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Io, the nearest of Jupiter's four large satellites, 

controls the emission probability of about half of 

Jupiter's decametric radiation. Io can excite hydromag­

netic waves and/or particle streams in various ways. One 

of the most efficient of these mechanisms is the dipole 

radiation of Alfven waves. Induction effects cause Io to 

have a sizeable dipole moment. Its magnitude and direc­

tion depend on Io's core conductivity and the amplitude 

of variation of Jupiter's magnetic field as seen by Io. 
22 3 A reasonable estimate of this moment is 10 gauss cm. 

A low frequency solution of Maxwell's equations coupled 

to the linearized Vlasov equation indicates that shear 

Alfven waves will be radiated with a power on the order 

of 8 x 10 9 watts. It is su9gested that these waves, 

which are largely unattenuated, are the means of 

interaction between Io and the ionosphere of Jupiter. 

This abstract is appr.oved as to form and content. I 
recommend its publication. 

Signed ~,_uU/,W&WM;t 
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CHAPTER I 

INTRODUCTION 

1.1 DECAMETRIC EMISSION 

'I'he planet Jupiter is a strong source of radio 

waves at frequencies below 40 MHz. Burke and Franklin 

(1955) discovered this decametric (DAM) emission at 22 MHz 

while testing the Carnegie Mills Cross array in early 1955. 

Study of Sydney records (Shain, 1956) showed that radio 

bursts from Jupiter had been recorded but not recognized 

as early as 1950. The DAM radiation has a flux density as 

high as and higher than a million flux units (one f.u.;::: 

-26 -2 -1 10 watt m Hz ) and is therefore much more easily 

observed than the thermal radiation at centimeter 

wavelengths discovered by Mayer et al. (1958) or the non­

thermal, decimetri c (DIM) radiation discovered by 

Sloanaker (1959). Figure 1, a composite of figures from 

the excellent review article on Jupiter's magnetosphere by 

Carr and Gulki.s , ( 1 9 69) , and the review of Jupiter' s 

microwave spectr um by Dickel ~ t al (1970), gives the flux 

density of Jupit.6r's radio emission as a function of 

wavelength. 

Shain (1956) f i rst showed the dependence of the DAM 

emission probability on Jupiter's central meridian longi­

tude (CML), and later results indicated that there were at 

least three distinct sources. (Car x and Gulkis call these 

A, B, and C; Dougl as (l964) calls them 2, 1, and 3, 
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respectively, and Dulk (1965a, b) labels them as main, 

early, and third.) Figure 2 (Warwick and Dulk, 1968) 

shows the modulation of DAM radiation by the rotation of 

Jupiter in the years 1960 to 1964. Warwick (1963) 

describes a fourth source which does not appear in this 

Figure. 

2 

Franklin and Burke (1955) first demonstrated that 

the radio emission was elliptically polarized, suggesting 

that Jupiter had a magnetic field. This polarization is 

predominantly right-handed for all longitudes at frequen­

cies greater than 18 MHz (Barrow, 1964a, Sherrill 1965). 

Warwick and Dulk (1964) showed that the orientation of 

the major axis of the polarization ellipse may be perpen­

dicular to Jupiter's axis of rotation. 

Some of the foregoing characteristics lead to 

surmises concerning Jupiter's magnetic field and magneto­

sphere. The properties of Jupiter's field and its 

environment will be discussed in Chapter II. Several 

review articles discuss the radiation from Jupiter in 

great detail: Douglas (1964), Ellis (1965), Warwick 

(1967), and Carr and Gulkis (1969). 

1.2 THE IO-EFFECT 

Nearly a decade of Jupiter radio observations 

passed before E. K. Bigg (1964) discovered the strong 

correlation between DAM radiation and the position of Io, 

the nearest of the .four Galilean satellites. The effect 
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of the control which Io exerts on the radio emission is 

illustrated by Figure 3 (Warwick and Dulk, 1968) in which 

strength of the DAM radio emission is plotted against 

departure of Io from superior geocentric conjunction 

(hereafter designated by ¢r
0

) • All frequencies in Wa.rwick I s 

catalogue for the years 1961-1963 were included in this 

plot, but if only frequencies above 30 MHz are included, 

the control is even more striking. George Dulk continued 

the analysis of the Io-control, and came to several 

conclusions, (Dulk, 1965a) : 

1. Io induces nearly 50 percent of Jupiter's radio 

emission. 

2. The emission probability approaches 1.0 when 

Io's position and Jupiter's longitude are 

simultaneously favorable. 

3. Io induces early source and fourth source 

emission when ¢10 ~ 90° and it enhances the 

main source and third source probability when 

"' !'.= 2 40 °. 
'I' Io 

4. The spectral character of many radio events is 

determined not only by Jupiter ' s LCM but also 

Io's position. 

Figure 4 shows the dual modulation of DAM emission by 

Jupiter's rotation and Io's orbital motion. Contours of 

equal probability of emission are plotted against ¢10 and 

Jupiter's LCM. 
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to the figure Bigg (1964) used to support his discovery 
of the Io control. (Warwick and Dulk, 1968) 
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1.3 THE OTHER SATELLITES 

Io is about the size of earth's moon. Its apparent 

angular diameter at opposition is about 0.9 seconds of 

arc, so estimates of its true diameter are severely 

limited by seeing conditions. Koylovskaja (1963) has 

tabulated 28 measurements of the diameters of the Galilean 

satellites made between 1827 and 1954. (The weighted mean 

diameter for Io is 3470 km. This could easily be of.f by 

= 100 km.) The other satellites have comparable sizes, 

but their distances are greater (see Table I). 

