
V. Methods of Empirical Analysis 

V .1 Basic Objectives 

After obtaining experimental data such as those discussed in the previous 
chapter, it is necessary to extract from the data numerical values of 
transport coeJTicients such as Dxx and Du,, in order best to describe 
the observations in the context of magnetosphcric diffusion processes. 
This must be done wilh the realization that such a c.:ourse of action 
(and the parameters determined from it) are subject to uncertainties, 
including the question as to whether the observations can actually 
be described in terms of the diffusion processes selected. 

At present, the most desirable course to take in verifying the validity 
of the diffusion equation adopted for describing a given set of magneto­
spheric particle observations is to use a self-consistent analysis. In a· 
self-consistent approach. the values of the transport coefficients should 
be determined (as fur as possible) empiriC'ally from the particle data. 
After values for the coefficients are so estimated, the model should 
be verified by inserting these values in the appropriate diffusion equation 
to show that the model indeed predicts the observed spatial structure 
and/or temporal evolution of the particle data. Sl!bsequently, the magni­
tudes of the transport coefficients should be manipulated (by the methods 
of Chapters II and Ill) to yield predictions for the spectral densities 
of magnctospheric field fluctuations (waves, impulses, ere.). Finally, these 
predictions should be compared with available observations of magneto­
spheric field and wave activity (see Section IV.7). 

An empirical determination of the transport coefficients directly 
from the measured particle data presents cerwin difficulties. Frequently, 
such a determination is arrived at by making initial assumptions concern­
ing the relative importance of the various dilTusion mechanisms. Often 
the transport coefficient associated with the dominant process can be 
determincx.l only by assigning to the other (secondary) process a fixed 
and somewhat arbitrary value. Moreover, it is usually necessary to 

assume t hat the transport coefficients are time-independent, or dse 
related in some fixed way to the geomagnetic indices (K 1,, Ds•· <!le.). 

For example, a common procedure nol readily justified is that of 
directly relating the app(m:mt ckctron-llux decay rates to numericaJ 
values of the pitch-angle diffusion coefficient Dn. This approach, in 
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which it is assumed (cf Section Il.7) that D,.."- - (xz!5 )(Dlnfjtll),,.x, 
is based on the expectation that the electron pitch-angle distribution 
is in its lowest eigenmode. The "decay'' limes shown in Fig. 41 (Section 
IV.3) have been obtained under this assumption. 

A difficulty in this approach is illustrated by the L=4 electron data 
(£> 1.0 MeV) plot tell in Fig. 38. During the first several days following 
each of the four largest magnetic storms. the electron flux did not ap­
pear to decay at all. but rather remained constam or increased in inten­
sity. Thus, it would not have been possible to read a pitch-angle diffusion 
coefficient directly from these data. Electron losses undoubtedly occurred 
during these periods. but the temporal flux changes were probably 
dominated by radial-diffusion effects((/ Figs. 52 and 53. Section IV.6). 

Additional opportunities for determining the pitch-angle diffusion 
coefficient are provided by the data showing the azimuthal variation 
of precipitating electron fluxes (Fig. 36, Section IV.2) and the data 
showing relaxation of electron pitch-angle <listributions to rhcir lowest 
eigenmode (Fig. 34, Section IV.2). In these cases it is impossible to 
read Dxx directly from the data, and so more sophisticated analytical 
techniques are required (see Section V.2). Application of such techniques 
may yield both a nominal value and functional form for Dxx· 

In the case of radial diffusion, several techniques and procedures 
have been developed for extracting DLL from the observations. The 
choice of metho<l depends in part on whether the data provide stationary 
(lf Section IV.5) or time-varying (Section IV.6) flu.x profiles. As noted 
in Section fV.6. it is very helpful Lo have data in several energy channels 
in order to characterize the actual particle spectrnm. Such spectral 
information affords considerable freedom in the choice of method for 
extracting D1.L· 

When lhedala consist solely of "sta tionary" flux profiles, it is generally 
necessary to assign either D,x or Dll somewhat arbitrarily in order 
to extract the other. ln the event that the data arc obtained from 
the region of the magnetosphere where atmospheric losses predominate 
over wave-particle scattering, it is appropriate to insert D.0 , as a known 
function of M, J, and <l> [cf (2.17), Section 11.2]. Outside the region 
where atmospheric scattering losses predominate, it is usually necessary 
to assign the observed "lifetimes" (as from Fig. 41, Section IV.3) character­
istic of gcomagnelically more active time periods (when the flux profiles 
typically arc not stationary). Then. treating the relevant diffusion equa­
tion (see Sections lll.7 and 111.8) as a linear first-order differential 
equation for Dll, it is possible to express the solution as a spatial 
quadrature, i.e., an integral with respect to L (see Section V.3). For 
this purpose, the derivatives of.Tare obtained numerically from the 
observational data. The radial-diffusion coefficient Du. thus extracted 
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from the data can subsequently be verified by obtaining the steady-state 
solution of the diffusion equa l ion, i.e .. by spatially imeorari11g the equa­
tion (see Section V.7) for f (M,.J,<P). H this :,olution reproduces the 
observed steady-state profiles. then the value obtained for DLL is con­
sidcroo reliable. If not. then either Du, musl be adjui->lcd to yield a 
bettcr fit, or the underlying model of the competing proccsse~ k y., 
the arbitrarily assigned value of D.~ .• ) must be modified. 

Additional opportunities for empirical analysis arise if the observed 
nux profiles vary with time. The temporal coordinate adds a new dimen­
sion to the problem and makes it possible (in principle) to extract 
bmh Du, and Dxx (as functions of L) from the data simultaneously. 
The introduction of a rarimio11al recl111iq11e (sec Section V.5) serves 
this purpose well. Simpler techniques allow either D,, or Du, to be 
expressed in terms of t111wlra111res (Section V.4) over the data if the 
other diffusion coefficient is specific.x:l a wiori. T he ultimate test of 
the numerical validity of Dtx and Du, obtained by any method is 
provided by a comparison of the data with the time-dependent solution 
of the diffusion equation, as obtained by temporal i111 eyra1im1 (Section 
V.6). In the present chapter. these various analytical methods for extract­
ing diffusion coefficients from the data are discussed in a somewhat 
logical sequence. 

V.2 Pitch-Angle F.igenmodes 

Pitch-angle diITusion al t:Onstant energy is governed by (2. 73), an equation 
that can also be written in tht: fonn 

t' T t t [ c7] x T'(\'l [t·7J -::-=- ~ \"D ~ - - D". . ~ , 
l I . X ( \' .u I .\'. t: J . . f (1 ) I X /-. 

(5.U1) 

since x 1 + y 2 = I. The second term of (5.01) is negligible for x 2 ~I. The 
approximation of omitllng it altogether by taking T(1•)= T( I) converts 
(5.01) to a diffusion equation in cylindrical coordinates. The eigenf unc­
tions of (5.0 I) for an x-indepcndent diffusion coefficient D .. would 
then be Bessel functions of order 7ero (lf Section 11.7). In terms of 
(3.51) this would mean that the typical eigenfunction Y11(x) is given 
by y11 (x)= [2/T (1)] 112 [ 1/x .. J 1(K,,)]J0(1\,,XfXc). where .!0(1\11)=0. T he cor­
responding eigenvalues /,,, of (3.52 b) would then be of the form 
I."= ( 1,·.,/x c )

2 D .. _,. 
Generally, a sourcc*0 term must be added to (5.01) in order to 

describe the evolution of T toward a steady-state distribution. Tf an 

40ln this section. the ~oun:c t-an be regarded either a~ a true ~oum.! or as 
a ~imulation of the r.1dial-diffusion term omitted from (5.01). 
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isotr~pic source t~rn:i is '.tdded to.(5.0U [c:f (3.57a ), Section IIT.RJ, Lhen 
the pHch-angle d1stribut1011 function./ (x.t) will evolve in time toward 
the steady-slale solution 

(5.02) 

for T(y)= T( I J and Du independent of x. Eq uation (5.02) is reminiscent 
of (2.64) for \= I (~cc Section Il.6). 

