V. Methods of Empirical Analysis

V.1 Basic Objectives

After obtaining experimental data such as those discussed in the previous
chapter, it is necessary to extract from the data numerical values of
transport coefficients such as Dy, and Dyy, in order best to describe
the observations in the context of magnetospheric diffusion processes.
This must be done with the realization that such a course of action
{and the parameters determined from it) are subject to uncertainties,
including the question as to whether the observations can actually
be described in terms of the diffusion processes selected. -

At present, the most desirable course to take in verifying the validity
of the diffusion equation adopted for describing a given set of magneto-
spheric particle observations is to use a self-consistent z_m_alys:s. In a
self-consistent approach, the values of the transport coefficients should
be determined (as far as possible) empirically from the particle data.
After values for the coefficients are so estimated, the model should
be verified by inserting these values in the appropriate diffusion equation
to show that the model indeed predicts the observed spatial structure
and /or temporal evolution of the particle data. Subsequently. the magni-
tudes of the transport coefficients should be manipulated (by the meth‘o_ds
of Chapters II and I1I) to yield predictions for the spectral densities
of magnetospheric field fluctuations (waves, impulses, efc.). Finally. these
predictions should be compared with available observations of magneto-
spheric field and wave activity (see Section 1V.7). _ .

An empirical determination of the transport coefficients directly
from the measured particle data presents certain difficulties. Frequently,
such a determination isarrived at by making initial assumptions concern-
ing the relative importance of the various diffusion mechanisms. Often
the transport coefficient associated with the dominant process can be
determined only by assigning to the other (secondary) process a fixed
and somewhat arbitrary value, Moreover, it is usually necessary to
assume that the transport coefficients are time-independent, or else
related in some fixed way to the geomagnetic indices (K,, Dg. efc.).

For example, a common procedure not readily justified is that_ of
directly relating the apparent electron-flux decay rates to uumencal
values of the pitch-angle diffusion coefficient D, This approach, in
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which it is assumed (¢f Section I1.7) that D~ —(x2/5)(71nf/0 )k,
is based on the expectation that the electron pitch-angle distribution
is in its lowest eigenmode. The “decay™ times shown in Fig. 41 (Section
IV.3) have been obtained under this assumption.

A difficulty in this approach is illustrated by the L. =4 electron data
(E>1.0MeV) plotted in Fig. 38. During the first several days following
each of the four largest magnetic storms. the electron flux did not ap-
pear to decay at all, but rather remained constant or increased in inten-
sity. Thus, it would not have been possible to read a pitch-angle diffusion
coefficient directly from these data. Electron losses undoubtedly occurred
during these periods. but the temporal flux changes were probably
dominated by radial-diffusion effects (¢f. Figs. 52 and 53, Section 1V.6).

Additional opportunities for determining the pitch-angle diffusion
coefficient are provided by the data showing the azimuthal variation
of precipitating electron fluxes (Fig. 36, Section 1V.2) and the data
showing relaxation of electron pitch-angle distributions to their lowest
eigenmode (Fig. 34, Section IV.2). In these cases it is impossible to
read Dy, directly from the data, and so more sophisticated analytical
techniques are required (see Section V.2), Application of such technigues
may yield both a nominal value and functional form for D,..

In the case of radial diffusion, several techniques and procedures
have been developed for extracting Dyr from the observations. The
choice of method depends in part on whether the data provide stationary
(¢f- Section IV.5) or time-varying (Section IV.6) flux profiles. As noted
in Section 1V.6, it is very helpful to have data in several energy channels
in order to characterize the actual particle spectrum. Such spectral
information affords considerable freedom in the choice of method for
extracting Dy,

When the data consist solely of “stationary™ flux profiles, it is generally
necessary lo assign either Dy, or D somewhat arbitrarily in order
to extract the other. In the event that the data are obtained from
the region of the magnetosphere where atmospheric losses predominate
over wave-particle scattering, it is appropriate to insert D, as a known
function of M, J, and @ [¢f. (2.17), Section 11.2]. Outside the region
where atmospheric scattering losses predominate. it is usually necessary
toassign the observed “lifetimes™ (as from Fig. 41, Section 1V.3) character-
istic of geomagnetically more active time periods (when the flux profiles
typically are not stationary). Then, treating the relevant diffusion equa-
tion (see Sections II1.7 and IIL.8) as a linear first-order differential
equation for Dy, it is possible to express the solution as a spatial
quadrature, i.e.. an integral with respect to L (see Section V.3). For
this purpose, the derivatives of [ are obtained numerically from the
observational data. The radial-diffusion coefficient Dy thus extracted
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from the data can subsequently be verified by obtaining the steady-state
solution of the diffusion equation, i. e., by spatially integrating the equa-
tion (see Section V.7) for f(M,J @) If this solution reproduces the
observed steady-state profiles, then the value obtained for Dyy. is con-
sidered reliable. If not, then either Dy must be adjusted to yield a
better fit, or the underlying model of the competing processes (e.g.,
the arbitrarily assigned value of D) must be modified.

Additional opportunities for empirical analysis arise if the observed
Mux profiles vary with time. The temporal coordinate adds a new dimen-
sion to the problem and makes it possible (in principle) to extract
both Dy and D, (as functions of L) from the data simultaneously.
The introduction of a variational technigue (see Section V.5) serves
this purpose well. Simpler techniques allow cither Dy, or Dy, 10 be
expressed in terms of quadratures (Section V.4) over the data if the
other diffusion coefficient is specified @ priori. The ultimate test of
the numerical validity of D, and D;, obtained by any method is
provided by a comparison of the data with the time-dependent solution
of the diffusion equation, as obtained by temporal integration (Section
V.6). In the present chapter, these various analytical methods for extract-
ing diffusion coefficients from the data are discussed in a somewhat
logical sequence.

V.2 Pitch-Angle Eigenmodes

Pitch-angle diffusion at constant energy is governed by (2.73), an equation
that can also be written in the form
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at .
since x?+y2= 1. The second term of (3.01) is negligible for x*<1. The
approximation of omitting it altogether by taking 7'(y)= T (1) converts
(5.01) to a diffusion equation in cylindrical coordinates. The eigenfunc-
tions of (3.01) for an x-independent diffusion coefficient D, would
then be Bessel functions of order zero (¢f. Section I1.7). In terms of
(3.51) this would mean that the typical eigenfunction ¢,(x) is given
by gutx)=[2/T (][ 1/xcd 1 (Ka)] T olgnx/Xc). where Jo(k,)=0. The cor-
responding eigenvalues 4, of (3.32b) would then be of the form
Jn=(Kn/x)? D

Generally, a source*® term must be added to (3.01) in order to
describe the evolution of f toward a steady-state distribution. If an
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“*In this section. the source can be regarded cither as 4 true source or as
a simulation of the radial-diffusion term omitted from (501}
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isotropic source term is added to (5.01) [¢f. (3.57a), Section ITL§], then
the pitch-angle distribution function f (x.r) will evolve in time toward
the steady-state solution

Fu(x)=(Sx2/AD [ 1= (x/x)?] (5.02)

for T(y)=T(1)and D,, independent of x. Equation (5.02) is reminiscent
of (2.64) for s=1 (see Section IL6).

The 28 _Ociuber 1962 nuclear blast had injected electrons with an
nl'l'-c_qualorlal maximum that subsequently decayed with time (Fig. 34,
Sccl_ton IV.2). The decay of the omnidirectional flux (E> 1.9 MeV) can
bc_s;mulated by expressing the pitch-angle distribution £ (x.1) in terms
of its steady-state solution and higher-order eigenmodes, i. ¢..