The orbital periods of the Galilean satellites are 

roughly in the ratios 1:2:4:8, so that several years of 

radio records are necessary to determine whether Europa, 

Callisto, and Ganymede cause effects like that of Io. In 

addition to these approximate resonances, there is an 

important reso n ance which is exact on a time-average. It 

is expressed parametrically by J. Kovalevsky (1967) in 

terms of the longitudes L1 , L2 , L3 of the inner Galilean 

satellites: 

Ll = ( 4-k) t 

L2 = ( 2 ·-k) t + 180 ° 

L3 = (1-k)t 

The quantity k = d (L2 - L3 ) /dt. 

This resonance was discovered by Laplace (1805). Callisto 

causes peturbations on this relationship (Brouwer and 

Clemence 1961), and the periodic variations from the 

zero - order system are described by de Sitter (1931) in 
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TABLE I 

Orbital Sidereal Mass Mass Radius Radius 
Satell:i.te (km)* (xlo- 5M?f) ** (xlo 25 g )*** (xl0 3Km) 

Io 1735 ± 25 2.60 7 . 22 421. 8 
4. 49 7 
3.80 
3.81 

Europa 1550 :t: 30 2.31 4.70 671.4 
2 . 536 
2.54 
2.48 

Ganymede 2500 ± 38 8. 04 15.5 1,071 
7.988 
8.20 
8.17 

Callisto 2350 :1: 38 4.248 9.62 1,884 
4.504 
4.52 
5.09 

*Kozlovskaya (1963): weighted mean of 28 measurements 
between 1824 and 1954. 

Period 
(da y s) 

1. .77 

3.55 

7.15 

16.69 

**Kozlovskaya (1963): four determinations by Sampson and 
deSi tter. 

*~*Brouwer and Clemence (1961). 
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his theory for the motions and mass determinations of the 

Galilean satellites (Marsden, 1966). Unfortunately such 

calculations serve only imprecisely to determine Io's 

mass, which may lie somewhere in the range 2.6 to 3.8 x 

10-S the mass of Jupiter (see Table I). According to 

Marsden (1966), this uncertainty could have been lowered 

had careful observations of the satellite positions been 

made after de Sitter's last study in 1931. In any case, 

the mass, radius, and density of Io are rougly comparable 

to the mass, radius, and density of earth's moon. 

Searches have been made for DAM effects caused by 

other satellites. When careful account is taken of the 

near cornrnensurability of the satellite periods, only Io 

proves to have a direct association with DAM radiation. 

(Lebo, et al., 1965a; Duncan, 1966; Dulk , 1965a; Warwick 

and Dulk, 1966; Wilson, et al. 1968). 

1.4 SOURCE SIZE 

The dimensions of the region which gives rise to 

the Io-related DAM emission can be estimated, in princi­

ple, by radio interferometry. As Dulk (1970) points out, 

neither phase nor intensity interferometry alone will 

detennine the size of a coherent source, but a time 

history a.nalysis of interferometric records will give 

the size of the lobe produced by such a source, and there­

fore the source size. Interferometry will, on the other 

hand, determine the size of a totally incoherent source 
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either by fringe visibility or intensity correlations. 

Even the size of an incoherent source which is jumping 

from place to pl.ace can be found by intensity interfero-

metry. (The jumping causes only phase variations and does 

not affect intensity.) 

On the basis of radio interferometry on a baseline 

between Boulder and Arecibo (487,000 wavelengths apart) 

and also between Boulder and Clark Lake, California (120,000 

wavelengths apart), Dulk (1970) concludes that an inco­

herent source must be less than 400 km in size and a 

coherent source must be less than 4000 km in size. These 

correspond to 1/180 and 1/18 of Jupiter's diameter, res­

pectively. 

If the source were incoherent, individual particles 

would have to have energies greater than 10 13 ev(Warwick 

1967). Furthermore, the apparent beaming of the radia­

tion, either in narrow cones (Warwick 1963a) or thin 

sheets (Dulk 1967), suggests a coherent mechanism. So 

the source is probably coherent, and its smallness suggests 

that Io excites a small region of Jupiter's ionosphere or 

magnetosphere to radiate. 