The 28 October 1962 nuclear blast had injected dcclrons with an 
off-~uatorial maximum that subsequently dccayL'CJ with time (Fig. 34. 
Section IV.2). The decay of the omnid irectional flux (£> 1.9 MeV) can 
be simulated by ex pressing the pitch-angle distribution f(x. c) in terms 
of its steady-state solution and higher-order eigenmodes. i. e .. 

n \',.I) =.i:.M +.t: (0) L a,,trJJ0(1,·,,x1xr) (5.03) 
I) 

with ao(O)= 50/3andu1 (0)= - a 2(0) = - 55/3. The artificial enhancement 
(Day 301.3) corresponds lo 1=0. and a.,(0) is assumed to vanish for 
11>2. 

The temporal decay of](x,r)tofA~)obtaincd from (5.03) by assuming 
Xr=0.94 and D .. = 10- 2 day - 1 is indicated in Fig. 68a [43]. The eigen­
values J.n=(K,. xr)2 D\, are given by i.0 = 0. I 90i 1 -0.077 J.2= 6.545 x 10- 2 

day - 1
. The differential omnidirectional Oux at any point on the field 

line is given [ ,.;1. ( 1. 22). Section I.4] by 

where 

l 

J*,.(X.1)=4np1 J f(x, t)d(cosa) 
0 
x<' 

'J[1-x2]1 12 ,((x I) - 41qr ' d 
vl_v-2 I r 2 X, 
. ' .fl. ~'\ 

.Y 

(5.04a) 

(5.04b) 

The coordinate X locates a point on any field line in terms of the 
local field intensity B relative to the min imum (or equatorial) field 
intensity Be on that field line((:( Section l.4l. If D;..., and x,. are independent 
of energy (as assumLxl above). then pitch-angle diffusion leaves the 
form of the energy spectrum used in (5.03) invariant. The inreqra/ omni­
directional nux l.1. (X.1) will then scale as J4,(X.t). which · is plotted 
in Fig. 6Rb. The predicted evolution of 14n(X.t) thus resembles the 
observed evolution (Fig. 34) rather closely. 

ln both the observed and predicted /4n(X.1), the off-equatorial (X>O) 
peak disappears as the pitch-angle distribution approaches its lowest 
~ecaying eigenmode. From 1- 10 days onward, there is very little change 
in the form of the pitch-angle distribution (Fig. 68a ). This means only 
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day- 1 and\' - 0.94 [43]. 

that the lowest eigenfunction, namely J o("·ox/x,), qualitatively n;sc11].hlcs 
1- (x/x .. )2 , which contains lhc entire pitch-angle dependence of .f, ( \') 
for an isotropic source S [<f (5.02)] if Dxx i~ independent of x. 

The resemblance between y 0 (xl and f r (x) exists even when D,. 
varies with\'. For example. if D.,., i<> proportional to (xxJlo with a< I, 
it is possibh.: to integratl'. the equation [<:f (5.011] 

1 cl I . D d.1:.J s· - o - - .~ " - +. - . 
' " \ . . d .'I: 

with the boundary condition that/, (x, )=0. so as to obtain 

J, (x )=[Sx~/4(1 -a)D ,x]lx/x,f"[l-(x 'x,)~ 1
"] 

(5.05a) 

(:;.05b) 

under the a~:..umption that c' S/r x = 0. On the other hand, ~he normalizlX.I 
eigenfunctions of (3.52 b) and (3.53) for T(y)=: T (I) are given by 

~1,,(x) = - [2(1 - a) / 'J (I)] 1'
2 [llx,. J :(1",,.)j 

x '' ' ')" J (K ,• "t'' ' ") (5.06a) ,, ~- "' . ( 

where \'=- <i ( I - a ) and J d r·; ,,1- 0 (11 = 0 . 1.2 . ... ).The corresponding 
eigenvalue~ arc given by 

A.,,= ( l - a)2 (1(1,11/x.}2(x</x)2" D.u· (5.06 b) 
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Recall that (x~/x)2" D.(., is independent of x both in (5.06) and in (5.05J. 
As shown in Fig. 69. where x,=0.9. there is a close quali1 a1 ive resemblance 
between !}olx)/gn(OJ and .f.., (x),'f., (0) for lul ~I /4. Thu..,. the form of thi.: 
pitch-angleu btribution changes very lmlc bet\."een the exponential-decay 
pha~c (see rig. 34. Section I V.2) and the steady stall!. 
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1 'ig. 69. Low1::sl citH:nmodc (left panell and asymptotic ~1..:a<ly ~tall: (right panel) 
for pitch-angle diffusion with D,. , ' - '·' '·' )~" and x,=0.9: steady state as~umcs 
iso tropic source [ 41 j. 

For a>O the pitch-anglcdilTu~ion coefficient vanishes at x=O. Conl>c­
qucntly, the functions go(x) and .J, (x) are more sharply peaked al 
x = 0 for o"> 0 than for a=O. Conversely, if a< 0 the pi Leh angle distribu­
tion tends toward a broader shape, hence a steeper grad ient at x=xv 
In either L<lsc. 1h1: value of D,, at x=x. remain~ finite. Moreover. 
the values of ( l-a)K,,. that appear in (5.06b) are only moderately 
<>cnsitive~- to a. The decay rate~ that govern the evolution of j(\'., t) 
from t = O to/ = X· are thus largely in-;cnsitive to the manner in whic.:h 
pitch-angle diffusion is distribuloo over x. 

The approximation that T(y)= T(I) in (5.01) causes the second term 
in that equation to vanish. Thi~ up_proximation is inappropriate for 
describi ng the temporal evolution off(x,r) near x::;:: I because the exact 
eigenfunctions of (5.0 I) arc poorly approximated by (5.06a) for x ~ I. 

~ - For example, th~ quantity ( l - 11) 11\ ... \'anes from 3. 14 to 1.92 a'> /1 goc.~ 
from - I to l l /2. The ratio At/An vari..:s from 9.0 to '\.4 over this same u 
interval. 
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Without theapproximation, lhc eigenvalue equation becomes [c/ (3.52b), 
Section 111.8] 

~ = - - \D - + - - . . 1 c[ [gn] DHT'(r)[i'lng .. J 
·n X gn / X ·'·' [ \ G _\' J (_\") (- ln X f 

(5.07) 

Since y,.{x.) = 0 and T'(yJ<O (Sl.!C Section 1.4). the second term of (5.07) 
is positiPe at x=x,. i.e., (tlngn/ilnx)E<O at x=x,. Since the fir<>t term 
of(5.07) is also positive, the Bessel functions in the approximate solution 
(5.06a) approach zero more abruptly at x = x, than do the true eigenfunc­
tions. The d iscrcpancy between (5.06a) and the true cigenf unctions grows 
with incre<t:.ing x,. since according to ( 1.28), the function T'(J) ~ 
-( l/4l[TIOJ-T(l)](2+.r 1 2)approaches - J.. as x goes to unity (see 
Section 1.4). A schematic illustration of the true eigenfunction go(x) 
and its Bessel-function approxim<1tion for a=O is given in Fig. 70 for 
each of three values of x,. 
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Fig. 70. Schematic represcnlali()n of true eigenfunctions (i;olid curws) and approxi­
mate (Bcssdl dg1::nfunctitH1s (dashed curves) for lowest normal mode of pitch-angle 
diffusion with a =O. 

The use of the true pitch-<rngk eigcnfunct ion~ Y11IX) is essential for 
extracting a radial-diffusion coefficient from low-altitude electron obser­
vations beyond L~ 1.6 (e.g .. Fig. 36, Section TV.2). As shown in Section 
IV.2. the intensity of electrons on trajectories with ··perigee·· ~ 100 km 
incrcast:l> with longit ude cast of the South Atlantic ··anomaly". ac; pitch 
anglcdiffu~ ion replenishes the pitch-angle interval Xr<X<Xb (<f Section 
II.7). This replenishment follow~ the sudden loss (by atmospheric absorp­
tion) of dcdrons with pitch angles x,<x as they azimuthally drift 
through the ·'anomaly" region. Tn effect, t.hc loss cone seen by the 
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electron distribution suddenly enlarges as the particles approach the 
'·anomaly", where x~=xr. Immediately east of the "anomaly". fewer 
precipitating particles arc observed than immediately west of t he .. a­
nomaly", since no electrons remain in the loss cone. In other words. 
after the excess electrons arc lost in the .. anomaly". the pitch angle 
distribution vanishes at x=x,.. ~ 