Fe =T, ()+T,00) Y a,(0)Jg (K, x/x.) (3.03)
with ay(0)=50/3and a; (0)= —u-(0)= — 55/3. The artificial enhancement
[Da:\;r 301.3) corresponds to t=0. and a,(0) is assumed to vanish for
n>2.

The temporal decay of f (x,1)tof.. (x) obtained from (5.03) by assuming
X:=094 and D, =107 day~" is indicated in Fig. 68a [43]. The eigen-
va]uf:s ;.,.=|x..:‘.\'.-)*D_\-, are given by /4=0.1904,=0077/,=6.545 x 10 2
Qay .I‘ The differential omnidirectional flux at any point on the field
line is given [¢f. (1.22), Section 1.4] by

1L
JudX.)=47p® | T(x, 1)d(cosw)

i
3 r =X xTix. 1)
=dnp=- = A ; :
i J‘[X'I—.yl] | -_YE d.\. (504:’”
where X
X*=1—(B,/B)=(x* —cos’ m)esc®x . (5.04b)

The coordinate X locates a point on any field line in terms of the
local !ie!d intensity B relative to the minimum (or equatorial) field
Intensity B, on that field line (¢f. Section 1.4). If D, and x, are independent
of energy (as assumed above), then pitch-angle diffusion leaves the
form of the energy spectrum used in (5.03) invariant. The integral omni-
f:lil'eqtiozlal flux 7y, (X,1) will then scale as Ji,(X.1), which is plotted
i Fig. 68b. The predicted evolution of Ii,(X.1) thus resembles the
observed evolution (Fig. 34) rather closely.

In both the observed and predicted Is,(X.1), the off-equatorial (X >0)
peak fhsappears as the pitch-angle distribution approaches its lowest
tfla,mylng eigenmode. From ¢~ 10 days onward, there is very little change
in the form of the pitch-angle distribution (Fig. 68a). This means only
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Fig. 65. Decy of equatorial pitch-angle distribution (a) and off-eq uatorial distribu-
tion of omnidirectional flux (b) to steady state (¢f. Fig. 34), assuming D= 107"
day ™" and x. =094 [43].

that the lowest eigenfunction, namely Jo(koX/Xc), qualitatively resembles
1 —(x/x.)?, which contains the entire pilCh--:dl‘lg]e dependence of f. (x)
for an isotropic source S [¢f. (5.02)] if D, is independent of x.

The resemblance between go(x) and f.(x) exists even w_hen Bz
varies with x. For example, if D, is proportional 10 (x/x)* with e <1,
it is possible to integrate the equation [¢f. (501)]

li[\-n d.ir,_.]ﬁzn! (5.052)

¥ dx | ™

with the boundary condition that f (x.)=0. so as to obtain
Tt x )=[Sx2/A(1 —6) Dus] (x/x )" [ 1= (x/x)* | (5.05b)
under the assumption that 0S/@x=0. On the other hand, the normalized
eigenfunctions of (3.52b) and (3.53) for T(y)=T(1)arc given by
gu(X)= —[2(1 —a)/ T()]" 2 [1/x, J [(x,)]
(/P Il X xR (5.06a)

(3

where v=6/(1—0) and J(Kk)=0 (n=0.1.2....). The corresponding
eigenvalues are given by

Li=(1=6 P (Kun/ %) (x6/X)?2 Dsx. (3.06b)

|
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Recall that (x./x)** D, is independent of x both in (5.06) and in (5.05).
Asshown in Fig. 69.where x.=0.9, thereis a close qualitative resemblance
between g (x)/gn(0) and £, (x)/f..(0) for |o| < 1/4. Thus. the form of the
pitch-angledistribution changes very little between the ex ponential-decay
phase (see Fig. 34, Section 1V.2) and the steady state.
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Fig. 69. Lowest cigenmode (left panel) and asymptotic steady state (right panel)
for pitch-angle diffusion with D, cc(x/x 7 and x.=09: steady state assumes
isotropic source [43].

For a >0 the pitch-angle diffusion coefficient vanishes at x=0, Conse-
quently. the functions go(x) and f, (x) are more sharply peaked at
x=0for g >() than for =0. Conversely, if ¢ <0 the pitch angle distribu-
tion tends toward a broader shape, hence a steeper gradient at x=x..
In either case, the value of Dy, at x=x, remains finite. Moreover,
the values of (1—a)x,, that appear in (506b) are only moderately
sensitive*” to ¢. The decay rates that govern the evolution of f (x,f)
from 1=0 to t= x are thus largely insensitive to the manner in which
pitch-angle diffusion is distributed over x.

The approximation that T'(y)= T (1) in (5.01) causes the second term
in that equation to vanish. This approximation is inappropriate for
describing the temporal evolution of f (x,r) near x ~ | because the exact
eigenfunctions of (501) are poorly approximated by (5.06a) for x> I.

*'For cxample, the quantity (1 —o)w. varies from 3.14 o0 1.92 as 7 goes
from —1 to 4 1/2 The ratio A;/io varies from 9.0 to 34 over this same o
interval.
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Without the approximation, the eigenvalue equation becomes [ ¢f. (3.52b),
Section 111.8]

e 1_ ;_ \.nu‘..{i.. +P.\x T\Ij'l f.*].Il_l.'jJJ . (5.07)
% xXa. 0x Wax e ¥ T | élnx |

Since g,(x,)=0 and T'(y)<0 (see Section 1.4), the second term of (5.07)
is positive at x=x,, L. e., ((Ing,/d1nx)g<() at x=x. Since_ the first term
of (5.07) is also positive, the Bessel functions in the approxnnatc_ solution
(5.06a)approach zero more abruptly at x=x, than do the true'mgenfunc-
tions. The discrepancy between (5.06a) and the true cigenfunctions grows
with increasing x.. since according to (1.28), the function T'(y)=
— (1) TO)=T(1)]2+y ") approaches — = as x goes to unity (see
Section 1.4). A schematic illustration of the true eigenfunction go(x)
and its Bessel-function approximation for a=0 is given in Fig. 70 for
each of three values of x..
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Fig. 70. Schematic representation of true eigenfunctions (solid curves) and approxi-
mate (Bessel) eigenfunctions (dashed curves) for lowest normal mode of pitch-angle
diffusion with &=,

The use of the true pitch-angle cigenfunctions g,(x) is essential for
extracting a radial-diffusion coefficient from low-altitude electron obser-
vations beyond L~ 1.6 (e. ¢g.. Fig. 36, Section IV.2). As shown in Section
IV.2, the intensity of electrons on trajectories with “perigee” < 100km
increases with longitude east of the South Atlantic “anomaly”, as pitch
angle diffusion replenishes the pitch-angle interval x.< x < x; (¢f. Section
I1.7). This replenishment follows the sudden loss (by atmospheric absorp-
tion) of electrons with pitch angles x.<x as they azimuthally drift
through the “anomaly™ region. In effect, the loss cone seen by the
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electron distribution suddenly enlarges as the particles approach the
“anomaly”, where xy=x.. Immediately east of the “anomaly™, fewer
precipitating particles are observed than immediately west of the “a-
nomaly”, since no electrons remain in the loss cone. In other words,
alter the excess electrons are lost in the “anomaly™, the pitch angle
distribution vanishes at x=x,.