1.5 IO-EFFECT THEORIES 

It is remarkable that such a relatively small body 

as Io could influence the environment of its parent 

planet so strongly as it does. Nonetheless it does, and 

so theories of the Io-Jupiter interaction have prolifera­

ted. All of the theories invoke the magnetic field in 
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one way or another as part of the means of generation of 

waves or currents which propagate from Io down toward 

Jupiter. J. D. G. Rather and J.M. Witting (unpublished, 

reported by Warwick, 1967) and Witting (1966) suggested 

satellite sweeping of trapped particles. Warwick (1967) 

argued that a finitely conducting satellite should thrust 

field lines aside, generating Alfven waves. Marshall and 

Libby (1967) suggested the stimulation of MHD waves by a 

plasma wake following Io. J. A. Burns (1968) considered 

trapping of charged particles around a magnetic or highly 

permeable satellite. Piddington and Drake (1968) 

suggested that the conducting interior of Io would trap 

its local flux tube, · dragging it behind the other field 

lines co-rotating with Jupiter. Goldreich and Lynden-Bell 

(1969) argued similarly, saying that Io would act as a 

unipolar generator, driving currents into the ionosphere 

of Jupiter along the magnetic field lines. Dulk (1965a) 

suggested that a magnetic wake with a neutral point might 

form behind Io, in which particles could be accelerated. 

Ellis (1965) discussed the possible Cerenkov generation 

of an Alfven wave by super-Alfvenic motion of Io. 

It is the purpose of this thesis to give a general 

mathematical formulation of some ways in which a satellite 

can excite hydromagnetic waves in its vicinity. Most of 

the foregoing theories can be categorized within this 

formulation. A new mechanism for generating hydromagnetic 

waves will be discussed and calculated in detail. 



CHAPTER II 

JUPITER'S MAGNETOSPHERE 

A variety of techniques can be used to infer the 

properties of the magnetosphere of Jupiter. Since a 

knowledge of the medium through which the Galilean satel­

lites travel is essential to any theory of their inter­

action with their parent planet, a brief summary of some 

of the derived parameters of Jupiter's environment is in 

order. 

2.1 MAGNETIC FIELD PROPERI'IES FROM DIM 

Roberts and Komesaroff (1965) demonstrated that a 

knowledge of the pitch angle distribution of the synchro­

tron radiating electrons in Jupiter's Van Allen belts 

plus a good measurement of the degree of circular polari­

zation would, in principle, yield an unequivocal value 

for the magnetic field of the belts. Unfortunately the 

pitch angle distributions are unknown, and the polariza­

t i on is poorly known, so the value of this method is 

limited. Nonetheless, Berge (1966) estimated that the 

field of the belts was on the order of 0.1 to 1 gauss. 

Legg and Westfold (1968) say this may be an overestimate. 

The time T for an ultrarelativistic electron to 

radiate half its energy is given by Ginzberg and 

Syrovatskii (1965). According to Carr and Gulkis (1969), 

T = const x B- 312 v -l/ 2 
m , ( 2. 1) 



where B is the belt field strength and V 
m 

is the 
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frequency of maximum synchrotron intensity. The time over 

which appreciable variations occur cannot be smaller than 

T, and in fact the DIM variations are small over a period 

of at least three years (Komesaroff and McCulloch 1967). 

Thus either T > 3 years or the source of the synchrotron­

radiating electrons is constant in time. According to 

Carr and Gulkis T = 0.7 yr. when B = 1 gauss. Thus 

lifetime effects do not place stringent limits on the 

magnetic field strength. However if B is extremely high, 

no conceivable source of electrons could maintain the 

synchrotron· emission. 

The peak frequency vm of synchrotron emission 

depends on the electron energy E and the belt magnetic 

field B. 

that 

If v = 850 MHz Carr and Gulkis (1969) show 
m 

-3 2 cm gauss erg. ( 2. 2) 

Equations 2.1 and 2.2 do not determine the field 

or particle energy, but if the requirement of stable 

trapping is given, a lower limit on B and upper limits 

on E and N can be derived. Ginzburg and Syrovatskii 
e 

(1969) show that the diamagnetic effect of ultrarelativis-
1 

tic electrons will be small only if 

EN<< 6 B
2

/87T • ( 2. 3) 

Equations 2.1, 2.2, and 2.3 can be combined to yield the 

inequalities: 

B >> 5 x . 10- 4 Gauss, E << 600 Mev, N << 9 x 10- 5 -3 cm 
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Again, the limit on the field is not strong. How­

ever for more reasonable energies like 20 Mev (and corres-

-6 ponding density of 3 x 10 ) , the first equation yields a 

field of 0.5 gauss in the belts. This would imply an 

equatorial surface field of 4 gauss, assuming that the 

belts maximize at two Jupiter radii from the center. 

Spatial information on DIM radio brightness has 

been obtained by Roberts (1965), Roberts and Komesaroff 

(1965), Barber (1966), Branson (1968). Asymmetries in the 

data have suggested (Warwick, 1964) that the magnetic 

field of Jupiter is not centered, but displaced along its 

axis such that the surface field is stronger in the 

southern hemisphere. The field may be nearly axisymmetric 

(Warwick 1967) and is almost dipolar. Branson's (1968) 

contours of constant DIM radio brightness may suggest a 

small displacement of Jupiter's dipole in the zenomagnetic 

equatorial plane. Roberts and Ekers (1966) claim to have 

shown that the centroid of DIM emission lies within= 0.3 

radius in declination and= 0.1 radius in right ascension. 

Morris and Berge (1962) discovered that the polari­

zation is nearly linear and rocks= 10° with respect to 

the equatorial plane of Jupiter. Roberts and Komesaroff 

(1965) confirm this, and it is easily seen in Branson's 

data. Their interpretation is that Jupiter's magnetic 

moment is inclined at 10.0° = 0.3° (Roberts and 

Komesaroff, 1965) to the rotation axis. The longitude of 

the pole in the northern hemisphere is near AIII200° 
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(with an uncertainty of= 5°; Roberts and Ekers 1968). 

