the difTusion tensor diagonal. If not, i.e., if the conserva­
tion laws for kinematical variables are not common to the var1ous 
diffusion mechanisms acting concurrently, then the problem is said 
to involve more than one mod<' of diffusion. [n this case, the diffusion 
eq uation is at least two-dimensional with respect to the kincm~tical 
variables. This property presents no special difficulty, since two-dimen­
sional diffusion equations, e.g., (3.42), have already appeared in the 
context of unimodal diffusion. ln constructing a bimodal diffusion equa­
tion, however. it is essential to evaluate the partial derivatives in accord­
ance with the conservation Jaws of the respective modes. For example. 
if radial diffusion at constant l\..f and J (coefficient DLL) is superimposed 
upon pitch-angle diffusion a t consuint E (eoeffi:ient ~.T~) .in the presence 
of magnetic shell splitting, the equation govemmg this b11nodal process 
is 
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- =t - D - +-- - xT(i•)D -c J 2 t r 1 c.f] I {' [ c
1f] 

c I c L T3 LL c1 L x T(J') c x . . .u (1 x . 
II,./ _£.L (346) 

+ t t [x2 LJ 2
[Q'(y}D(y) - D' (.l'lQl.l'lJ2D.u t/J . 

L
2 

<
1 L 2(252 8 0 / B2 )

2 (b/a)8 
[ D(J·)]'' y2 Ci L £.x' 

a result obtained by consolidating (3.0 I), (3.39), and (3.42). 
The right-hand side of (3.46) has the form of minus the ·'divergence" 

of a diffusion current for each mode (cf Sections l l.1 a nd Il.2). The 
radial (trans-L) component of the diffusion current has the form 
-DLL(cf!r lhu for the sudden-impulse mode and the form 
- ( (x/y)2 (f Uty) 2 Dx., ) (t1.f/o L)E ..... for the shell-splitting mode [cf. (3.37), 
Section IIJ.7]. For outer-belt electrons at L~ 5, it is interesting that 
ta.l!a L).~r.1 is typically positive. while (a]/<' Lk,. is typically negative 
(sec Fig. I and Section IV.6). The diffusion current across L thus consists 
of an inward part 1.:onserving M and J , which tends to energize the 
diffusing particles, and an outward part conserving E. The net result 
is that, for particles diffusing "bimodally'" from an external source into 
the outer belt, the gain in energy typically exceeds tha t predicted on 
the basis of consta nt M and J [ 69] (see Sect ion JI I. I). 

hen if shell-splitting effects are neglected. e. q., by taking 8 2 =0, 
the diffusion equation (3.46) is nvo-dimcnsional in the sense that no 
overall conservation law relates x a nd L. T hus. an individual particle 
from tbe distribution f(E,x,l:c) may random-walk a complete cycle 
in x and L, as illustrated in Fig. 31. In the abscm:c of shell splitting, 

L 

15 ..... ' ---...-------..-2 -----.----4.-----..--,...--.,...7--, 

10 .___.___.___..___.;.,__..___..__..__..__.._~ o 

0 2 

Jn L 

Fig. 31. Schemati<: illu~tration of parlicle cyck.-s m bimodal diffusion. 
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the radial diffusion in (3.46) occurs at constant M and J. According 
to ( 1.34 b), the variation of particle energy with L is governed by the 
rel a lions hip 

(n ln p/iJln Lhu= -3 [D(y)/T(y)] . (3.4 7) 

It follows that a clockwise cycle in Fig. 31 (inward diffusion at generally 
smaller y than outward diffusion) represents a net loss in particle energy, 
while a counter-clockwise cycle causes a particle to gain energy. In 
this context. bimodal diffusion acts as a "'tbermalization" mcch£tnism, 
whereby an initially narrow energy spectrum of particles can become 
distributed to both higher and lower energies than pure conservation 
of M and J would allow [69]. 

Reduced Diffusion Equations. For many problems involving radiation­
belt diffusion. it is considered appropriate to simplify (3.46) by means 
of approximations that reduce the diffusion equation to one spatial · 
dimension. Simplifying approximations of this type are often indicated 
when the observational data are not sufiiciently complete to impose 
meaningful houndary conditions on (3.46). In many cases the observa­
tions cover too limited a range of parameter space to make full use 
of (3.46). Redtwtion of the diffusion equa tion to one dimension. however 
justified. does require that bimodal cycles of the type illustrated in 
Fig. 31 be neglected. This is part of the cost of analytical simplification. 

A naive means of reducing (3.46) is to neglect shell-splitting effects 
and to replace the pitch-angle diffusion term by a simple loss term 
of the form -J;r. 1n this approximation [70] the diffusion equation 
reads [ <f (2.09)] 

c J _ 2 !_ [~ - c~ I] _ l 
;'! - t ~ L L' DLL - L (/ U - ( M ! 