A reasonable method of analyzing such electron observations to
obtain D, i1s to assume that an isotropic source term S is distributed
uniformly in longitude. as in (5.05). The addition of this source term
to (501), together with the boundary condition that f (x.7) vanish for
x=Xs(@). defines a straightforward problem of numerical analysis*®.
Any initial (t=0) choice of f(x,f) must evolve (for S$+40) toward a
periodic solution satisfying f (x,t 4+ 27/Q3)=F (x,t). The azimuthal coor-
dinate @ of the particle distribution is a function of time in the sense
that ¢=Q5. (Recall that Q5 is approximately independent of x at a
given energy and L value, ¢f Section 14.) The periodic solution

fx.0)=f(x.t—2n/Q;) obtained by following the particle distribution

in its azimuthal drift is equivalent to a time-independent distribution

f(x,@), where ¢ is the geomagnetic longitude. The functional form

of f(x,¢) depends only upon D,/ for a given xu(p). Execution of
the above-described computational program for many trial values of
D /@3 should therefore yield one solution f (x,) that best agrees with
ub&crvalions (e.g., Fig. 36, Section IV.2). The observed azimuthal varia-
tion of f (x,®) thus yields a value of D,./Qx and (since 025 1s a known
function of £ and L) a value for D,..

The only reported computation of this nature [77] employed
gnlx)=(2/x8)" *cos[(2n+1)(mx/2x,)] for the pitch-angle cigenfunctions.
The results of that computation arc therefore probably unreliable; sinu-
soidal eigenfunctions do not satisfy (5.01). The reported values for D,
varied from 2x 10 % day ™' at L=2 to §x 10~ * day ' at L=4. The
corresponding electron “lifetimes™ (x4/n2 D) would amount to ~ 200
daysat L=2and ~ 50daysat L=4 for electron energy Ex0.6+0.2 MeV.
Since these “lifetimes™ exceed those shown in Fig. 41 (Section 1V.3)
by nearly an order of magnitude, the numerical values of D.. on which
they are based are open to question. It is difficult. of course, to rule
out a possible variation of Dy, with x or ¢ that might explain the

“*Due to the South American anomaly (cf. Fig. 30. 111.7) which lies immediately
to the west. the loss cone expands abruptly from a small aperture (cos ' xa)
toalargeraperture (cos ' x.) in the neighborhood of the South Atlantic “anomaly™.
It is mathematically convenient to model the loss-cone aperture as a step function
of azimuth, rather than a sinusoidal function [¢f. (2.75). Section L8] In fact,
the step function may be the mare faithful representation of geophysical reality,



168 V. Methods of Empirical Analysis

discrepancy®”, but a treatment based upon the true cigenfunctions of
(5.01) is much needed.

Information on the possible energy dependence of D.. east of the
“anomalv” can be deduced by comparing the energy spectra of precipitat-
ing electrons at several longitudes 4, where 4 =0 at the “anomaly”
[77]. Precipitating electrons having energies from 0.4 MeV to 2.5MeV
are found to have an exponential energy spectrum. The e-folding energy
L is found to increase with increasing east longitude. This observation
can be understood largely in terms of the energy-dependent azimuthal-
drift rates (¢f. Section [.4). Thus, the pitch-angle diffusion coefficient
D.. apparently is not a strong function of electron energy in the range
Ex~04—25MeV.

V.3 Quadrature (Spatial)

The diffusion equation can be manipulated in several ways in an attempt
to extract the radial diffusion coefficient Dy, and/or the particle lifetime
7 from the observational data. One class of methods involves a partial
integration of the diffusion equation between two fixed limits in L
or time, Letting F=Inf allows the radial diffusion equation [¢f. (3.48),
Section IT1.8] to be written as

OF . ) a .D“_) aF 0F oF 2 {
] [ - ol etk i 5.08
ot [L r"L(\L:,, If"f,+Du‘[:"l’}4 ol T { )

for constant M and J, Il the true lifetime 7 is a known function of
L.and if F(L,1) is available from the observational data’®, then (5.08)
may be interpreted as a linear first-order differential equation for Dyy.
If the observations of F cover the interval L; <L <L;, then the solution
of (5.08) may be written

**Enhanced pitch-angle diffusion subsequent (in longitude) to “complete™ re-
plenishment of the equatorial-pitch-angle-cosine interval x,.< x<<x, might escape
detection by the above analytic method if it is accompanied by an enhanced
source S [ ¢f (5.05)]. Any such enhancement of D, in longitude, however, should
be correlated with magnetospheric longitude (local time) rather than geographic
longitude, since atmospheric scattering of electrons is unimportant beyond L= 1.5
(¢f. Fig. 41, Section 1V.3, and Figs. 72—73 below).

*"Since only derivatives of F=Inf appear in (5.08). the result is not affected
by adding a constant to F. Thus, il the functional form of f(L.t) is known,
the absolute normalization is not required. Only the form of the flux profile
at constant M and J alfects (5.08).
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The value of Ly must lie within the range covered by the data. but
is ot}u._'rwisc.arbitrary. The value of Dy, at L=L; plays the role of
an arbitrary integration constant. The presence of an arbitrary constant,
whose valluc must be estimated by other means, is a persistent difficulty
of analytical methods in which Dy is expressed as a spatial quadrature.

The use of F=Inf rather than f itselfl in (508) is advantageous
from the computational standpoint. The standard use of finite-difference
techniques in evaluating an expression like (5.09) tends to introduce
far less error in the derivatives of F than in the derivatives of f.

_The method of (5.09) is clearly inapplicable, however, if AF/0L
vamsl_u:s anywhere in the interval of interest (Li<L<L;). In such a
case, it may be fruitful to return to (3.48), written in the form

[bu(ef\] _1A[T T
oLl B \arL)|,,"B|xta | (=0

The full quadrature of (5.10) can be written as
L

il I AT r e
DLMLj———E(*'I) [ Z_.'_‘_j_ _d_":_+ _DEE f_"(
L Tt | (B)P = 3k L iy

L
_L2 aF\ ! 1 AF]| fdL Dy, —(@F
) e )
£3 -

Here ‘the a{bilrar}' integration constant Dy (L) reappears. Now, how-
e:elrl, 1th3 is chosen so that @F/0L=0 at L=L,, then it follows from
(3.11) that

L

E(eF\"'[[1 @éF]Tdr

L3

—
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Here, as in (5.09), the normalization of f does not affect the value
of Dy extracted from the data by integrating to an L value of interest.

When it is impossible to choose L; such that (¢ F /0 L)i-1, vanishes,
the difficulty associated with an arbitrary integration constant can often
be circumvented by postulating the analytical form of Dy, a priori.
The functional form customarily postulated (subject to later verification)
is a power law in L (¢f. Sections I11.2 and II1.3), i.¢.. Dyr.=D,L". Under
this assumption, it follows from (5.08) that

1 @F] [(n—2\eF &F ([oF\?

D,,—L [T+(1I:|.[( L_)ﬁ+ﬁ?+(ﬁ£)] [';13]
for some initially chosen value of n (not necessarily an integer). Since
(5.13) follows from the assumption that D, is a “monomial”™ function
of L. self-consistency can easily be checked by evaluating D, from
(5.13) for several values of L between L, and L,. A moderate scatter
of the resulting D, values about some constant mean would represent
a measure of uncertainty in the numerical value of D, while confirming
the postulated power law. On the other hand, a systematic variation
of D, with L would indicate that n had been chosen improperly, i.c.,
that some other power law (or perhaps a different functional form
altogether) is required in order that Dy, fit the data [113].