Warwick (1967) points out that this analysis accounts 

only for the first harmonic of the data, where the funda­

mental frequency is that of Jupiter's rotation. The 

amplitude of the second harmonic is about 20 percent that 

of the first. Warwick (1964a) suggested that vignetting 

by the planet could produce the second harmonic term, but 

vignetting may be insufficient (Warwick 1967). Roberts 

and Komesaroff offer only the suggestion of asymmetries 

for the second term, but strangely enough, re-analysis of 

Roberts (1965) data by Warwick (1967) suggests that the 

field is axisyrnmetric. The problem remains unresolved. 

Berge (1965) found a small degree of left-hand 

circular polarization when the pole in the northern 

hemisphere is tilted toward earth. This indicates that 

the magnetic moment of Jupiter is directed from south to 

north, just the opposite of earth's moment. Earlier, 

Warwick (1963b) concluded the same in a theory of DAM 

emission. 

2.2 MAGNETIC FIELD PROPERTIES FROM DAM 

The decametric emission from Jupiter is less well 

understood than the decimetric radiation. The source of 

the emission is as yet unsettled, but it is very probably 

close to the planet, either in the ionosphere or just above 

it. Warwick (1963a, 1967) argues that the narrowband 

dynamic spectral features of DAM emission could not occur 
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repeatedly and preciseJ.y at the same longitudes unless 

the source regions are connected to the planet. Warwick 

also argued that the stability of the dynamic spectrum 

strongly suggests that emission is at or near the electron 

gyrofrequency. If this is so, then the peak DAM frequency 

of 39.5 MHz probably originates in a source region of 

field strength having the corresponding gyrofrequency. 

This field strength would be 14 gauss. 

Warwick and Gordon (1965a) found that the "Y-one" 

Faraday effect occurred infrequently in their DAM records, 

but on one occasion they obtained a measure of the field 

strength equal to 14 gauss. This effect involves the 

interference of the two base modes, producing alternating 

circular polarization at the gyrofrequency. 

Gordon and Warwick, 1967, and Gordon 1966). 

2.3 EXTENT OF THE MAGNETOSPHERE 

(See also 

If we assume a field strength B equal to 10 gauss 
0 

at the equatorial surface of Jupiter and assume a dipole 

field, the distance to the sunward surface of the zenomag­

netic cavity can be calculated. McDonough and Brice (1970) 

assert that the termination of the solar wind (where 

interstellar gas pressure balances solar wind pressure) 

is at a distance on the order of 100 A.U., and therefore 

beyond Jupiter. At a point where the magnetic field of 

Jupiter is small enough that magnetic pressure equals the 

solar wind pressure, the zenomagnetic cavity will end. 
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The distance R to this point (in the sunward direction) 
C 

is given by: 

(2 B 

2 

) 1/6 

R = RJ 
4rrN: v2 C 

I 

where N is the solar wind number density, m is the 

proton mass, V is the solar wind velocity, and RJ is 

Jupiter's equatorial radius . Brice and Ioannidis (1970) 

take N = 0.26 cm- 3 and V = 400 km/s, yielding Rc = 53 RJ. 

(If B is 1 gauss, R is about half this value.) Thus 
0 C 

the magnetosphere includes all of the Galilean satellites. 

The shape of the magnetosphere is independent of 

solar wind pressure in Williams I and Mead's model (1965). 

One would expect that the shape of earth's and Jupiter's 

magnetospheres are about the same. Brice and Ioannidis 

estimate the effect of convection patterns in the zeno­

magnetic cavity. If the internal field lines co-rotate 

with Jupiter, their motion is very rapid near the boundary 

of the magnetosphere; their velocity near the magneto­

pause would be 640 km/s (for Rc = 53 RJ). The co-rotation 

electric fields then would be about 4 volt/km. Brice and 

Ioannidis use both Axford's (1964) model and the 

Dungey-Petschek (Petschek 1966, Dungey 1961) model to 

calculate the expected convective electric fields, which 

turn out to be about 0.1 volt/km and 0.2 volt/km, 

respectively. Since these values are small compared to 

the co-rotation field values, the convection patterns 

are restricted to the vicinity of Jupiter's magnetopause, 
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and a few radii inside, the fields are largely unaffected 

by boundary effects. 

2.4 CO-ROTATION 

The magnetosphere of Jupiter should co-rotate with 

the planet provided that its density is neither too high 

nor too low. Gledhill (1967) has given a discussion of 

this problem. If the ionosphere of Jupiter is a good 

conductor, the field lines passing through it will be 

"frozen in. 11 Now if the field lines are perfect conduc­

tors, the electric field along them must vanish. The 

electrostatic potential <I> is determined by these two 

conditions. The first condition gives the gradient of <I> 

at the ionosphere, since 

E = -grad <I>= V -
- - X B 

C 
( 2. 4) 

in a good conductor; and the second condition implies 

that 
. 

E · B = (grad <I>+ A)· curl A= 0 ( 2. 5) 

where A is the magnetic vector potential. 