A reasonable method of analyzing such electron observations to 
obtain Dxx is lo assume that an isotropic source term S is distributed 
uniformly in longitude. as in (5.05). The addition of this source term 
lo (5.0 I). together with the boundary condition that /'(x. t) vanish for 
x=xb(q>). defines a straightforward problem of numerical analysis~'!. 
Any initial (1=0) choice of /(x,1) must e"olve (for S*O) toward a 
periodic solution sa tisfying/ (x,1 +2n/Q_>)=f (x,r). T he azimuthal coor­
dmate. <p of the particle dis1ribution is a function of time in the sense 
l~at <p= QJ. (Recall that Q3 is approximately independent of x al a 
given energy and L value, cf Section J.4.) The periodic solution 
.f(x.t)=.f(x.r - 2rr/Q3) obtained by following the.; particle distribution 
in its azimuthal drift is eq uivalent to a timt:-independent distribution 
f (x,q>), where <p is the geomagnetic longitude. The functional form 
of f(x,<p) depends only upon D n /Q3 for a given xb(<p). Execution of 
the above-described computational program for many trial values of 
Dxx/Q.3 s~ould therefore yield one solution / (x,<p) I hat best agrees with 
observa~1ons (e.g., Fig. 36, Section I V.2). T he observcd a7imuthal varia­
tion of.f (x,((J) thus yields a value of D,x/Q3 and (since Q3 is a known 
function of 1::.; and L) a value for o ... ,. 

The only reported computation of this nature [77] employed 
Yn(X)=(2/xl) 1 2

cos[l2n+ I )(nx/2x,,)] for the pitch-angle eigenfunctions. 
T~e results of th~t computation arc therefore probably unreliable: sinu­
so1~al e1genfuncllons do not sa ti~fy (5.0 I). The reported values for D" 
vaned from 2 x ro - 3 day - l at L=2 to 8 x lO ·' day I at. L=4. Thi.! 
corresponding ck'Clron .. lifetimes'" ( ~4/rr2 D.u) would amount to ....., 100 
d~ysat L = 2a~d -:- SO days at L=4 for electron energy £ ~0.6±0.1 MeV. 
Smee these .. lifetimes·· exceed tho~c shown in F ig. 41 (Section IV.3) 
by nearly an order of magnitude, the numerical values of D.u on which 
they are based are open lo question. Jt is difficult, of course, to rule 
out a possible variation of D.," with x or ({J that might explain the 

~~Due to the South American anoma ly It/ Fig. 30. IIJ.71 \\hil.:h lies immcdiat..:lv 
to the W~"l. lhc lo:.~ ~-one expand~ abruptly from a ~mall apertme (co~ '\'~J 
to~ larger aperture (cos 1 

Xe) in the neighborhood of the South All<inlic ··anomalv" 
1t.1s ~athematir.:all) com·enienL to model the loss-cone ap1:rtl1r1: a~ a step fum:tion 
of az101uth. r~thcr than a sinu:.oida.1 .run<.:lion [if. (2.75). Section 11.8). In foL·t. 
the step function may be the more faithful r1::prescnlalion of geophysica l reality. 
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discrepancy 4 9 , but a treatment based upon the true eigenfunctions of 
(5.01) is much needed. 

Information on the possible energy dependence of D.n east of the 
--anomaly .. can be deduced by compari ng the energy spectra of precipitat­
ing electrons at several longitudes LI tp. where A cp=O at the "'anomaly" 
[77]. Precipitating electrons having energies from 0.4 MeY to 2.5 MeV 
are found to have an exponential energy spectrum. Thee-folding energy 
Eo is found to increase with increasing east longitude. This observation 
can be understood largely in terms of the energy-dependent azimuthal­
drift rates (cf Section 1.4). Thus, the pitch-angle diffusion coefficient 
Dxx apparently is not a strong funct ion of electron energy in the range 
E~0.4- 2.5 MeY. 

V.3 Quadrature (Spatial) 

The diffusion equation can be manipulated in several ways in an attempt 
to extract the radial diffusion coefficient Du. and /or the particle lifetime 
r from the observational data. One class of methods involves a partial 
integration of the diffusion equation between two fixed limits in L 
or time. Letting f = Inf allows the radial diffusion equation [<f (3.48), 
Section IIT.8] to be written as 

= L-- -- - - D -~ - --i' f l , t (D11 )] c F [t1 F (<""' f)z] 1 
c' 1 <1 L e t L LL t L2 f L T 

(5.08) 

for constant M and J. If the true lifetin1c r is a known function of 
L, and if f(L, t) is available from the observational data 50, then (5.08) 
may be interpreted as a linear first-order differential equation for D1.1,. 
lf the observat ions of F cover the interval L 1 ~ L :I::L2. then the solution 
of (5.08) may be written 

~"Enhanced pnch-angle diffusion subscr1ucnl (in longitude) to .. complete"' re­
plenishment of the equatorial-pi ld1-anglt:-cosine interval Xr<X<Xb might escape 
detection by the abovtl analytic method if it is accompanied by an enhanced 
source S [<f (5.05)]. Any such enhancement of D, ,, in longitude, however, ~houl.d 
be correlated wilh magnetosphcric longitude (local lime) rnthcr than geographic 
longitude. >inc.: atmospheric scaltermg of electrons i~ unimportant beyond I~ :::. 1. 5 
kf Fig. 41, Secuon IV.3. and Figs. 72- 73 below). 

" 'Since o nl} derivatives of f"= Inf appear in (5.08). the resu~l is not affected 
by addmg a conslanl to F. Thu~. if the funct io nal form off (L.t) i~ known, 
the absolute nurmalization is no1 required. Only the form of the flux profile 
nt constant Mand ./ affects (5.0X). 
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D1•1.(L)=exp[ - )~ Qi(.t)d t ]{ DLL(L3 ) 

+ X Q1(t)cxp[} Qi(.L')dL'}u~}, (5.09a) 

where 

(5.09 b) 

(5.09c) 

!he valu~ of L3. must lie within the range covered by the data, but 
Is oth~rw1sc.arb1lra:y. The value of Du,, al L=L 3 plays the role of 
an a rbitrary mtegratlon constant. The presence of an arbitrary constant, 
whos.e vah1e must be e_stima.ted by o.ther means, is a pcrsistc~t difficulty 
of analytical methods JE which D1 l 1s ~x pressed as a i:.patial quadrature. 

The use of F: lnf rather than f itself in (5.08) is advantageous 
from the computational standpoint. The standard use of finite-difference 
techniques in evaluating an expression like (5.09) tends to introduce 
far less error in the derivative.) of F than in the derivatives of/ 

!he method of (5.09) is dearly inapplicable, however, if i'J F/o L 
varns~es anywher~ in the interval of interest (l 1s;.Ls;.L2). In such a 
case, 1t may be fru1tf ul to return to (3.48), written in the form 

c [Du (tf)] I [J t/] 
r~ L L2 t L _ ''· 1 = Li ~ + ~ · (5.10) 

The full quadrature of (5.10) can be written as 

D (L)=i3(t.f) 
Ll cL 

(5.11) 

I lere .the a~bitrary integration constant D1.dL3 ) reappears. Now, how­
ever, 1f L3 is chosen so that c'lFl,IL= O at L =L3, then it follows from 
(5.1 I) that 

I. 

D1.1.(L) - -=;- - - + - --_ L2 (i1 F) -i f [ 1 t FJ J d .t 
./ t•L r ?1 (l.:)2 . 

L1 

(5.12) 
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Here, as in (5.09), the normalization of .1 does not affect the value 
of DLL extracted from the data by integrating to an L value of interest. 

When it is impossible to choose L 3 such that CiJFlitL )L.-L.J vanishes, 
the difficulty associated with an arbitrary integration constant can often 
be circumvented by postulat ing the analytical form of DLL a priori. 
The functional form customarily postulated (subject to later verification) 
is a power law in L (<f Sections 111.2 and 111.3), i. e., Du=D11L". Under 
this assumption, it follows from (5.08) that 

D = L - + - - - - +- + -_ 11 [1 (1 FJ. [("-2) f:F (
2

1' (cF)2

] 

" , tr · L cL i1L1 r L 
(5.13) 

for some initially chosen value of /1 (not necessarily an integer). Sim.-e 
(5.13) follows from the assumption that DLL is a "monomial" function 
of L, self-consistency can easily be checked by evaluating D,, from 
(5.13) for several values of L between L, and L 2. A moderate scatter 
of the resulting D,, values about some constant mean would represent 
a measure of uncertainty in the numerical value of Dn while confirming 
cbe postulated power law. On the other hand, a systematic varia tion 
of D,, with L would indicate that n had been chosen improperly. i.e., 
that some other power law (or perhaps a different functional form 
altogether) is required in order that Dr,L. fit the data [113]. 