As indicated in Section V.2, both the decay of inner-zone electron
fluxes following the Starfish explosion (Fig. 32) and the decay of a
monoenergetic electron enhancement observed after a magnetic storm
(Fig. 35) have been adequately accounted for by atmospheric-scattering
losses (Section I1.2). Both sets of measurements had been made over
a time interval that was relatively short compared to the calculated
lifetimes. A long-term study of inner-zone electrons (E> 0.5 MeV), cover-
ing a three-year period beginning in September 1962, revealed considera-
bly longer apparent lifetimes in the region l.15<L<1.2| than had
been observed in the 50-day period immediately following the Starfish
detonation. Since atmospheric scattering could not have grown abruptly
less intense with time®', these measurements suggest that additional
electrons were continually being supplied to these low L shells from
higher L, perhaps by radial diffusion. An empirical analysis of these
data for radial-diffusion effects is facilitated by the fact that the omnidirec-
tional flux (profile shown in Fig. 71a) decayed almost exponentially
during the three-vear period that began in September 1962. The apparent
decay rate —@F/fr and the decay rate 1/t “expected™ on the basis
of atmospheric collisions (Section I1.2) are shown in Fig. 71b [114].

S'However, this was a period of decreasing solar activity (see Fig. 51, Section
IV.5), during which the atmosphere would have contracted toward the carth,
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Fig. 71. (a) Inner-zone equatorial electron-flux profile for £> 1.6 MeV observed
on 1964-45A during December 1964: (b) decay times t and (— ¢F/d6) ! derived
from atmospheric-scattering theory [42] and from a three-year compilation [ 123]
of inner-zone electron data (1962—65: £>0.5 MeV), respectively [114].

The “staircase” function shown in Fig. 72 represents a self-inconsistent
determination of Dy, based on a hybrid analytical method [114] with
features of both (5.12) and (5.13). The integral omnidirectional fluxes
14, are first converted to equatorial differential unidirectional fluxes
at constant M by postulating an energy spectrum like that which results
fr_om the beta decay of fission products (¢f. Section V.6) and a pitch-angle
distribution compatible with the known loss-cone aperture (¢f. Section
IL7). The pitch-angle correction (factor converting omnidirectional flux
to unidirectional flux) varies by ~ 30% between L=1.15 and 7.=1.21:
it tends to reduce the slope of the flux profile. The conversion from
1, at constant E to f=J /p® at constant M leads to a correction
that varies by ~ 10% over the interval 1.15< < 1.21: this correction
tends to steepen the profile. The net result is that the profile fis ~20%
less steep than that of Iy, shown in Fig. 71a. '

An acceptable procedure for obtaining Dy from these observational
data consists of replacing Dy (L) on the right-hand side of (5.11) by
(L3/LY'Dy1(L). This is equivalent to assuming that Dy, = L". A rearrange-
ment of terms then yields

La

(1 aF]JdL fF{LYOFP=ts
By tLi)= 4+ — | —= = |5 [= | =
i (bs J [r a;] (L) [L- (LJ f“‘fl::,; (5:44)

La
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In particular, the choice n=0 corresponds to a diffusion coefficient
Dy that is constant in the interval L3 < L< L.. The “staircase” function
shown in Fig. 72 results from performing the integral in (5.14) over
a sequence of consecutive, adjacent L intervals of width Ls—L3=001
for n=0. An alternative choice ol intervals, such that Ls— L3=0.0035
yields very similar results, as does the use of (5.13) for n=0.

N
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Fig. 72. Radial diffusion coefficients obtained from data in Fig. 73, assuming
fission spectrum to obtain f(M.J.®) at constant M and J. Staircase function
[ 114] follows from self-inconsistent quadrature. Smooth curves are sell-consistent,
but require assignment of arbitrary values (filled circles) to Dy, at L=1.15 [115].

The inconsistency of the “staircase™ function as a solution for Dy
is that the initial assumption (n=0) has led to the conclusion that
Dy, varies inversely as ~ L% i.e, by a factor ~20 between L=120
and L=1.15. In fact, a treatment of the same data using (5.13) with
n=—170 proves to be reasonably self-consistent, and leads to a value
of Dy that is approximately twice as large as the “staircase™ function
al the center of each integration interval.

The alternative procedure of assigning Dy, a certain arbitrary value
at Ly=L,=1.15 yields the family of smooth curves shown in Fig.
72[115]. Values of Dy ranging from 4 x 10~ 7 day ~* to 3x 10 % day '
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arbitrarily assigned at L= 1.15 thus yield remarkably similar solutions
for Dy beyond L= 1.17. The solution generated by Dy (1.15)=1.5x 107
day ! (not shown in Fig. 72) roughly approximates the above-described
power law in magnitude and functional form. Of course, arbitrarily
large values of Dy, (L) could be generated for L > L; by an unreasonable
choice of Dyy (L)

Although the various operations on the data yield different solutions
for Dyy, all solutions support the major conclusion that 0Dy, /0L <0
for 1.16< L <1.21. This is an interesting reversal of the trend evident
in observations made beyond L=2 (¢f. Section 1V.6), where Dy, appears
to vary as a large (~10) positive power of L. The reversal perhaps
originates from ionospheric-current impulses [114], but a variation so
extreme (Dr.% L~ 7?) would require very localized current distributions
(spherical-harmonic number ~40).

Another possible origin of the reversal is atmospheric pitch-angle
scattering in the presence of shell splitting caused by internal geomagnetic
multipoles (Fig. 30, Section I11.7). It is apparent that D, has a strongly
inverse variation with L (¢f. Fig. 71b, the curve for 1/t). The analysis
of Fig. 71 for such a constant-energy process must be based on (3.42),
Section I11.7, rather than on (3.48), since (3.48) applies to a constant-M
process. The term [(n— 2)/L](¢ F/¢ L) in (5.13) must therefore be changed
to [(n+2)/L](¢F/2L), for example. A somewhat larger magnitude of
D... is required to account for the observations if a constant-E process
is postulated instead of a constant-M process. As a rough estimate,
the solutions for Dy, in Fig. 72 should be multiplied by a factor ~2
in order to accommodate a process for which inward radial diffusion
does not change a particle’s energy.

As noted above, the appearance of an arbitrary integration constant
Dy (L3) in (5.11) follows from the fact that ¢F/@L, as given by the
data, fails to pass through zero in the interval 1.15<L< .21 used
for amalysis. The region of L over which the inner electron belt is
analyzed, therefore, might profitably be extended to Lx~1.6 so s to
include the maximum in F that exists near L=14 (see Fig. 73a)°%

The apparent decay rates —d F/0t are obtained from measurements
made on the OV 1-2 satellite, and are shown in Fig. 73b together
with the calculated atmospheric-scattering lifetimes. The single point
L=1.77 in the figure is the decay lifetime of the narrow clectron belt
created by the Soviet nuclear detonation of 1 November 1962 (see

#2These electron “distribution functions™ correspond 1o two different values
of the first invariant M [ 116]. Since (5.08'—(5.14) do not explicitly couple distinet
values of M by dillerential operators, it is permissible to plot L*J | rather than
J /M B. The calculations are unaffected by this choice.
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Fig. 58. Section I'V.6). The dashed curve in Fig. 73b is an “interpolation”
between observed pitch-angle diffusion lifetimes of inner-belt electrons.
The function Dy (L) obtained from (5.12) by using the lifetime data
of Fig. 73b for M=21.4MeV/gauss (E=[MeV at L=1.65) is plotted
in Fig. 73b [116]. The value of Dy, at L=1.20, as obtained from
these data, is two orders of magnitude larger than the value of Dy
at L=1.20 shown in Fig. 72. The derived magnitude of Dy, however,
is fairly sensitive to the numerical value assigned to 7 at L= 1.42. Accord-
ing to Fig. 41 (Section 1V.3), this value should have been ~ 300 days,
which is much closer to the apparent lifetime —(¢F/6t)”" than the
value of © actually used for the computation (dashed curve, Fig. 73b).
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Fig. 73. {a) Profiles of electron distribution function ( x 2my M By) for J=0, based
on OV 1-2 data: (b) decay rates |/t expected [rom atmospheric scattering (solid
curve)and wave-particle interaction (data point at L 1.77): (b) arbitrary interpola-
tion (dashed curve): (b) decay rate (—d F/d¢) actually observed for E>0.5MeV:
(by diffusion cocfficient Dy, derived from these data for M =21.4MeV/gauss [116].