Hones and Bergeson (1965) solved for <I> explicitly for 

the case of a tilted, centered dipole field . The 

electrostatic field is exactly such that the Ex B first 

order drift is the co-rotation velocity. The field is 

set up by a very small amount of charge separation through­

out the magnetosphere. Melrose (1967) estimates that this 

electrostatic potential requires an excess charge density 

-14 3 of only about 10 electrons/cm. Clearly if the overall 
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density is this low, equation 2. 4 cannot be satisfied . 

At very low densities equation 2. 5 cannot be satisfied 

either. Gledhill also remarks that if the density is so 

high that the conductivity perpendicular to the field 

lines is large, then the field lines need not be equipo­

tentials and equation 2.5 breaks down. 

Chapman (1964) gives the ratio of the longitudinal 

to the transverse conductivity as: 

:::: 1 + 
n. 

l. 

\) . 
l. 

( 2. 6) 

where n and n. are the electron and ion gyrofrequencies, 
e i 

and v and v. are the collision frequencies of electrons e l 

with electrons and ions with electrons, respectively. 

Ginzberg (1964) shows that v = v., approximately, and e i 

gives the mean value of v. (averaged over velocities) as: 
l. 

( 2. 7) 

If the transve .rse conductivity is to be much less 

than the longitudinal conductivity, then 

\) . << 
l 

n n. e l. 
43 n. 

l 
( 2. 8) 

For a surface equatorial field of 10 gauss, the 

ion gyrofrequency at Io's orbit (5.9 R3 ) is 500 sec- 1 . 

4 
A plasma of temperature 10 °K would have to have a 

density there on the order of 10 8 cm- 3 in order to 

violate inequality 2 . 8. However, the inequality must be 

great, or else the co-rotation charge distribution will 
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be shorted out, and the magnetosphere will not co-rotate. 

There are good reasons to believe that the density is, in 

fact, very small, so that 2.8 is very well satisfied. 

2.5 PLASMA DENSITY 

Carr and Gulkis (1969) give a survey of ideas 

about the n W11ber density of the zenomagne tic cavity. 

Brice (1968) argues that photoelectrons alone will popu-

late the zenomagnetic cavity to a density 0.1 cm -3 

(Ioannidis (1970) and Ioannidis and Brice (1970) consider 

this and related problems in more detail.) 

Warwick and Dulk (1964), Warwick (1967), and 

Parker, Dulk, and Warwick (1969) have looked for Faraday 

rotation in Jupiter's DAM radiation. The observed 

rotation occurs almost entirely in earth's ionosphere. 

The radiation is probably penetrated in the extraordinary 

mode. If mode coupling occurs in Jupiter's plasmasphere, 

-3 
then its density must be less than 10 cm at 2 RJ. This 

would be about two orders of magnitude down from the 

density of the earth's magnetosphere. 

Brice and Ioannidis (1970) quote Axford (1964) 

to the effect that on the order of 1 percent of the 

energetic particles incident from the solar wind on the 

magnetosphere of the earth are deposited in it. If tl1e 

same ratio holds for Jupiter, and if the solar wind 

continues out beyond Jupiter, the total flux deposited 

into the polar regions of Jupiter's magnetosphere could 
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be larger. On the other hand, the convective electric 

fields would be less efficient in injecting plasma through 

the boundary of the zenomagnetic cavity. So the plasma 

density around Jupiter may or may not be comparable to 

that around the earth. 

The variation of density with radius is restricted 

to lie between two limits determined by interchange 

instabilities. If the density falls off too fast, then 

an instability like the Rayleigh-Taylor instability, 

except that centrifugal force replaces gravitational 

force, will tend to decrease the gradient by replacing 

inner, denser flux tubes by outer, less dense flux tubes. 

Melrose writes the condition that this instability not 

arise as: 

l dN 
N dr 

< 8 2 ) ( 'Y - 1) 

r(br 2 - ! + S 'Y/a) r 

( 2 • 9) 

where 8 is 1 plus the exponent in the radial dependence 

of magnetic field (B = 4 for a dipole field); is the 

ratio of specific heats; a and b are dimensionless 

ratios which Melrose gives as 35 and .086, respectively; 

r is radius divided by RJ. 

2 At the point r = 2.3, br - 1/r = 0, and gravita-

tional force just balances centrifugal force. At this 

radius 2.9 implies that the density gradient cannot fall 

off faster than: 

N a: r -8 {'Y-1) 
~ 

-4 r { 2. 10) 
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However, at very large distances, a smalle r density 

gradient is required. In fact, for r > 10, equation 2.9 

implies that the maximwn stable gradient corresponds to 

the profile: 

N a: exp S2
Y(Y-l) 1 

2 ab 2 r 
:::: const. (2.11) 

The outer magnetosphere then should be of roughly 

constant density at large distances. This whole analysis, 

of course, neglects external sources of plasma, which 

would change the stability criteria. 