As indicated in Section !Y.2, both the decay of inner-zone electron 
nuxes following the Starfish explosion (Fig. 32) and the decay of a 
monocnergetic electron enhancement observed after a magnetic storm 
{Fig. 35) have been adequately accounted for by atmospheric-scattering 
losses (Section Tl.2). Both sets of measurements had been made over 
a time interval that was relat ively short compared to the calculated 
lifetimes. A long-term study of inner-zone electrons(£> 0.5 MeV), cover­
ing a three-year period beginning in September 1962, revcctled considera­
bly longer a11puren1 lifetimes in the region 1.15 <L< 1.21 than had 
been observed in the 50-day period immediately following the Starfish 
detonat ion. Sinc.-e atmospheric scanering could not have grown abruptly 
less intense with time 51

• these measurements suggest that additional 
electrons were continually being supplied to these low L shelJs from 
higher L. perhaps by radial diffusion. An empirical analysis of these 
data for radial-diffusion effects is f<:1cilitated by thcfact that the omnidirec­
tional flux (profile shown in Fig. 71 a) decayed almost exponentially 
during the three-year period that began in September 1962. The apparent 
decay rate -rF/iJr and the decay rnte l /r .. expected"' on the basis 
of atmospheric collisions (Section 11.2) are shown in Fig. 71 b [ 114]. 

51 1 lowever, this was a period of decreasing solar activity (see Fig. 5 1. Section 
IV.5), during which the atmosphere would have contracted toward the earth. 
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Fig. 71. (al lnm:r-lonc equatorial clcctron-Oux profile for £> l.6 MeV observed 
on 1964-45A during December 1964. (b) decay times r and 1- c' F 1l'1) 1 d1..-rivcd 
fro!11 atmospheric-scattering th~r}' (42] and from a three-year compilation [123) 
of mner-lonc electron daLa (1962- 65; £>0.5 MeV), respectively (114]. 

The "staircase" function shown in rig. 72 represents a self-inconsistent 
determination of Du based on a hybrid analytiC<:tl method [114] with 
features of both (5.1 2) and (5.13). The integral omnid irectional fluxes 
1 ~" arc first converted to cquacoriaJ differential unidirectional fluxes 
at constant M by postulating an energy spectrum like that which results 
fr~m. the.beta decay ?f fissi?n products (~f. Section Y.6) and a pitch-angle 
d tstnbutton compattble with the known loss-cone aperture (lf Section 
11.7). The pitch-angle correction (factor converting omnidirectional nux 
~o unidirectional flux) varies by -30% between L = 1.15 and L= 1.21; 
it tends to reduce the _slope of the nux profile. The conversion from 
1 .L at constant E to f =J j p 2 at constant M leads to a correction 
that varies by -10% over the interval l.15<L< 1.21; this correction 
tends to steepen the profile. The net result is that the profile /is ....... 2() 0;.> 
less steep than that of f4", shown in Fig. 71a. 

An acceptable procedure for obtaining Du from these observational 
data consists of replacing Du.(L 3 ) on the right-hand side of (5. J I) by 
(L3/ [)"Dn(L). This is equivalent to assuming that D Li. x L". A rearrange­
ment of terms then yields 

l• _ I [..!.. (l f] Td L . [l ( L )n C }-J1
· 

1
·• DH(L4)- + -- - - - -

' r 81 (1.'.) 2 . L2 L <1 L _ . 
4 /, - /,3 

J,, 

(5.14) 
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In particular, the choice 11 = 0 corresponds to a diffusion coefficient 
Du, that is constant in the interval LJ 5'Ls L.J.. The "staircase" function 
shown in Fig. 72 results from performing the integral in (5.14) over 
a sequence of consecutive, adjacent L intervals of width L4-L3=0.01 
for n = 0. An alternative choice of inlervals, such that L4 - LJ = 0.005 
yields very similar results, as does the use of (5. 13) for n=O. 

,_ 
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...J 
...J 
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IO 1.1'-4--'--- l...i.16--'---l.'-18--'---1...1..2_0 _...____,I 22 

Fig. 72. Radial diffusion co~fficicnts obtained from data in Fig. 73. assuming 
fission spectrum to obtain f (M,J. </>) at constant M and J. Staircase function 
[ 114] follows from self-inconsistent quadrature. Smooth curve:; arc self-consistent, 
but require assignment of arbitrary values (filled circles) to DLL at L= J.15 [I L5]. 

The inconsistency of the "staircase" function as a solution for DLL 

is that the initial assumption (n=O) has led to the conclusion that 
D LL varies inversely as ~ L 70

, i. e., by a factor ~ 20 between L = 1.20 
and L = 1.15. ln fact, a treatment of the same data using (5.13) with 
n= - 70 proves to be reasonably self-consistent, and leads to a value 
of DLL that is approximately twice as large as the "staircase" function 
al the center of each integration interval. 

The alternative procedure of assigning Du a certain arbitrary value 
at L 3= L 1 = l.15 yields the family of smooth curves shown in Fig. 
72 [ll5]. Values of DLL ranging from 4 x 10- 7 day - 1 to 3 x 10- 5 day - 1 
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arbitrarily assigned at L = l.1 5 thus yield remarkably similar solutions 
for DLL beyond L= l.17. The solution generated by Di, t.(1.15) = 1.5 x 10-s 
day - 1 (not shown in Fig. 72) roughly approximates the above-described 
power law in magnitude and functional form. Of course, arbitrarily 
large values of D1,L(L ) could be generated for L> L1 by an unreasonable 
choice of DLL(L1). 

Although the various operations on the data yield different solulio ns 
for Du,, all solutions support the major conclusion thal a Du,/ilL<O 
for 1.16 < l<l.2l. This is an interesting reversal of the trend evident 
in observations made beyond L=2 (cf Section IV.6), where DLL appears 
to vary as a large ("" 10) positilie power of L. The reversal perhaps 
originates from ionospheric-current impulses [114], but a variation so 
extreme (DLL OC L - 70

) would rcq uire very localized current distributions 
(spherical-harmonic number ...... 40). 

Another possible origin of the reversal is almospheric pitch-angle 
scattering in the presence of shell splitting caused by internal geomagnetic 
multipoles (Fig. 30, Section lll.7). It is apparent that Dxx has a strongly 
inverse variation wilh L (({ Fig. 71 b, the curve for 1/ r). The analysis 
of F ig. 7 I for such a constant-energy process must be based on (3.42), 
Section lll.7, rather than on (3.48), since (3.48) applies to a constant-M 
process. The term [(n- 2)/L] (8F /il L) in (5.13) must therefore be changed 
to [(n +2)/L](l'lF/oL), for example. A somewhat larger magnitude of 
DH is required to account for the observations if a constant-£ process 
is postulated instead of a wnstant-M process. As a rough estimate, 
the solutions for D LL in Fig. 72 should be multiplied by a factor ~ 2 
in order to accommodate a process for which inward radial diffusion 
does not change a particle's energy. 