The methods of this section are applicable not only to static profiles
(CF/dt=0) but also to time-varying profiles (6 F/¢t=0). The methods
can easily be modified to include the effects of a distributed source
[¢.g..(3.57). Section I11.8], as well as particle deceleration without pitch-
angle diffusion. It is probably unwise, however, to attempt a purely
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spatial quadrature on the observed distribution of outer-zone electron
fluxes. This reservation holds because outer-zone electron fluxes exhibit
considerable fluctuation with time, rather than a slow evolution of
the profile. Much of the observed variation is not related to radial
diffusion in a simple way (¢f. Sections V.6 and TV.8). Even when special
care is taken to select only geomagnetically quiet time intervals, the
methods of this section are found to yield unreasonably large magnitudes
and dubious functional forms for Dy, [117].

V.4 Quadrature (Temporal)

In the presence of temporal fluctuations such as those commonly
observed in outer-zone electron fluxes, it is essential not only to select
carcfully the time interval chosen for analysis, but also to evaluate
time derivatives of F from several-day averages. The interval chosen
for analysis must be free of large “injection”™ events (¢f. Fig. 38, Section
1V.3) characterized by in situ particle energization, as such processes
cannot easily be included in the diffusion equation. Other temporal
changes in the particle fluxes, such as those due to field changes on
both the adiabatic and impulsive time scales, must be averaged over
time to avoid spurious contributions to ¢ F/dt.

Care must be taken in obtaining the average of ¢ F/@t over several
days, however, since outer-zone electron lifetimes are typically 5—10
days (¢f. Fig. 41, Section 1V.3). Thus, the averaging procedure must
be sophisticated enough to accommodate the true evolution of F(L.1)
during the several-day time interval over which the average is taken.
One procedure for performing this average, sometimes termed the rem-
poral quadrature of (5.08), involves the assumption (¢f. Section V.3)
that Dypoc L™ If D, and © are regarded as time-independent during
the interval t; <tr<1,, then it follows Irom (5.08) that

D =D, L= {F(t;)—F(t,)+[(t.—1)/x]}

! (n=2\oF @&F (g?F #
= N : 15
”( L )JL+:E+\5L) ]‘“ Eosel

fi

The diffusion coefficient Dy; can thus be determined from electron
data such as those shown in Fig. 74 [93]. These data have been converted
to equivalent equatorial profiles of L*J . (=2meMBof) at constant
M (cf. Fig. 54, Section IV.6). By choosing t, and t, appropriately,
so that F(t2)=Z F (f1), it might be possible to estimate D, for each assigned
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Fig. 74. Evolution of equatorial daily-median L*J | and spectral parameter follow-
ing magnetic storm of 17 December 1962 [93], based on Explorer-15 electron
data (¢f. Figs. 53 and 54).

n. The “best™ value of n would be that for which D, is most nearly
independent of L (¢f. Section V.3).

Unfortunately, the application of (5.15) to the full twenty-day interval
of data shown in Fig. 74 does not allow a precise determination of
D1, This is because the quantity F(ia)—F(t;) is negative at cach L
value shown (as is usual for such a long time interval) and represents
a good approximation for (r, — t,)/t. The numerator of (5.15) is therefore
approximately zero, and so is very sensitive to the somewhat arbitrary
choice of lifetime t(L). This difficulty arises quite frequently in practice,
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since (as noted above) t,—t1 must be chosen sufficiently long to average
out the adiabatic Muctuations®* in ¢ F/d1.

An alternative 1o the above procedure is to solve (5.15) for the
pitch-angle-diffusion lifetime 7(L). in terms of the radial diffusion coeffi-
cient Dy =D,L" In this case, time-independent values of n and D,
are chosen somewhat arbitrarily in order to obtain

t DI ([(n=2\oF &#F (oF\']. Fle)—F@) .
T_ IE—-IIJ‘I:( I )(_-.L+ t"E -(aL) :]df—T_!l——. (5.16)

For use in (5.16) the observational data shown in Fig. 74 can be manipu-
lated to yield numerical derivatives given by the algebraic expressions
F'(L;0)=(5/2)[F (L+0.2;0)— F(L—0.2;1], F"(L;t)=25[F(L+0.2:1)
—2F(L;t)+F(L—-0.2;t)] and F(Lt)=(1/2)[F(L:;t+1)—F(L:t—1)],

T T T T T T
2 = =10 % o ‘
IG - 1 . D1g"10 \ - De=26x10 =
N « Dyp=10"9 1 l K‘ . Do=16x108 1
[ .\ ' Dyg=10"8 | \ : Dg63xi0" |
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Fig. 75. Electron lifstimes (M =750 MeV/gauss) obtained from data of Fig. 74
by using (5.16) for selected values of Dy, day !

with time t measured in days. Numerical integration of (5.16) by
Simpson’s rule then yields the lifetimes shown in Fig, 75a.

**The fluctuations superimposed on the mean evolution in Fig. 74 are found
to be well correlated with the ring-current index Dy, (¢f. Section L5). However,
attempts to suppress these apparently adiabatic fluctuations by means of a ring-cur-
rent model (¢f. Fig. 9. Section 1.5) and available spatial and spectral information
(¢f. Fig. 43, Section [V.3) did not succeed for the data of Fig. 74. Perhaps the
modeling procedures commonly used for protons (Fig. 43) are insufficiently accurate
to subtract the adiabatic fluctuations of outer-zone electrons with confidence,
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The functions t(L) shown in Fig. 75a are very similar, although
the inserted values of Dy, vary over two orders of magnitude. The
choice of n= 10 follows a convention based on “theoretical” considera-
tions (¢f. Sections I11.2, 1113, and 111.8). Since all choices from 10~ '°
day ' to 10 ® day ' for the magnitude of Dy are found to yield
equally reasonable lifetime functions z(L), the “correct™ magnitude for
Do must be obtained by invoking some further empirical consideration.

Values of n# 10 yield similar z(L) functions to those shown in Fig.
75a if D, is chosen appropriately. Since the observations cover a range
centered at L=4, a logical comparison among different values of n
would require that D,4" be held fixed. Thus. the t(L) functions plotted
in Fig. 75b for n=6, 8, and 12 (with D,=D,,4'"™") are virtually indis-
tinguishable.

If the data of Fig. 74 are analyzed in blocks of five days instead
of twenty, (L. ¢., 12— 11 =15 days) the application of (5.16) to these separate
intervals is found to yield lifetime functions (L) that duplicate Fig.
75within a factor of two. Thus, while temporal quadrature yields self-con-
sistent lifetimes against pitch-angle diffusion, the extraction of a radial-
diffusion coefficient D, from data such as shown in Fig. 74 apparently
requires another (more sophisticated) analytical technigue.

V.5 Variational Method

A major disadvantage ol quadrature (either spaual or temporal, ¢f.
Sections V.3 and V4) in the extraction of transport coefficients from
time-varying electron data is that either Dy or Dy, must be given
a priori in order to obtain the other. An empirical technique termed
the “variational method™ circumvents this difficulty and thus enables
both the radial-diffusion coefficient D;; and the particle-lifetime function
t(L)to be extracted simultaneously from the data with minimum reliance
on ad hoc assumptions about the L dependence of t.