(3.48) 

and applies to .l(M.L: r) at J = 0. The pitch angles of particles having 
in common their values of M/)'2 and L are mixed thoroughly on a 
time scale ...... r/5 (see Section 11.7). The representation of pitch-angle 
diffusion as a simpJe loss term. as iJl (3.48), essentially requires that 
5J;r greally exceed (ij~?t in absolute value27. The diffusion coc:fficient 
Du, is then interpreted as an average over particles sharing the Slime 
values of M/y 2 and L. respectively. 

Amore sophisticated viewofthereductiondescribed in the paragraph 
above is that a new variable (=.M/.1'2 has been introduced, and that 
~ is approximately conserved by both Dn and D,,, [71]. From this 

2~This requirement is often overlooked in the interest of expedience. 
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viewpoint, the form of (3.48) should be governed by the Jacobian [ 5] 

G(M. 1, l<PI; (,.x, L)= - (8 n a3 8 0 /lJ'2)x T(J1)('21110 B0 ~) 112 • (3.49) 

which has been included in T<ibJe 8. With this Jacobian. the reduced 
(to one dimension) diffusion equation evidently has the form 

cl = r_:12 _!__ [cs,12 I5 °7] _l 
c t a L /,/, a L ~ r · 

(3.50) 

The practical discrepancy between (3.48) and t].50) is slight. amounting 
only to a square root of L in the metric. Since DLL typically varies 
as L 10 (see Sections ITI.2 and TIU) for radiation-belt particles, it is 
difficult to imagine that seriously different geophysical predictions might 
emerge from (3.48) and (3.50), although (3.50) is perhaps preferable 
in terms of self-consistency. 

In either representation the transport coefficients may 1.:ertainly vary 
~ith L, and perhaps also with ( ( = M at J = 0) and/or time. Since 
Du and < arise from operations on the entire pitch-angle distribution. 
it would be meaningless to give either a dependence on x or y. This 
degree of freedom has been sacrificed in reducing (3.46) to one dimension. 
The conservation of ' is clearly an idealization that breaks down for 
x"" L but the presence of a loss cone (sec Section II.7) assures that 
.f is small there28

. Thus, the effective radial-diffusion coefficient Du_ 
is heavily weighted by the behavior of particles for which x2 ~ I, 
i.e., for which radial diffusion at constant M and J very nearly con­
serves~. 

ff the time scale for pitch-angle mixing ( ..... r/5) is comparable to 
that for radial diffusion, then a simplified equation such as (3.50), which 
assigns to .l the lowest mode of pitch-angle dilf usion (see Section II.7), 
cannot apply unless 01.,L is substantilllly independent of x (cf Sections 
III.2 and IIl.3). Thus. radial diffusion caused by electrostatic impulses 
may lend itself to analysis via (3.50), but that caused by magnetic 
impulses will ordinarily bias .l toward higher modes of pitch-angle 
diffusion. Jn this case a more general treatment is required. 

If the n~ed to circumvent (3.46) is compelling, it may be possible 
to expand I ((,x,L; t) in pitch-angle eigenfunctions g,, (x) that are even 
in x (even parity required because of homogeneity over bounce phase~ 
An expansion [7 I] of the form 

J((, x, L; t)= I a,,((, L; t)g,,(x) (3.51) 

. 
28Theconstant-~ approxjmation means that partides diffuse radially at constant 

y, rn weak violation of (l.34a), (3.02), and Fig. 24. 
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with the boundary condition y,,(x..)=0 is justified if x, is independent 
of L. and the L dependence of D.u is factorable, i.e .• if Dxx is the 
product of a function of L. '' and 1 times a function of x. These 
conditions on x, and D...,,,. are probably well satisfied in the outer zone. 
It is convenient to assume further that D_,,,. and Du. are time-independent. 
ln this rnsc the approxirnalc diffusion equation [cf (3.50), (3.49), and 
(3.46), with B2= 0 (i.e., without shell splitting)] 

if__ 5,2 !__ [ - _, 2 t l] ..1.- _ 1 _ ~ [x T . D t 7] --~ ;i LL Du.~L T( ')~. (.1l ..... . 
<I c: < .. x _\ ex <XL 

(3.52a) 

can be simplified by virtue of the eigenvalue property 

l c [ J -T( -:;- x T(.v) D'"'y,,(x) = -).,,(,, L)y11(x). 
X y) t ' X . t. 