As noted above, the appearance of an arbitrary integrat ion constant 
D LL(L 3) in (5.11) follows from the fact that D F /o L, as given by the 
data, fail s to pass through zero in the interval l.15<L< 1.21 used 
for analysis. The region ·or L over which the inner electron bell is 
analyzed, therefore, might profitably be extended to L ';;;:; 1.6 so as to 
include the maximum in F that exists near L= J.4 (see Fig. 73a) 52• 

The apparent decay rates - o F /u l are obtained from measurements 
made on the OY 1-2 satellite, and are shown in Fig. 73 b together 
with the calculated atmospheric-scattering lifetimes. The single point 
L-::::-, 1. 77 in the figure is the decay lifetime of the narrow electron belt 
created by the Soviet nuclear detonation of I November 1962 (see 

52These electron ·'distribution runctions" correspond to two different values 
of the first invariam i'vl [ 116]. Since (5.08;.-(5.14) do not explicitly couple distinct 
values of M by differential operators, it is permissible to plot L' J 1 rat her than 
J 1 /M B. The calculations are unaffected by this choice. 
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F ig. 58, Section IV.6). The dashed curve in Fig. 73 bis an "interpolation" 
between observed pitch-angle diffusion lifetimes of inner-belt electrons. 
T he function DLL(L) obtained from (5.12) by using the lifetime data 
of Fig. 73b fo r M = 21.4MeV/gauss (E= I MeV at L= J.65) is plotted 
in Fig. 73 b [l L6]. The value of D1,L at L= 1.20, as obtained from 
these data. is two orders of magnitude larger than the value of DLL 
at L = 1.20 shown in Fig. 72. The derived magnitude of D1,L, however, 
is fairly sensitive Lo the numerical value assigned to Tat L = l.42. Accord­
ing to F ig. 4J !Section lV.3), this value should have been .-300 days, 
which is much closer lo the apparent lifetime - (AF/o t)- 1 than the 
value of r actually used for the computation (dashed curve, Fig. 73 b). 
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Fig. 73. (a) Profiles of electron distribution function ( x 21110 M Bo) for J =0, based 
o n OV 1-2 data ; (b) decay rates l/ t expected from a tmospheric scattering (solid 
curve) and wave-particle imcraction (data point at L::::. l.77): (bl arbitrary interpola· 
Lion (dashc:d 1;urve); (b) decay rate ( - c~ Fi8 t) actually observed for E>O.SMeV: 
(b) diffusion coclTici.:nl Du. derived from these data for M = 2J.4MeV/gauss [I l6J 

The methods of this section are applicable not only to static profiles 
(tl F/? t = O) but also to ti me-varying profiles (OF/c c=t=O). The methods 
can easily be modified to include the effects of a distributed source 
[e.g .. (3.57), Section l I 1.8], as well as particle deceleration without pitch­
angle diffusion. rt is probably unwise, however, to attempt a purely 
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spatial quadrature on the observed distribution of outer-zone electron 
Ou,xes. This reservation holds because outer-zone electron fluxes exhibit 
considerable fluctuation with time. rather than a slow evolution of 
the profile. Much of the observed variation is not related to radial 
diffusion in a simple way (cf Sections IV.6 and IV.8). Even when special 
care is taken to select only geomagnetically quiet time intervals, the 
methods of this section are found to yield unreasonably large magnitudes 
and dubious functional forms for Du [117]. 

V.4 Quadrature (Temporal) 

ln the presence of temporal fluctuations such as those commonly 
observed in outer-zone electron fluxes, it is essential not only to select 
carefully the time interval chosen for analysis, but also to evaluate 
lime derivatives of F from several-day averages. The interval chosen 
for analysis must be free of large "injection" events {cj: Fig. 38, Section 
l V.3) characterized by in sit 11 particle energization, as such processes 
cannot easily be included in the diffusion equation. Other temporal 
changes in the particle fluxes, such as those due to field changes on 
both the adiabatic and impulsive time scales, must be averaged over 
t ime to avoid spurious contributions to aF/ot . 

Care must be taken in obtaining the average of oF/O t over several 
days, however, since outer-zone electron lifetimes are typically 5-10 
days (t:f Fig. 41, Section IV.3). Thus, the averaging procedure must 
be sophisticated enough to accommodate the true evolution of F (L, t) 
during the several-day time interval over which the average is taken. 
One procedure for performing this average, sometimes termed the tem­
poral quadratw·e of (5.08), involves the asswnption (<f Section V.3) 
that DLLocL". If D,, and T are regarded as time-independent during 
the interval l 1::;; ts l2, then it follows from (5.08) that 

l J: 

..:.. f [(n-2) il F (1
2 F (oF)2J . L DL+ oe + cL dl. (5.15) 

The diffusion coefficient Du can thus be determined from electron 
da ta such as those shown in Fig. 74 [93]. These data have been converted 
to equivalent equatorial profiles of L 3 J l. ( = 2moM Bof) at constant 
M (c.f Fig. 54, Section IV.6). By choosing I 1 and t 2 appropriately, 
so that F (ti) <:.F (ti}, it might be possible to estimate D,, for each assigned 
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Fig. 74. Evolution of equatorial daily-median L 3 J J. and spectral parameli.:r follow­
ing magnetic storm of 17 December 1962 [93), based on Fxplorer-15 electron 
data (cf Figs. 53 and 54). 

11. T he ·'best" va lue of 11 would be that for which D,, is most nearly 
independent o f L (lf Sci.:tion V.3). 

U nfort una1cly, the a pplication of (5.15) to the full twenty-day interval 
of data shown in F ig. 74 docs not a llow a precise determ inat ion of 
Du,. Th is is because the quantity F (t 2)- F (ri) is negati ve at each L 
value shown (as is usual for such a long time interval) and represents 
a good approximation for (t 1 - t 1)/ r. The numerator of (5. 15) is t herefore 
a pproximately zero. a nd so is very sensitive to t he somewhat a rbitrary 
choice of lifet ime r(L). This difficulty adses quite frequently in practice, 
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since (as noted above) 12 - /1 must be chosen sufficiently long to average 
out the adiabatic fluctuationi, 53 in ,..,, F It t. 

An a lternative to the above procedure is to solve (5.15) for the 
pitch-angle-diffusion lifetime -r(L), in terms o f the radial d iffusion coeffi­
cient DLL = DnL ". In this case. lime-independent values of n and Dn 
are chosen somewhat a r bitrarily in order to obtain 

For use in (5. 16) the obscrva t io na l data show n in F ig. 74 can be manipu­
lated to y ield numerical derivatives g iven by the algebraic expressions 
F' (l :/)=(5/2)[F(L+0.2: 1)- F(L 0.2;t] , F" (L ;1)= 25 [F(L +0.2;t) 
- 2F(l:t)+F(L- 0.2:t)] and r°'(L,1)=( l/2)[F (L; t +I )- F(l;t - 1)], 
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Fig. 75. Elc:ctroo lifetimes (.\f - 750McV1gaui;s) ohtained from data of Fig. 74 
by using (5. 16) for selected ~alue~ of D.,, day 1• 

with time t measured in days. Numerical integra tio n o f (5. 16) by 
Simpson's rule then y ields the lifetimes sho wn in Fig. 75a. 

'
3The Iluctuat ions supcrimpoSL'<I on I he mean evolution in Fig. 74 are found 

to be well correlalt:d with the ring-rnrrcnl index D., (if Sct.:tion 1.5). However. 
attempts lo suppress these apparently adiabatic fluct uations by means of a ring-cur­
rent model (cf Fig. 9. Section I.SJ and available spatial and spectral information 
(1j. Fig. 43. Section IV.3) did not suc.:ccd for the data of Fig. 74. Perhaps the 
modeling prot.:edurcs commonly used for protons~ t-:ig. 43} are insufficiently accurate 
to subtract the adiabatic fluctuation~ of oulcr-1one electrons with confidence. 
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The functions r(L) shown in Fig. 7Sa are very similar, although 
the inserted values of D 1 o vary over two orders of magnitude. The 
choice of /1 = 10 follows a convention based on "theoretical" considera­
tions (lf. Sections Ill.2, lll.3. and IIl.8). Since all choices from 10- 10 

day 1 to 10 8 day 1 for the magnitude of D10 arc found to yield 
equally reasonable lifet ime functions r(L), the ··correct .. magn itude for 
D 10 must be obtainLxi by invoking some further empirical consideration. 

Values of 114' 10 yield similar r(L) functions to those shown in Fig. 
75a if Dn is chosen appropriately. Since the observations cover a range 
centered at l ~4, a logical comparison among different values of n 
would require that D,,4" be held fixed. Thus. the r(l) functions plotted 
in Fig. 75b for 11 =6, 8. and 12 (with D11 =D 10 4 111 - ")are virtually indis­
tingu ishable. 

If the data of Fig. 74 are analyzed in blocks of five days instead 
of twenty, (i. "'··Ii.- t 1=5 days) the applic-<1tion of (5.16) tot hcsc separate 
intervals is found lo yield lifetime functions r(L) that duplic:ate Fig. 
75 within a factor of two. Thus, while temporal quadrature yields self-con­
sistent lifetimes against pitch-angle diffusion, rhe extraction of a radial­
diffusion coefficient Du, from data such as shown in Fig. 74 apparently 
req uires another (more sophisticated) analytical technique. 