The variational technique involves the usual tacit assumptions that
both t and Dy, are time-independent and that Dy can be represented
in the form Dy.= D, L". Then the temporal evolution of F(L.t), as given
by (5.08), can be attributed to a combination of diffusion across L
and pitch-angle scattering into the loss cone. To the extent that radial
diffusion can be accounted for by properly choosing the magnitude
and functional form of Dy, the remaining temporal decay of F via
pitch-angle scattering should be linear, corresponding to an exponential
decay of f (L,t). The idea of the variational method [93] is to formulate
a quantitative measure of the extent to which a given D, “fails” to
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account for the nonlinear temporal component of the evolution of
F(L,t)

This formulation is facilitated by introducing the decay-rate function
[¢f. (5.16), Section V 4]

, n- 3) aF 0*F (?F #1 _oF 2
 (L.t)y=D. 1" s il e B, 517
whambb |:( L fdL oI ¥ 12 L) ] ét Lt

- This function reduces to a constant in time [viz.. 1/¢(L)] only if F(L.1).

as given by the data, exactly satisfies (5.08). The “correct” value of
n is that which enables D, to be chosen so that A,(L,) is constant
in time, and the “correct™ value of D, is that which makes (¢4,/d1);
vanish.

In practice, of course, there will be uncertainties in the data, and
it may be impossible to suppress adiabatic lluctuations satisfactorily
(cf. Section V.4). These and other difficulties prevent /,(L.t), as given
by the data, from being exactly constant in time under any conditions.
It is possible, however, to ask (for any given n) that D, be chosen
so that 4,(L.t) deviates minimally from a constant. The deviation of
Ja(L.t) from a constant in time can be expressed quantitatively by
introducing a function

I-_' 12
G.(D,)= | g(L)) [25 —<4,0%]dt dL. (5.18)

i

where {2, 1s the temporal mean value of 4,(L,f) and g(L) is a positive-
definite weighting function**, The function G,(D,) is thus a quantitative
measure of the “failure” of a specific numerical value of D, to account
for the time variation of F attributable to radial diffusion. The function
G,(D,) is minimized with respect to its argument (D,) by requiring
that

L t
26, 2, A i
ol - oL . =0. 5.19
éD, J. '“”‘d['“ 50, %, }h Hete B0
Ly 1

This linear algebraic equation for D, yields a numerical value of D,
that is uniquely determined by the data for a given weighting function
g(L). The optimal (G,-minimizing) value of D, is given by

**The purpose of g(L)is to distribute responsibility for the ultimate determina-
tion of D, equitably among the various L values (see below)
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“where theangle bracketsdenote a time average over the interval 1, <t <t,.
The calculation of an optimal D, by (5.20) can be carried out for
each of many values of n. Insertion of the optimal D, in (5.16) allows
a determination of the decay constant 1/7(L)= {4,(L,1)>. The best-fitting
functional form of Dp.=D,L" can perhaps be identified by searching
for an absolute minimum in G,(D,) among the various values of n.
If some n is clearly identified as the optimum, the corresponding
CanlLt)y ! is simultancously established (although tentatively, f. Sec-
tion V.6) as the optimum lifetime function z(L). In practice [93], many
values of n yield almost identical minima in G, (D,). The optimal value
of D, is thus identified for each n, but the best value of n remains
unidentified (¢f. Section V.4).

The data of Fig. 74 (Section V.4) were extracted from flux profiles
such as those in Fig. 53 (Section IV.6) by assuming an exponential
energy 5pc<.lrum _at each L value. Very similar data representing
L*J | =2moMB, f are obtained by postulating a power-law spectrum

T N
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Fig, 76. Functions G,(D,) obtained for g(L)=1, from data similar to those of

Fig. 74 but using a power-law spectrum (¢f. Fig. 34) for energy interpolation
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for interpolation between E=0.5MeV and E= 1.9 MeV (¢f. Fig. 53 [93]).
The functions G,(D,) constructed [using (5.18)] from these power-law
data are plotted in Fig. 76 for several values of n with g(L)=1. It
is evident from Fig. 76 that the optimal (G,-minimizing) value of D,
is easily identified for any given n. On the other hand, the several
values of n yield virtually identical minimum values for the functions
Ga(D,). The failure of the variational method to yield a unique optimum
value of n in this case is perhaps a consequence of the narrowness
of the interval in L available for analysis (L:—L,=14; Ly/L,=14)

The optimal values of D,L""'% obtained from the analyses [ef.
(5.20)] for several values of n and four values of M are shown in
Fig. 77 by solid lines. The shaded arca contains all values of Dy, /L'°
such that 6<n< 12 and G,(D,) is less than the stated limit (e.g.. G,<2.6
at M=750 MeV/gauss). The several values of n thus yield a fairly
consistent value of Dy, at L~ 3.6 (¢f. Section V.4). The lifetime functions
7(L) are obtained for each M by inserting in (5.16) the optimal values
of D,, as obtained from (5.20). The results are shown in Fig. 78 [93].

The variational method is a good technique for extracting numerical
values of the transport coefficients Dy and t from observational data
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Fig. 78. Electron lifetimes obtained from (5.16) by inserting optimal values of
D, indicated in Fig. 77 [93].

consisting of time-varying flux profiles®®. When used in conjunction
with one of the verifving methods described below (Section V.6), the
variational method constitutes a systematic and expedient means of
analyzing the observational data for simultaneous radial and pitch-angle
diffusion.

Certain refinements of the variational method merit further attention.
Since {Aq(L,t)y is found to vary by an order of magnitude between
L=36 and L=4.6 (¢f Figs. 75 and 78). use of the weighting function
g(L)=1in (5.18) tends to leave G,(D,) relatively insensitive Lo observa-
tions made at L. <4, Thus. in identifying the optimal value of D,, undue
weight is perhaps assigned to the region L2 4. An alternative weighting
function of the form g(L)=65/L", normalized to a unit mean value
in the interval 3.4 < L <4.8, partially redresses the imbalance and intro-
duces no significant change in Figs. 76— 78 [93]. [Towever, a weighting
function that more fully compensates for the L dependence of = might
be more suitable.

The variational method is potentially sensitive to genuine temporal
variations of the transport coefficients Dy;. and . There is no provision
i .S.SNC:;C that (5.20) is indeterminate for any time interval 1, <r<t(: in which

oFEt=0
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in (5.18)—(5.20) for recognizing such variations. Moreover, if the data
are rather “noisy” as in Fig. 74, containing fluctuations unrelated to
radial and pitch-angle diffusion, the equations may seek to minimize
Ga(D,) not by selecting the best Dy, and (4,(L,t)». but by selecting
unrealistically small values of {A,(L.t)>. Such a selection would also
tend to underestimate the magnitude of Dy, appropriate for (5.08)
For these and other reasons, the magnitudes of Dy, and (L) that
follow from (5.20) and (5.16), respectively, should be regarded as tentative
choices. It remains to verify that, when these numerical values are
inserted into (5.08), the actual evolution of F(L.t) is correctly predicted
by integrating this diffusion equation with respect to time (¢f. Section
V.6).