Piddington (1967) calculates the maximum plasma 

density that Jupiter's magnetosphere can hold. In a 

curved field, electrons and protons execute drift motions 

perpendicular to both the field and the radius of curva­

ture. The result in a dipole field is a ring current 

which tends to decrease the field inside and increase it 

outside. The body force or the plasma, J x B, is exactly 

equal and opposite to the centrifugal force. The current 

density is given by: 

j = 
QNM r

4 
RJ 

2 B 
0 

( 2 • 12) 

where~ is the rotational velocity of Jupiter, N is the 

particle density, M is the proton mass, and B
0 

is the 

surface field. Piddington makes an order of magnitude 

estimate for st .abil.i ty against the diamagnetic effects 

of the current by requiring that the current density 

x 4~ must be less than the radial derivative of the 

magnetic dipole field. He obtains: 
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N < 
3 B 2 

0 

2rrn
2 

r
8 

RJ
2 

M 
( 2. 13) 

At r = 6, the density must be less than 10 7 -3 cm 

Equation 2.13 is rewritten by Piddington in terms of the 

rotational velocity VR and the Alfven velocity VA: 

(2.14) 

Thus in a stable magnetosphere, the Alfven speed 

cannot be smaller than a limit determined only by the 

speed of rotation at any given point. 

2 • 6 PLASMA TEMPERATURE 

The outer magnetosphere of the earth seems to 

include two energy components (Cole, 1966), but the 

experimental data are scanty. Patel (1964) infers a 

temperature of about 1 ev from data of Gringauz, et al. 

(1962) in the outer magnetosphere. Sagalyn and Smiddy 

-3 (1965) find a positive ion density of 1 cm with an 

average ion energy of 350 ev. Liemohn and Scarf (1962) 

find a temperature of 30 ev from nose-whistler data, but 

Guthart (1964) claims an upper limit of 2 ev. The 

variation in measurements may be due to the difference 

between quiet and disturbed conditions. Bengt Hultquist 

{1966) says that when the magnetosphere is disturbed, a 

temperature of 10 ev is not unreasonable. 

Particles energized by resonance with convective 

electric fields in Jupiter's magnetosphere would have 
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about 200 times the energy of such particles in earth's 

magnetosphere (Brice and Ioannidis 1970). If the thermal 

component of the plasma results from cooling of this 

particular high energy component, then one would expect 

the energy of the thermal plasma to be higher in Jupiter's 

magnetosphere than in earth's. 



CHAPTER III 

THE MINIMUM HYPOTHESIS 

AND THE ASSUMED PARAMETERS 

3.1 A MOON-LIKE IO 
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As has been shown in Chapter II, the exact values 

of Io's mass, Jupiter's magnetic field, plasma density 

profile, etc. are not known very well. In considering 

ways in which Io can excite a plasma disturbance, some 

range of values of each of the relevant parameters must 

be assumed. Although the actual mechanism by which Io 

influences Jupiter may in fact involve some unexpected 

or unusual datum (such as large permeability in Io or 

non-synchronous rotation) it would be wiser to assume a 

more unimaginative family of parameters characterizing 

Io. This thesis makes the assumption that Io is not 

unlike earth's moon in size, rotation, density, conduc­

tivity, permeability, and permittivity. In other details 

it will differ, for example: temperature, atmosphere, and 

velocity. (Surprisingly enough, in spite of the assump-

tion of moon-like characteristics for Io, the mathemati­

cal description of Io's wake will be general enough to 

include the two "unexpected" characteristics mentioned 

above: large permeability, and non-synchronous rotation.) 

Table II lists the estimated conductivity, 

permeability, permittivity, the density, radius, and 

mass of earth's moon. Io's surface temperature as 

determined by infrared measurements, its velocity through 



TABLE II 

Pro p erties of Earth's Moon 

Parameter 

Conductivity (surface) 
(interior) 

young, cold moon 

old, hot moon 

Permeability (surface) 
( ·~free space value) 

Permittivity 
(7free space value) 
(Homogeneous moon) 
(concentric layers) 

(local variations) 

Density (surface) 
(core) 
(mean) 

Radius 

Mass 

Temperature of Io 

Observed brightness of Io 
at inferior geocentric 

Value 

l0- 12 tolO-lO(MKS) 

10- 2 

10 2 

l.026<K <l.7 
m 

2.8±0.7 
1.8 above 5-l0m 
5 below 5-l0m 
1.8-20 

3.1±0.l g cm3 

3.6±0.l 
3.34 

1738 km 

7.34Xl0 25 g 

conjunction: 135°K 

Average brightness 
temperature 101°K 

Minimum theoretical 
temperature at I.G.C. 
(without atmosphere) 145°K 

Minimum theoretical 
average temperature 
(without atmosphere) 

Velocit y of Io 

Relative to field lines: 
inertial: 

-100 °K 

56 km/s 
17 km/s 

21a 

Source 

Ward, 1969 

England et 
al. 196 8 

" 

Ward, 1969 

II 

" 
" 
" 

Solomon and 
Toksoz,1968 

Murray et 
al. 1964 

Binder and 
Cruikshank 
1964 

Richardson 
and Shum, 
1966 
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the magnetosphere relative to an inertial frame and 

relative to a co-rotating magnetosphere are also listed. 