V.5 Variational Method 

A major disadvantage of quadrature (either spatial or temporal. cf 
Sections V.3 and V.4) in the extraction of transport coefficients from 
time-varying electron data is that either DLL or D.u must be given 
a priori in order lo obtain the other. An empirical technique termed 
the ··variational method" circumvents this difficulty and thus enables 
both the radial-diffusion coefficient DLL and the particle-lifelime function 
r IL) to be extracted simultaneously from the data with minimum reliance 
on ad hoc assumptions about the L dependence of r. 

The variational technique involves the usual tacit assumptions that 
both rand Du are time-independent and that DLL can be represented 
in I.he form Du..= D,,l". Then the temporal evolution of F(L,1), as given 
by (5.08), can he attributed to a combination of diffusion across L 
and pitch-angle scattering into the loss cone. To the exlenl that radial 
diffusion can be acwunkd for by properly choosing the magnitude 
and functional form of Du,, the remaining temporal decay of F via 
pitch-angle sca ttering should be linear, corresponding to an cxponcmial 
decay of.1(L,t). fhe idea of the variational method [93] is to formulate 
a quantitative measure of the extent to which a given Dn "fails" to 
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account for the nonlinear temporal component of the evolution of 
FtL,t~ 

This formulation is facilitated by introducing the decay-rate function 
[(! {5.1 6). Section Y.4] 

(5.17) 

This function reduces to a constant in time [ri: .. 1/ r( L)] only if F(l.1), 
as given by the data. exactly satisfies (5.08). The "correct'' value of 
n is that which enables D,, 10 be chosen so that /.,, (L, r) is constant 
in time, and the ··correct" value of T>,, is that which makes (Ci.,,/ct)1. 
vanish. 

In practice, of course, there will be uncertainties in the data, and 
it may be impossible to suppress adiabatic nuctuations satisfactorily 
(({ Section V.4). These and other difficulties prevent l.11(L,l), as given 
by the data, from being exact/\' consta nt in time under any conditions. 
Tl is possible, however, to ask (for any given n) that D. be chosen 
so that 1.n(L.l) dedml:'.\ mi11i111ally from a constant. The deviation of 
l .• (L ,t) from a constant in time can be expressed quantitatively by 
introducing a function 

/. ! I,: 

Gn(D.) = J ~J(LjJ [1.;; - ( /.n) 2
] dt cl L. (5. 18) 

I~ I 'I 

where (/.n) is the temporal mean value of i.nlL ,l) and g(L ) is a positive­
definite weighting funct ion H. The function Gn(Dn) is thus a quantitative 
measure of the ·•failure .. of a specific numerical value of D,, to account 
for the time variation of F attributable to radial diffusion. The function 
G,, (D,,) is minimized with respect to its argument (D,,) by requiring 
that 

/.. l I '! 

~ ~~ = 2 f g(L) f [A,, ;i:. -().,,)cc<~~.> Jd I dL = O. (5.19) 
t, ,, 

This linear algebraic equation for D,, yields a numerical value of D,, 
that is uniquely determined by the data for a given weighting function 
g(L). The optimal (G,.-minimizing) value of D,, is given by 

5"The purpose of y[L) is to distribute responsibility for !ht: ultimate determina­
tion of D,, equirably among the vanouo; [, values Jsee below~ 
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· where Lhcanglc brackets denote a time average over the interval t 1 < r:::; t 2• 

The calculaLion of an optimal D., by (5.20) can be carried out for 
each of many valuos of n. Insertion of the optimal D., in (5.16) allows 
a determination of the decay constant l/r(L)= (,l.,,(L,1.)). The best-fitting 
functional form of D1.L.=D,,L" can perhaps be identified by searching 
for an absolutc minimum in G,,(Dn) among the various values of 11. 

If some 11 is clearly identified as tbe optimum, the corresponding 
(J.n(l,t)) 1 is simultaneously established (although tentatively, cf Sec­
tion V.6) as the optimum Lifetime function r(L). In practice [93], many 
values of 11 yield almost identical minima in G11(D,,). The optimal value 
of D,, is thus identified for each 11, but the best value of n remains 
unidentified (Lf Section V.4). 

The data of Fig. 74 (Section V.4) were extracted from nux profiles 
such as those in F ig. 53 {Section IV.6) by assuming an exponential 
energy spectrum _al each L value. Very similar data representing 
L 3 J i = 2moMBof are obtained by postulating a power-law spectrum 
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Fig. 76. Functions G.{D,. ) obtained for g!Ll= I, from data similar to those of 
Fig. 74 but using <l power-law spe<.:trum (cf. Fig. 54) for energy interpolation 
[93]. 
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Fig. 77. Optimal values (solid lines) or l In D1.L obta ined by variational method. 
with g(L}= 1, from data of Fig. 74. Shaded area represents range of values acceptable 
[93] in tbc context of Fig. 76. 

for interpolation between £ = 0.5 MeV and E= 1.9 MeV (cf Fig. 53 (93]). 
The functions G,,(Dn) constructed [using (5. 18)] from these power-law 
data are plotted in Fig. 76 for several values of 11 with g{L)= L It 
is evident from Fig. 76 that the optimal (Gn-minirnizing) value of Dn 
is easily identified for any given 11. On the other hand, the several 
values of n yield virtually identical minimum values for the functions 
Gn(D~). The failure of the variational method to yield a unique optimum 
value of n in this C'Jse is perhaps a consequence of the narrowness 
of the interval in L available for analysis (L2-l1= 1.4: L 2/L1= 1.4). 

The optimal values of D,.c- 10 obtained from the analyses [lf 
(5.20)] for several values of 11 and four values of M are shown in 
Fig. 77 by solid lines. The shadi.,'(j area contains all values of Dc,J../L 10 

such that 6s ns 12 and G,,(D,,) is less than the stated limit (e.g., G,,< 2.6 
at M = 750 MeV /gauss). The several values of n thus yield a fairly 
consistent value of Du, at L ~ 3.6 (~/:Section Y.4). The lifetime functions 
r(L) are obta ined for each M by inserting in (5.16) the optimal values 
of D,., as obtained from (5.20). The results are shown in Fig. 78 [93]. 

The variational method is a good technique for extracting numerical 
values of the transport coefficients D1.1. and i: from observational data 
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L L 

Fig. 78. Electron lifetimes o btained from (5.16) by inserting optimal value. of 
D., indicated in Fig. 77 [93 I. 

consisting of time-varying flux profiles 55 . When used in conjunction 
with one of the verifying methods described below (Section V.6). the 
variational method constitutes a systematic and expedient mea~s of 
analyzing the observational data for simultaneous radial and pitch-angle 
diffusion. 

Certain refinements of lhe variational method merit further attention. 
Since (?.,,(L,1}) is found to vary by an order of magnitude between 
L =3.6 and L=4.6 (cf Figs. 75 and 78). use of the weighting function 
g(L) = I in (5.18) tends to leave G,,(D,,) relatively insensitive to observa­
tions made at L :$4. Thus, in identifying the optimal value of D,,, undue 
weig~t is perhaps assigned to the region L~4. An alternative weighting 
funelton of the form g(l)=.65/L 3

, normalized to a unit mean value 
in the interval 3.4<L<4.8, partially redresses the imbalance and intro­
duces no significant change in Figs. 76 78 [93]. However, a weighting 
function that more fully compensates for the L dependence of r might 
be more suitable. 

The variational method is polcnlially sensitive to genuine temporal 
variations of the transport coefficients Du. and r. T here is no provision 

5
,
5Note that (5.20) i~ indeterminate for any time interval r 1 ::; t 5.1 2 in which 

· f'F/c t=O. 
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in (5.18)- (5.20) for recognizing such variations. Moreover, if the data 
are rather "noisy" as in Pig. 74, containing Ouctuations unrelated to 
radial and pitch-angle diffusion, the equations may seek to minimize 
G,,(D,,) nol by selecting the best DLL. and (.l.,,(L,t)), but by selecting 
unrealistiC'dlly small values of (}i.n(l, 1)). Such a selection would also 
tend to underestimate the magnitude of Du. appropriate for (5.08). 
For these and other reasons, the magnitudes of DLL and -c(L) that 
follow from (5.20) and (5.16), respectively, should be regarded as tentative 
choices. lt remains to verify that, when these numerical values are 
inserted into (5.08), the actual evolution of F(L.l) is correctly predicted 
by integrating this diffusion equation with respect lo time (c.f Section 
V.6). 