V.6 Temporal Integration

As described in the previous section, estimates of the radial and pitch-
angle diffusion coefficients can be extracted from observed time variations
in the electron fluxes. Verification of any proposed set of numerical
values for Dy and 7(L), whether obtained from the variational method
or otherwise, requires that (5.08), the diffusion equation, be integrated
with respect to time, using appropriately selected boundary conditions
on F(L,t). Initial conditions are determined, as far as possible, from
the observational data. Given the initial and boundary conditions, the
diffusion equation can then be integrated with respect to time. The
result of this integration should be compared to the observed evolution
of F(L,t). Source terms are generally omitted for outer-zone electrons,
since the observed variations in flux are presumed to occur after the
source that produced the initial flux enhancement is turned off.

The inward-moving “edge” of the flux profile shown in Fig. 52a,
Section IV.6 (from the same time period as the data in Fig. 74 treated
above; see Sections V.4 and V.5), can be studied further by integrating
(5.08), the diffusion equation, for F(L,t). Since the observations consist
of flux measurements for onc energy threshold only, it is necessary
to introduce assumptions as to the shape of the electron energy spectrum
at t=0 (20 December). In order to obtain F(L,0) at constant first
invariant M, the initial energy spectrum is assumed to be exponential
(with an e-folding energy of 600 keV) at L=4 (¢f. Fig. 74, Section V.4),
and consistent with (4.01), Section IV.5, at other L values.

The boundary conditions used in one analysis of these data are
specilied by extrapolating the =0 distribution function smoothly to
zero al L=1 and L=4%. These boundary conditions are maintained
throughout the computation. The decay time for electrons is taken
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as a constant, equal to 20 days, independent of time, L, z_md M. The
M-independent radial diffusion coefficient is assumed to be independent
of time also (as in the variational approach)and to have an L" power-law
dependence. The integration of (5.08), using the above-specified spectrum,
boundary conditions, and lifetimes, is performed by standard finite-differ-
ence techniques. The results for F(L,t) are then convc’rtcd b@lck to
integral omnidirectional fluxes (E> 1.6 MeV) for comparison with the
observational data. _

Results of the computation for each of two different valqes (_)l' Du
are compared to the observational data in Fig. 79 [70]. It is difficult
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Fig. 79. Equatorial omnidircctional-flux profiles for electrons having E>

(a, ¢) predictions generated by numerical integration from =0 (20 Df:ce_n‘_lber
1962) for r=20 days and D;, as indicated. using fixed boundary conditions
(f=0)at L=1and L=8 [70]:(b) observations based on Explorer-14 data, shown
also in Fig. 52a [111].
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to choose the “better” D;; from this comparison, but the slopes of
the “leading edges™ of the observed and caleulated flux profiles possibly
agree better for n=10 than for n=9. Given the ad hoc assumptions,
the agreement is found to be much poorer for other values of D,
and for other integer values of #. The two “best” diffusion coefficients
Dy agree in magnitude at L4 (¢f. Section V.4).

The validity of the results obtained by this method can presumably
be tested by studying the sensitivity of these results to changes in
the assumed initial conditions, boundary conditions, and lifetimes. Rca-
sonable changes in the boundary conditions at L> 5 (but not at [.< 2.6)
are found to produce significant modifications in the results. but only
in the region 7.>4 (not in the “leading-edge™ region). The use of an
initial e-folding energy of 400keV or 800 keV, rather than 600keV,
at L=4 is found to cause significant changes in the calculated fluxes
at L values beyond the “leading edge™ of the profile, but this does
not alter the overall time evolution. The optimum radial diffusion cocffi-
cient.as obtained by this integration scheme, is Dz > 5 x 109 21° day ',
a result that is largely insensitive to minor variations in the multitude
of qualifying assumptions indicated.

A similar analysis can be made using measurements of the artificially
produced “spike” of electron flux shown in Fig. 58 (Section 1V.6), In
thiscase, the initial flux distribution is taken as an 4 pproximate Gaussian
in L, with boundary conditions selected such that the fluxes are held
equal to zero at L= 1.6 and L=19. In order to obtain a constant-M
distribution function f=expF, the energy spectrum is assumed to have
the form [118]

JUAE) o (v/e)exp[ —0.2938(y — 1)—0.0144(y— 1)] (3.21)

at L=1.765. This is the spectrum of energies that results from the
beta decay of nuclear-fission products in equilibrium. The pitch-angle-dif-
fusion lifetimes t(L) are assumed to be given by linear interpolation
between 7(1.5)=470 days and (2.1)=20 days (¢f. Fig. 41, Section IV.3)
for all values of M. When (5.08) is solved for the evolution of F(L.t)
using each of several trial values of Dy, it is found that the best
agreement with observation corresponds to Dy x6x 107° day ! at
L=176 [70]. This value is identical with the magnitude ~6x 10 ©
day ™" obtained from the analysis assuming conservation of particle
energy rather than M and J (see Section [V.6).

There exists an alternative to the arbitrary imposition of boundary
conditions outside the interval of L covered by the data. It is possible
instead to obtain a realistic set of time-dependent boundary conditions
directly from the data. Imposed at L, and L, (=34 and 4.8. respectively,
in Fig. 74, Section V.4), these boundary conditions are suitable for
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testing the validity of a tentatively established set of transport coefficients
Dy and t(L) via temporal integration of (5.08).

The initial conditions for this temporal integration of (3.08) are
given by the observational values of F(L,ty), where ty corresponds
to 22 December. Two apparently incompatible sets of transport coeffi-
cients have been identified above for electrons having M =750 MeV/gauss
following the December 1962 magnetic storm. The variational method
(Section V.5) yields Dyr=6x10"""L'" day ! and t=1(L), as given
in Fig. 78, for the twenty-day interval beginning 22 December. The
method of temporal integration with fixed boundary conditions outside
the data interval (Section V.6) yields Dy, =3%10"% L' day ! for an
assumed L-independent lifetime of 20 days over the ten-day interval
beginning 20 December.

The results of temporal integration from t=1¢; (22 December) for

the evolution of F(L.t). using the observed values of F(L,,t)and F(L,,1)
as time-dependent boundary conditions, are shown in Fig. 80 [119].
The predictions based on the smaller Dy, (obtained by the variational
method) are clearly in better agreement with the observational data
(3.6 <L <4.6) than the predictions based on Drr=5x 107? L'® day ',
when the twenty-day interval is viewed as a whole. Only during the
first few days of the integration interval (i.e., prior to Day 360) is
there a hint that the value Dy =6x 10 1° L' day ' might be inade-
quate.
According to Fig. 79, the larger value of Dy;=5x10"° L'° day !
should have applied only to the ten-day interval beginning 20 December,
rather than the twenty-day interval beginning 22 December. However,
the lifetime function t(L). as given in Fig. 75 (Section V.4), is found
to vary by at least a factor of seven between L=3.6 and L=4.6 for
any reasonable choice of Dy;. Thus, it isappropriate to test Dy =35x 1077
L' day ' in conjunction with the lifetime function t(L), as given
in Fig. 75 or 78. For t(L) given by Fig. 78 and D;,=5x10"? day ',
the temporal integration of (5.08) with time-dependent boundary condi-
tions at Li=34 and L,=438 from =0 (20 December) is found to
produce good agreement with the observations (3.6 < L <4.6) until about
25 December (see Fig. 81). During this six-day interval, the smaller
value of Dyo=6x10""" day~' is clearly inadequate to account for
the continuing growth of F(L,t) at the lower L values (L <4.2). The
discrepancy bevond 25 December can be eliminated by reverting to
the smaller value of D,y (¢f. Fig. 80).