3.2 ASSUMED PROPERI'IES OF THE MAGNETOSPHERE 

The density of Io's environment is probably 

sufficiently low, and the thermal energy sufficiently 

high, that the plasma is nearly collisionless. The 

restrictions which this puts on the possible range of 

density and temperature are very weak, and will be 

discussed in Chapter V. If the Magnetic field is suffi­

ciently large, then low frequency phenomena will be of 

more importance than high frequency phenomena. This is 

because, (Warwick, 1967) the base frequency associated 

with the motion of Io will be the rate at which plasma 

flows by Io. This is about one cycle per minute for a 

speed of 56 km/s relative to the co-rotating field lines 

(which move faster than Io) and a diameter of 3400 km. 

This frequency is much lower than the ion gyrofreguency 

or the plasma frequency, and thus resonance effects will 

probably be negligible. 

The magnetic pressure is certainly larger than 

the thermal pressure, or else the plasma could not be 

contained for long. The ratio of thermal to magnetic 

pressure (called S) will be assumed << l. As a conse­

quence of this, it is clear that magnetic forces will 

dominate pressure gradient forces, and so we will consi­

der only electromagnetic sources of hydromagnetic waves 
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and neglect pressure or density sources. The meaning of 

this statement will be clarified in Chapter IV. 

3.3 AVAILABLE ENERGY 

On the basis of the DAM energy received at earth, 

and the narrow beaming effects referred to in Section 

1.4, Warwick (1963a, 1967) infers that the power output 

in a single DAM event is about 2 x 10 7 to 10 8 watts. If 

all of this energy comes ultimately from Io with an 

efficiency of 1 percent, will the supply of energy at Io 

be depleted rapidly? First of all, suppose it comes 

from the kinetic energy of Io, which amounts to about 

4 x 10 31 joules. In one century it would lose only about 

10- 12 of its energy. The corresponding change on its 

orbital period would therefore be only about 10- 7 seconds, 

which would be undetectable. In view of the strong 

resonance Io has with the other satellites, their energy 

might be available as well. 

Suppose that some fraction of the magnetic energy 

through which Io passes is converted into waves or 

currents which propagate down to the surf ace of Jupiter, 

where they are converted into electromagnetic waves. 

This power would equal 

p Mag = f VI ( :n ( 3 .1) 

For a ten gauss surface equatorial field, the field 

BI at Io is about 0.05 gauss, VI= 55 km/s, RI= 1650 km, 

and so 
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PM = f x 4 x 10 20 watts . . ag 

All that is necessary is that f > 10- 11 to get a reason-... 
able amount of power at Io. If the thermal energy were 

so converted, the maximum power available would be lower 

by a factor of S. For a plasma density of l/cm 3 and a 

temperature of 10 ev, S = 2 x 10- 7 , and so the process 

would have to be very efficient to rival the source of 

magnetic energy. 

3.4 NON-LINEAR VS. LINEAR 

If the energy needed to power the Io-associated 

radiation were too high, then the currents and/or waves 

generated by Io might have to be large in amplitude, 

which would mean that the problem is inherently non-lin­

ear. This thesis will show, however, that a large class 

of disturbances which Io could generate are of suffi­

ciently small amplitude that they are at least approxi­

mately linear and yet can transport as much as a few 

orders of magnitude more power toward Jupiter than is 

inferred to exist in the Io-related emission. The 

actual disturbance may in fact involve nonlinear motions 

or fields, but the point here is that it is not necessary 

to assume ab in i tio that the motions are non-linear in 

order to get a reasonable amount of radiated hydro­

magnetic power from Io. 

One good reason for looking at linear disturbances 

first is that they are better understood than nonlinear 
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ones, and can be calculated more accurately. The 

nonlinear disturbances postulated by Goldreich and 

Lynden-Bell (1969) or Piddington and Drake (1968), for 

example, are not intuitively obvious solutions of the 

system of equations which describes a magnetoactive 

medium. Whether they are or they are not, of course, 

would likely be difficult to demonstrate. Such models 

would be much more convincing .if the motions in the 

disturbance could be shown to be the large amplitude 

limit of a family of small amplitude linear disturbances. 

For this reason only linear wave motions will be studied 

in this thesis. 



CHAPTER IV 

IO AS AN ELECTROMAGNETIC SOURCE 

4.1 IO'S WAKE 

An analytical solution to the general problem of 

Io's wake in Jupiter's magnetosphere is not likely to be 

found except in some sort of approximate or asymptotic 

form. Even if the problem were governed by the equations 

of compressible, magnetofluid dynamics ( and Chapter V 

will show it is not), the nonlinearity of the equations 

makes an analytic solution improbable. A numerical 

solution may eventually be possible, but present-day 

electronic computers are barely adequate for 

three-dimensional hydrodynamic problems at lCM Reynolds 

numbers, let alone magnetohydrodynamic problems at high 

magnetic Reynolds numbers. Laboratory simulation is 

impossible because all of the relevant dimensionless 

ratios cannot be duplicated simultaneously in a 

laboratory-sized plasma chamber (Kristofesson, 1969). 

Analytical solutions have been obtained for the 

linear problem of compressible, collision-dominated, 

magneto-gas-dynamic flow around a two-dimensional, 

slender obstacle. See for example, Sears and Resler 

(1958), Sears (1960), McCune and Resler (1960). 