V.6 Temporal Integration 

As described in the previous section, estimates of the radial and pitch­
angle dilTusion coefficients can be extracted from observed time variations 
in the electron fluxes. Verification of any proposed set of numerical 
values for Du. and r(L), whether obtained from the variational method 
or otherwise, requires that (5.08), the diffusion equation, be integrated 
with respect to time, using appropriately selecttx:l boundary conditions 
on F (L,1). Initial conditions are determined, as far as possible, from 
the observational data. Given the initial and boundary conditions, the 
diffusion equation can then be integrated with respect to Lime. The 
resull of this integration should be compared to the observed evolution 
of F (L,t ). Source terms arc generally omitted for outer-mne electrons, 
since the observed variations in flux are presumed to occur after the 
source that produced the initial flux enhancement is turned off. 

The inward-moving "edge" of the flux profile shown in Fig. 52a, 
Section lV.6 (from the same time period as the data in Fig. 74 treated 
above; sec Sections Y.4 and V.5), can be studied further by integrating 
(5.08), the diffusion equation, for F(l,t). Since the observations consist 
of flux measurements for one energy threshold only, it is necessary 
to introduce assumptions as to the shape of the electron energy spectrum 
at t = O (20 December). ln order to obtain F(L,O) at constant first 
invariant M, the initial energy spectrum is assumed to be exponential 
(with an e-folding energy of(,()() keY) at L=4 (tf Fig. 74, Section V.4), 
and consistent with (4.01), Section IV.5, al other L values. 

The boundary conditions used in one analysis of these data are 
specified by extrapolating the t =0 distribution function smoothly to 
zero at L = I and L = 8. T hese boundary conditions are maintained 
throughout the computation. The decay time for electrons is taken 
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as a constant, equal to 20 days, independent of time, L. and M. The 
M-independent radial diffusion coefficient is assumed to be independent 
of time also (as in the variational approach) and to have an L" power-law 
dependence. T heintcgration of(S.08), using the above-specified spectrum, 
boundary conditions, and lifetimes, is performed by standard finite-differ­
ence techniques. T he results for F(L,t) are then converted back to 
integral omnidirectional fluxes (£> 1.6 MeV) for comparison with the 
observational data. 

Results of the computation for each of two different values of Du 
are compared to the observational data in Fig. 79 [70]. It is difficult 
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(a. c) pn:dictions generated by numerical integration from 1 = 0 (20 December 
196:!) for r=20 day~ and D11 as indicated. using fixed boundary conditions 
(j = O)at L= I and L=8 (70):lb) observations based on faplorer-14 data, shown 
.1bo in Fig. 52a [ 111 ). 

V.6 Temporal Integration 
ll!5 

to choose the '·better" Du. from this comparison, but the slopes of 
the "leading edges" of the observed and calculated flux profiles possibly 
agree better for 11= 10 tban for n=9. Given the ud hoc assumptions. 
the agreement i!, found to be much poorer for other values of D. 
and for other integer va lues of n. The two "besf' diffusion coefficients 
DLI. agree in magnitude at L::::::4 (lf Section V.4). 

The validity of the results obtained by this method can presumably 
be tested by studying the sensitivity of these results lo changes in 
the assumed initial cond itions. boundary conditions, and lifetimes. Rea­
sonable changes in the boundary conditions at l> 5 (but not at L< 2.6) 
~re found _to produce sigr~ ificant modifications in the results, but only 
rn the region L>4 (nor m the .. leading-edge" region). The use of an 
initial e-folding energy of 400 keV or 800 kcV, rather than 600 keV. 
at L=4 is fou nd to cause significant changes in the calculated lluxc~ 
at L values beyond the "leading edge" of the profile, but this does 
not alter the overall time evolution. T he optimum radial diffusion coeffi­
cient. as obtained by l his integration scheme, is D LL::::: 5 x Io - 9 L 1 ° day 1, 

a result that is largely insensitive to minor variations in the multitude 
of qualifying as umptions indicated. 

A similar analysis can be made using measurements of the artificially 
pr?duced •·spil..e" of electron flux shown in Fig. 58 (Section IV.6). In 
this case. the initial flux distribution is taken as an approx imate Gaussian 
in L , with boundary conditions selected such that the fluxes are held 
equal lo zero at L= 1.6 and L= 1.9. In order to obtain a constant -M 
distribution function]= expF, the energy spectrum is assumed to have 
the form [J 18] 

J (E)~(t'/c} exp[ -0.2938(/'- l) - 0.0 144(y- I fl (5.21) 

at L= J.765. This is the spectrum of energies that results from the 
beta decay of nuclear-fission products in equilibrium. T he pitch-a ngle-dif­
fusion lifet imes r(L) arc assumed to be given by hnear interpolation 
between r(J.5)=470 days and r(2.1)=20 days (cf Fig. 41, Section fV.3) 
for all values of M. When (5.08) is solved for the evolution of F(L.t) 
using each of several trial values of Du ... it is found that the best 
agreement with observation corresponds to Dii:::::6 x 10 - 6 day- 1 at 
L = 1.76 [70]. This value is identical with the magnitude ,.._, 6 x JO <> 

day- 1 obtained from the ana lysis assuming conservation of particle 
energy rather than M a nd J (see Section IV.6). 

There exists an alternative to the arbitrary imposition of boundary 
~onditions outside the interval of l covered by the data. It is pos.sible 
t~stead to obtain a realistic set of time-dependent boundary conditions 
?rrec_tly from the data. Imposed at L1 and L2 ( = 3.4 and 4.8, respectively, 
rn F ig. 74, Section V.4), these boundary conditions are suitable for 
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testing the validity of a tentatively established set of transport coefficients 
DLL and -r(L) via temporal integration of (5.08). 

The initial conditions for this temporal integration of (5.08) are 
given by the observational values of F(L.r 1). where r1 corresponds 
to 22 December. Two apparently incompatible sets of transport coeffi­
cients have been identified above for electrons having M = 750 MeV/gauss 
following the December 1962 magnetic storm. The variational method 
(Section Y.5) yields Du,=6x 10- 10 LL0 day - 1 and r=r(L), as given 
in Fig. 78, for the twenty-day interval beginning 22 December. The 
method of temporal integration with fixed boundary conditions outside 
the data interval (Section V.6) yields Du.= 5x 10- 9 V 0 day-t for an 
assumed L-independent lifetime of 20 days over the ten-<lay interval 
beginning 20 December. 

The results of temporal integration from t= t 1 (22 December) for 
the evolution of F!L. t), using the observed values of F(Li.l) and F(L 2,t) 
as time-dependent boundary conditions, arc shown in Fig. 80 [119]. 
The predictions based on the smaller Du (obtained by the variational 
method) are clearly in better agreement with the observational data 
(3.6:::;L:::;4.6) than the predictions based on DLL=5x 10-9 L 10 day -1, 
when the twenty-day interval is viewed as a whole. Only during the 
first few days of the integralion interval (i. e., prior to Day 360) is 
there a hint that the value DLL=6xio - 10 L 10 day - 1 might be inade­
quate. 

According lo F ig. 79, the larger value of DLL= 5x 10- 9 U 0 day - J 
should have applied only to the ten-day interval beginning 20 December, 
ra ther than the twenty-day interval beginning 22 December. However, 
the lifetime function r(L), as given in Fig. 75 (Section V.4), is found 
to vary by at least a factor of seven between L=3.6 and L=4.6 for 
any reasonable choice of Du. Thus, it is appropriate to test DLL= 5 x 10- CJ 
L 10 day - 1 in conjunction with the lifetime function T(L}, as given 
in Fig. 75 or 78. For r(L) given by Fig. 78 and D1o=5x 10 - 9 day - 1

, 

the temporal integral ion of (5.08) with time-dependent boundary condi­
tions at L i = 3.4 and L2=4_8 from t = O (20 December) is found to 
produce good agreemenl with the observations (3.6 :::;L :::;4.6) until about 
25 December (see F ig. 81 ). During this six-<lay interval, the smaller 
value of D10=6x 10-io day - 1 is clearly inadequate to account for 
the continuing growth of F(l,t) at the lower L values (L,!54.2). The 
discrepancy beyond 25 December can be eliminated by reverting to 
the smaller value of D1 0 (cf Fig. 80). 