These results clearly demonstrate that a time dependence of Dy
was associated with the large magnetic storm of 17—I8 December
1962. The choice of 22 December as 1, apparently eliminates most
of the storm-time effects that would invalidate the variational method

V.6 Temporal Integration
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Fig. 81. Evolution of L*J | for outer-zone electrons, beginning with 20 December
1962. Observational data points are joined by solid line segments. Dashed curves
are predictions generated by numerical integration with time-dependent boundary
conditions imposed by the data at L=3.4 and L=4.8 (¢f. Fig. 80},

in its present form (Section V.3). Application of the variational method
to the time interval 20— 24 December would perhaps yield the larger
diffusion coefficient Dy, evidently required for that interval, if by some
means the data were smoothed to suppress adiabatic and other temporal
fluctuations not associated with the radial and pitch-angle diffusion
processes. It is evidently impossible, however, to characterize the radial
diffusion coefficient as a universal constant that can be applied uncriti-
cally to time periods during and following all magnetic storms.

A set of proton measurements, made with a scintillation counter
on the elliptical-orbit satellite Explorer 26, revealed time variations
in the outer-zone proton fluxes following the magnetic storm of I8
April 1965. After removal of the adiabatic variations (due to the storm-
time ring current, ¢f. Section 1.5) from the observations, non-adiabatic
changes in flux were found to have occurred during the storm. Thereafter
the fluxes slowly recovered non-adiabatically to their pre-storm levels.
These non-adiabatic post-storm observations can be attributed to radial
diffusion and atmospheric collisions.

Examples of adiabatically-corrected L*J /M profiles for equator-
ially-mirroring protons at several values of M were shown in Fig. 43
(Section IV.3). The data from several energy channels werc used to
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construct these constant-M distribution functions, whose temporal evolu-
tion can be used to estimate a numerical value for the radial diffusion
coefficient. In this case the diffusion equation has two separate loss
terms. The first represents Coulomb energy loss [see (2.04) and (2.06),
Secl:ql_l [1.2: also (3.57), Section 111.8]. The second loss term is equal
to —f/r,, where t, is the mean proton lifetime against charge exchange
[ see (2:09), Section I1.2]. Pitch-angle scattering of these outer-zone pro-
tons by plasma waves is apparently negligible except at M=45MeV/
gauss.

The Fokker-Planck equation governing outer-zone protons having
Mz 100 MeV /gauss and J =0 is thus of the form

(‘-F 9 . D —-_ L .1.; = (! )] f
—=1I :‘ [‘—?’ :.'1 + % ﬂ — L O .
cr oL| ¥ Ly CMBy/Cm)"~| IM || =

where C is given by (3.57b). Time-dependent boundary conditions for
the solution of (5.22) are imposed by the observational data at L;=2.1
and L,=5.6. Preliminary results suggest that an M-independent radial-
diffusion coefficient Dy~ 1 x 107 L' day ' adequately accounts for
the observed temporal evolution of f(M,L;t) at J=0 for Li<L<L,

[$2].

V.7 Spatial Integration

When the observational data consist of time-independent flux profiles
J(E,L), it is necessary to obtain the relevant time-independent solution
of the Fokker-Planck equation. If the transport coefficients and boundary
conditions are time-independent, then the solution [ (M,J, L;t) for (5.22)
and similar equations will ultimately approach the steady-state solution

SIM,J, L; oo)after a sufficiently long integration time. In many situations,

however, it is computationally more practical to dispense with temporal
integration altogether by setting @f/dt=0 at the outset. The result is
a partial differential equation in the variables L and M (perhaps also
J). One problem often treated in this manner is that of the inner proton
belt, as described by (3.57) [ see Section [11.8].

Substantial theoretical effort has been expended on identifying the
possible sources of the high-energy (E=20MeV) proton radiation
observed in the inner zone at L <2 Much of this theoretical work
has focused on attempts to vindicate the decay of cosmic-ray-produced
albedo neutrons (CRAND) as the predominant source (see Section T11.8).
When radial diffusion is neglected. it is found that the CRAND-source
hypothesis cannot successfully account for the observed absolute



190 V. Methods of Empirical Analysis

intensities, nor the spatial and spectral distributions of inner-zone pro-
tons. However, a reasonable fit to the observed high-energy inner-zone
proton distributions can be obtained when radial diffusion and the
geomagnetic secular variation (see Section [1.2) are allowed to operate
on protons injected by the CRAND source.

The most extensive inner-zone proton data assembled to date were
obtained by a set of shiclded semiconductor detectors flown on the
United States Air Force satellite OV 3-4 as an investigation for biological
purposes. These integral proton-flux data, measured above five energy
thresholds (15MeV, 30 MeV, 55MeV, 105MeV, and 170 MeV), can be
converted 10 equivalent equatorial profiles of J | /M B=2m, f for selected
values of the first invariant M. The results are plotted as the data
points in Fig. 82.

If the geomagnetic secular variation is tentatively neglected. the
time derivative Af/0r appearing in (3.57) can be set equal to zero in
the search for a steady-state distribution _)FIM.L}. The source term S
is considered to be given by (3.56), and the loss term represents proton
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Fig. 82. Inner-zone proton distribution function (x 2mg) for J=0 and selected
values of M. based on OV3-4 data and numerical integration. Dashed curves
{a} are steady-state solutions of (3.57) for Dy =0 and § given by (3.56). Solid
curves (b) are steady-state solutions of (3.57) for Dy =10 % L'" day '. with
S given by (3.56) and boundary conditions imposed by the data at L=1.1 (where
f=0)and L=17 [38].
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energy loss by collisions with free and bound atmospheric electrons
(see Section I1.2). Charge exchange is a negligible process at the proton
energies of interest (¢f. Fig. 15, Section I1.2).

If radial diffusion is neglected (by taking Dy, =0), then (3.57) becomes
an ordinary first-order differential equation for f'{@f} at each L value
A unique solution is obtained by requiring that C/ vanish in the limit
M = oo, This solution, indicated by the dashed curves i Fig. 82a. bears
little resemblance to the observational data [38].

In the presence of a nonvanishing Dy, it becomes necessary to
specify boundary conditions in L as well as in M. Since the purpose
is to verify the adequacy of the CRAND source, the lower boundary
condition should be that f(M.L) vanish at some L=L,~1.10. This
lower boundary condition identifies the dense atmosphere as a sink
for the inner-belt protons, and yet does not conflict with the observation
that f (M, L)+0 at L=1.15. The upper boundary condition is imposed
by the observational data at L. = 1.70, beyond which temporal variations
of f(M,L) are known to occur. For computational convenience it is
assumed that f(M.L)=0 at M=4GeV/gauss (rather than M= x)
throughout the interval L;<L<L, The solution thus obtained by
choosing Dyp=1x107% L'? day ! is indicated by the solid curves
in Fig. 82b [38]. A vast improvement in the agreement between theory
and observation is thus obtained by allowing the CRAND source to
be complemented by protons diffusing inward from the outer zone

A further improvement is expected to follow [39] from inclusion
of the geomagnetic secular variation (see Section [1.2). A correct treatment
will require the use of (3.57) in its time-dependent form, with the Coulomb
energy-loss rate expressed as a function of M, @, and r. It may be
difficult to model the time dependence of Dgg and the boundary condi-
tions on f (M. L:t) over a history that extends at least back to Biblical
times, but such an extrapolation seems necessary in order to account
fully for protons now present in the inner belt. Even with the sccular
effect omitted (as in Fig. 82b). however, reasonable agreement between
theory and observation has been obtained by allowing the generally
accepted CRAND proton source [72] to operate in the presence of
radial diffusion ",

“Recent measurements suggest that the actual neutron flux exceeds the pre-
viously accepted value [72] by a lactor ~50 at cach energy above ~ 30 MeV

[87].