(3.52 b) 

where }.11 ((.L) is the decay rate characteristic of the pitch-angle eigenmode 
y,, ((/: Section II.7). 

fhe normalized eigenfunctions corresponding to distinct eigenvalues 
i" arc orthogonal in the sense that 

.\ , 

J '\' T(y)yn(X)g.,(x)dx = O"'". 
() 

Applia:1tion of (3.52) to (3.51) therefore impljes that 

ca,,,=[3/2 i' [L-s12".D"'"<1a"]-), c r I ~ t' L ~ LL c L ~ 'm I,... 

where 
,\ , 

LY;~;~= J \" T(y) D1..1..gn.(x)g11 (x)dx. 
0 

(3.53) 

(3.54a) 

(3.54 b) 

If DtL is independenc of x, a-; is approximately true in radial diffusion 
caused by electrostatic impulscl> (see Section lll.3), then the matrix 
i5T.7, is diagonal in the sense l hat D'l:Z = Du .. bmn· In this case the functions 
a,,,(,,l:1) and a,,((,L;r) in (3.54a) an~. decoupled for m=t=n and diffuse 
separately with respect to L [71]. lf.f(~,x,L;r) is initially in its lowest 
pitch-angle eigenrnodc y0 (x), therefore. it will continue in this cigcnmode 
and diffuse according to (3.50) as time goes on. On the other hand, 
off-diagonal elements of l57~/'., which are obviously substantial in radial 
d iffusion caused by 111ag11e1ic impulses (see Section III.2), serve to couple 
d istinct pitch-angle eigenmodcs and thereby "excite .. modes not present 
in the initial configuration of J ((.x.L; t). 
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Inner-Zone Protons. For particles that do 1101 undergo significant pitch­
angle diffusion. the fundamental radial-diffusion equation is (3.0 I). Very 
energetic (£;(; 100 MeV) inrcr-zone proton~ arc believed to be in this 
category. The principal source for these particles is known as CRAND 
(see Section III. I) : cosmic rays incident on the upper atmosphere eject 
high-energy neutrons that beta-decay with a mean life 1 11 (,..,, 103 sec) 
in their own rest frame. At lmv latitudes the vel'fical flux J,, of these 
·'albedo" neutrons is believed lo be given [72] by 

at the top of the atmosphere Ir= a+ h. cf Sections I 1.2 and 11.7). The 
presence of these decaying neutrons 29 requires that a proton source 
term [38] 

(3.56a) 

be added to the right-hand side of (3.01 ). The geometric injection coeffi­
cient l. for equatorially mirroring protons is estimated by the expression 
[73] 

X ~ (2/7r) sin - 1 [(a + h)/La]. (3.56b) 

The arcsine represents the half angle subtended by the earth ·s atmosphere 
at the site of proton injection (neutron decay) in a model centered-dipole 
field 30. 

The inner-zone protons injected by CRAND lose energy to free 
and bound ionospheric electrons [,f (2.04)] but gain energy from the 
secular decrease of 8., [cf (2.05)]. Both processes leave the equatorial 
pitch angle invariant. T he energy gain is an adiabatic effect, and so 
is automatically included if the problem is p0sed in the invariant coor­
dinates M, J. and </>, i. <'-· in the form that reduces to 

aJ _ s t [v t~l] (4ir</lm~> [t'(C Tl] - - +~ IDII> ;:- 0 · 3 , I / ' ~ · c r c <I> c <P "· K (2 M B;.11m,,) - o J\11 '""' 
13.57 a) 

29The mean free path of a 100-MeV neutron bdon: beta decay is of the 
order of one astronomical uni t. Decay within the magnetosphere therefore docs 
not significantly deplete the Oux of cosmic-ray-albedo neutrons. 

3°For this dem·a1ion of S, it is assumed that the neutron flux is isotropic 
at the top of the atmo~phcre. so that the omnidirectional neutron flux h. i:. 
twice the vertical flux J •. The unidirectional neutron flux above the atmosphere 
remains <1 /2 n)h., by I iouvtlle':, theorem (St:elio n l.J ). for gyro phase angkl> compat­
ible with ejection from the atmosphere. The result b a g)'ropha:.e-a~eraged proton 
source (dJ1. /c/1).=(l /2n[r,.)(x/2)J2,. i.!' .. a source for lt=J1 1p 1) given by (3.56). 
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where [£/ Section 11.2) 

C =N..r/- I -r2 ln(i.0 me r/li)] 
+ L_i\ii Z; { /- I -;•2 In [2me c2 ('/ -1)11 i]j . (3.57 b) 

The m irror lield 8,,, is given in terms of the invariant coordinate </> 
by B,,,=(l i8n3a 6 y2 83)1<1>1 3, and thus contains an explicit time depen­
dence (that of 8 0 

2
). Expressed as functions of K 1 (::l218muM) and 

<P. the drift-averaged atmospheric densities Ni also vary with time. 
The drift shell corresponding to given values of K and <1> not only 
contracts temporally (since Bo/Bo<O), but also moves laterally relative 
to the earth so as to remain concentric wit h the dipole axis ·" (apart 
from t he effects of magnet ic anoma lies, (f Section 11I.7L A growing 
dipole-offset d istance imparts an add itional increase to N1 with time 
for a tmospheric consl itucnts whose densi ties decrease with a ltitude. 