These results clearly demonstrate that a time dependence of D1..1.. 

was associated with the large magnetic storm of l7- l 8 December 
1962. The choice of 22 December as t 1 apparently eliminates most 
of the storm-time effects that would invalidate the variational method 

V.6 Temporal Integration 
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Fig. 81. Evolution of L.1J .l for outer-zone eledrons, beginning with 20 December 
1962. Observational data points are joined by solid line segments. Dashed curves 
arc predictions generated by numerical integration with time-dependent boundary 
conditions imposed by the data at L= 3.4 and L = 4.8 V:f. Fig. 80). 

in ils present form (Section V.5). Application of the variational method 
to the time interval 20- 24 December would perhaps yield the larger 
diffusion coefficient DLL evidently required for that interval, if by some 
means the data were smoothed to suppress adiabatic and other temporal 
fluctuations not associated with the radial and pitch-angle diffusion 
processes. It is evidently impossible, however, to characterize the radial 
diffusion coefficient as a universal constant that can be applied uncriti­
cally to time periods during and following all magnetic storms. 

A set of proton measurements, made with a scintillation counter 
on the ellipt ical-orbit satellite Explorer 26, revealed time variations 
in the o uter-zone proton fluxes foUowing the magnetic storm of 18 
April 1965. After removal of the adiabatic varia tions (due to the storm­
time ring current, <f Section 1.5) from the observations, non-adiabatic 
changes in flux were found to have occurred during the storm. Thereafter 
the nuxes slowly recovered non-adiabatically lo their pre-storm levels. 
T hese non-adiabatic post-storm observations can be attributed to radial 
diffusion and atmospheric collisions. 

Examples of adiabatically-corrected L 3 J .1../M profiles for equator­
ially-mirroring protons at several values of M were shown in Fig. 43 
(Section IV.3). The data from several energy channels were used to 
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construct these constant-M distribution functions, whose tem poral evolu­
tion can be used to estimate a numerical value for the radial diffusion 
coefficient. In this case the diffusion equation has two separate loss 
terms. The first represents Coulomb energy loss [see (2.04) and (2.06), 
Secti~n II.2: also (3.57), Section III.8]. The second loss term is equal 
lo - .f/rq, where •9 is the mean proton lifetime against charge exchange 
[see (2.09), Section II.2]. Pitch-angle scattering of these outer-zone pro­
tons by plasma waves is apparently negligible except at M = 45MeV/ 
gauss. 

The Fokker-Planck equation governing outer-zone protons having 
M< IOOMeV/gauss and 1=0 is thus of the form 

a.f =iJ .!!_ [Du oJ] (4rrq*/mr) [c(Cf)] _l_ (S.l2} 
?:t oL L2 DL M + (2M B~/L9 m/ '2 

( M L Tq 

where C is given by (3.57b). Time-dependent boundary conditions for 
the solution of (5.22) are imposed by the observational data at L 1 = 2. 1 
and Li= 5.6. Preliminary results suggest that an M-indepcndent radial­
diffusion coefficient Du, .-... I x 10- 9 L 10 day - 1 adcq uately accounts for 
the observed temporal evolution of /(M. l;t) al J = O for L 1 <L<L2 

[82]. 

V.7 Spatial Integration 

~hen the observational data consist of time-independent flux profiles 
J l.(E.L), it is necessary to obtain the relevant time-independent solution 
of lhe Fokker-Planck equation. If the transport coefficients and boundary 
conditions are time-independent, then the solutionJ(M,J,L;t) for (5.22) 
~nd similar e<Juations will ultimately approach the steady-state solution 
f (M,J ,L: oo )after a sufficiently long integration time. In many situations, 
however. it is computationally more practical to dispense with temporal 
integration altogether by setting ol/D t=O at the outset. The result is 
a partial difTerential equation in the variables L and M (perhaps also 
J). One problem often treated in this manner is that of the inner proton 
bell, as described by (3.57) [see Section lll.8]. 

Substantial theoretical effort has been expended on identifying the 
possible sources of the high-energy (£<:, 20 MeV) proton radiation 
observed in the inner zone at l :S 2. Much of this theoretical work 
has focused on attempts to vindicate tbe decay of cosmic-ray-produced 
albedo neutrons (CRA ND) as the predominant source (see Section ITI.8). 
When radial difTusion is neglected, it is found that the CRAND-source 
hypothesis cannot successfully account for the observed absolute 
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intensities, nor the spatial and spectral distributions of inner-zone pro­
tons. However, a reasonable fit to the observed high-energy inner-zone 
proton distributions can be obtained when radial diffusion and the 
geomagnetic secular variation (see Section 11.2) are allowed to operate 
on protons injected by the CRAND source. 

The most extensive inner-zone proton data assembled to date were 
obtained by a set of shielded semiconductor detectors flown on the 
United States Air Force satellite OV3-4 as an investigation for biological 
purposes. These integral proton-flux data, measured above five energy 
thresholds (15 MeV, 30 MeV, 55 MeV, 105 MeV, and 170 MeV), can be 
converted to equivalent equatorial profiles of J J./lvf B= 21110 ] for selected 
values of the first invariant M. The resulls are plotled as the data 
points in Fig. 82. 

If the geomagnetic secular variation is tentatively neglected, the 
time derivative l!f/8 t appearing in (3.57) can be set equal to zero in 
the search for a steady-state distribution .f (M,L). The source term S 
is considered to be given by (3.56), and the loss term represents proton 
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Fig. 82. Inm:r.zone proton distribution !'unction (x 21110) for J =0 and selectcxl 
value~ of J\4, based on OV J-4 data and numerical integration. Dashed curves 
(a) are steady-stale solutions of (3.57) for DLL=O and S given by (3.56). Solid 
curves lb) are steady-state solutions of (.l.57) for Du,= 10 ,q L 10 day - 1, with 
S given by (3.56) and boundary conditions imposed by the data at L= 1.1 (where 
/=0) and L= 1.7 [38]. 
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energy loss by collisions with free and hound atmospheric electrons 
(see Section IJ.2). Charge exchange is a negligible process al the proton 
energies of interest (cf Fig. 15, Section II.2). 

ff radial diffusion is neglected (by taking Du=O}, then (3.57) becomes 
an ordinary first-order differential equation for .f (M) at each L value. 
A unique solution is obta ined by requiring that Cf van ish in the limit 
~ = w. This solution, indicated by the dashed curves tn Fig. 82a, bears 
little resemblance to the observational data [38]. 

ln the presence of a nonvanishing Du. it becomes necessary to 
~pecify ~oundary conditions in L as well as in M. Since the purpose 
1s lo verify the adequacy of the CRAND source, the lower boundary 
condition should be thatf(M,L) vanish at some L=L 1 ::::: 1.10. This 
lower boundary condition identifies the dense atmosphere as a sink 
for the inner-belt protons, and yet does nol conflict with the observation 
that/(M,LH=O at L= Ll 5. The upper boundary condition is impose(l 
by ~1e observational data at L1=1.70, beyond which temporal variations 
of f(M,L) are known to occur. For computational convenience it is 
assumed that /(M,L)=O at M=4GeV/gauss (rather than M =oo) 
throughout the interval L , sLsl2. The solution thus obtained by 
choosing D LL = I x 10- 8 L 1 0 day - 1 is indicated by the solid curves 
in Fig. 82 b [38]. A vast improvement in the agreement between theory 
and observation is thus obtained by allowing the CRAND source to 
be complemented by protons diffusing inward from the outer zone. 

A further improvement is expected to follow [39] from inclusion 
oft he geomagnetic secular variation (see Section II.2). A correct treatment 
will require the use of (3.57) in its time-dependent form, with the Coulomb 
energy-loss rate ex pressed as a function of M, <P, and t. It may be 
difficult t2 model the time dependence of D''"" and the boundary condi­
tions on f (M,L; t) over a history that extends at least back to Biblical 
times, but such an extrapolation seems necessary in order to account 
folly for protons now present in the inner belt. Even with the secular 
effect omitted (as in Fig. 82 b). however, reasonable agreement between 
theory and c:>bservation has been obtained by allowing the generally 
accepted CRAND proton source [72] to operate in the presence of 
radial diffusion 56. 

5('Recenl measurements suggest tha t the actual neutron fl ux exceeds the pre­
viously accepted value [72] by a factor -50 at each energy abuvc ~ 50 McV 
[87]. 