T h1.: secular variation 32 o f 8 0 on a time scale ~ 2000yr prevents 
(3.57) fro m having a steady-slate (8//er=O) solution with which the 
inner pro ton belt ca n be identified . Thus, the present state of protons 
in the inner zone is the result of a Jong and contin uing process of 
evolution. According to Fig. 14 (Section Il .2) protons presently trapped 
in the inner 1one may well have resided there for the past thousand 
years o r more. An integration of (3.57) over this geomagnetic h istory 
may be fraught with uncertainly. in \.iew of t he available obser vations. 
Such a treatment appears to be necessary, howeYer. 

In much of the inner zone. the secular decrease of Bo energizes 
trapped protons more effi ciently than does inward radial diffusion at 
constant M and J. Typical time scales for the latter process at J =0 
have been indicat1..xl by broken lines in Fig. 14 (Section 11.2). For this 
purpose, the diffusion ··current" - D1..J.Jaftc L)M.J identified following 
(J46) has been ut ili1cd to construct an effective .. veloci ty" 

L~= - D1..d21n.f/cL),,.,,J· (3.58) 

Insertion of 10/L as a likely upper bound [38, 39] fo r (tiln]lcJL)M.J 
le;.1ds lo the estima te [c:f (2.05)] that 

1 d F. - l [')'+ '] l1 
BC< 30[~'+1] D (3.59) 

/!. "I H,, 2 ')' () L - I3 2 /' - LL 

3 I At present the distance between the dipole axis and the geocenter is growing. 
at a rate - 2 km; yr. 

320ther axially symmetric internal multi poles (2") of odd-11 order (e. y .. octupole) 
may also contribute a ~1gmficant secular variation having similar consequences 
(39). 
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if secular variation is neglcct1..xl. The difTusion time scales shown in 
Fig. 14 (Section 11.2) arc obtained by inverting the right-hand side 
of (3.59) for representative values of Du. al constant M and J (cj. 
Chapter V). These diffusion time c;calcs arc generally comparable to 
the secular and atmos pheril: 1im1.: scale.-, for £:'-folding the kinetic energy 
of an inner-belt proton having M - I GeV gauss. 

O ther Diffusion Velocities. Since radial diffusion is a macroscopically 
random (rather than deterministic) process. it may be possible to identify 
..velocities" other than (1.581 by followi ng the temporal evolution of 
l in its various aspects. For example, the expansion of (3.0 I) as 

u. ~ 1 2 0 . <..,/- <~ D [cj-J ti [ 1 Pf] 
' - - - -- -:\- - ~ / , / 4 -~ - - l .... 
<' I c·L 1 L M.J r L l:. cL :ll,J 

(3.60) 

suggests the inward motion (at "velocity" i'•DLL/DL) of a diffusing 
profile off, vicwed at an '"inflection point" where i'12.f/?i(L3

)
2 =0. Allerna­

tivcly. if the distribution function has a symmetrica l "crest" shell at 
which (~fjiiL)M. J=(c3f/( L 3hI.J=O, this "crest'' can easily be shown 
to move at "velocity'' 

(3.6 1) 

when observed at fixed Al and J. Finally. if (3.0 I) is recast as a F okker­
Planck equation ['f (2.03)] of the form 

c•J _ _ 2 t [J <Du.] .J L~ t [I <If Du)] 
~ - /..:. - 1 , ' L ' L ,J 'L . ( l (' J £: (' II. J (' C' c: \f. 1 

(3.62) 

the "velocity'" i'•D1..L ''<.., L is seen to represent a mean d_isplacement in 
L per unit time for the typical particle contained in f(M.J,L;t). Of 
course. in the presence of competing modes of diffusion the significance 
of such ·'velocities" is rather obscure. In general, the analysis of radiation­
belt diffusion requires a complete application of the governing eq uations 
(see Chapter V). The direct idcntilkation of ''d iffusio n velocities" fro m 
observations at fixed l:'llf!l'Y.I' has enjoyed some historical popularity 
(see Section IV.6), but is no longer regarded as an adequate quantita tive 
treatment of observationa l data. 