Extension to the case of a three-dimensional, thin 

obstacle is probably possible. However, such solutions 

would not have much relevance to the case of a blunt 



(spherical) obstacle, which would produce a nonlinear 

disturbance. 
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The problem of the wake of an earth satellite 

moving in a collisionless, low 6 medium has been studied 

by Ja. Al'Pert., et al. (1963), Ja. Al' .Pert (1965), K. 

Chopra (1961), Drell,, et al. (1965), Liu (1969), Gurevich, 

et al. (1969) and many others. Some of the ideas presen­

ted by these authors are disputed, and a good deal of 

work remains to be done in this field. Perhaps the 

question of Io's wake is more closely related to the 

earth satellite wake problem than to the lunar wake 

problem--another unsettled issue--since earth's moon, 

during most of its orbit, moves through the interplane­

tary medium, which has S comparable to unity (Ness, 

et al., 196 8) , rather than very small. On the other 

hand, the ratios of body size to gyro-radii and Debeye 

length are not scaled well in the earth satellite 

problem and one does not expect Cowling times to be as 

large for an artificial satellite as for the moon or Io. 

If the problems of earth satellite wakes and the 

lunar wake are still unresolved, then how much faith can 

be put in theories of the wake of Io whose nature and 

environment are so uncertain? This leads one to search 

for a more general approach to the problem of wave 

generation by a moving satellite than the more rigorous 

technique of solving for all features of the wake. The 

answer lies in the standard approaches of Lighthill 



(1958) and Kuperus (1965) to the problem of hydromag­

netic radiation. If the equations of a system can be 

linearized, then it is a standard technique to take the 

nonlinear terms and--rather than throw them out--put 
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them on the right hand side of the equations as source 

terms. Then one makes estimates of these terms on the 

right hand side and calculates the response of the system 

by obtaining the particular solution for those source 

terms. This technique works well for hyperbolic equations, 

because then the nonlinear terms do not feed back onto the 

system, but cause waves which are radiated away. The 

solution is then good only at large distances from the 

source of waves, and not applicable near the region 

where the nonlinear terms are large. The great advan-

tage of the technique is that one may solve a good 

fraction of the problem by obtaining the waves first for 

quite general source terms, leaving an accurate calcula­

tion of the source amplitude for later, and merely making 

estimates of their strength in the initial stage. 

, . : Y!CMENTS OF I'BE SOURCE 

Whatever the nature of the flow patterns and 

current systems around Io, it is clear that if they are 

to cause significantly large waves, they must be simply 

correlated over dimensions of a few Io radii. This 

implies that the dipole and quadrupole moments of the 

disturbance ought to cause the largest waves at great 
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distances. Now whether these lower moments will predomin­

ate in the actual disturbance is not immediately obvious, 

but a few examples should illustrate that this is normally 

true for a wide variety of disturbances. 

Magnetic dipole examples 

1. Burns (1968} suggested that Io might have a 

finite dipole moment, presumably due to ferromagnetism. 

2. A more likely possibility is that Io would have 

a small but significant dipole moment if it contained only 

as much magnetite as the Surveyor satellites seem to have 

found on the lunar surface (Ward, 1969). 

3. If the field lines "cleave around" Io, as 

Warwick (1967) has suggested, then currents inside Io or 

on its surface must exist to cancel the field inside, and 

Io would have a correspondingly strong magnetic dipole 

moment. 

4. One system of flow patterns and field disturb­

ances suggested by Dulk (1965) requires corresponding 

dipole cur r ent loops in the plasma around Io . 

5. This thesis will suggest that inductive 

effects caused by the slightly varying field seen by Io 

will also produce a magnetic moment . 

.Magnetic quadrupole 

1. A quadrupole can be thought of as the juxta­

position of two opposing dipoles. If any of the systems 

mentioned above, for example, tended to cancel one 



another, the leading moment would be a quadrupole 

(unless the symmetry were so strong that the quadrupole 

moment also vanished, leaving an octupole). 
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2. A conceivable way in which Io might induce a 

quadrupole moment in itself, is by rotating non-synchron­

ously. (Observations suggest synchronous rotation: 

Dollfus, 1961). As an example, consider rotation about 

an axis parallel to the ambient field. If the interior 

of Io is slightly conducting, the local flux tube would 

be twisted, with maximum twist at Io's equator. This is 

equivalent to the sum of a uniform field plus a toroidal 

field in Io's northern hemisphere plus the opposite 

toroidal field in the other hemisphere. Clearly this is 

the field produced by a cylindrically symmetric, toroidal 

solenoid, with windings in meridional planes, and charac­

terizes the quadrupole moment that Io would have in that 

case. 

Electric monopole 

It has been observed that earth satellites in the 

ionosphere tend to become charged to a potential of a few 

volts because of the higher flux of electrons onto their 

surface or other effects (Al'Pert, 1965). However, such 

charging cannot be significantly large for a natural 

satellite like Io, because the Debye length is so small 

compared to its dimensions. Charge neutrality is not 

likely to be violated over a scale length much greater 



than a Debye length. · (Besides which, charge is 

conserved, so that whenever there is negative change 

someplace, positive change exists elsewhere, hence a 

dipole is more like~y than a monopole.) 

Electric dipole 
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l. Because of the co-rotation electric field in 

Jupiter's magnetosphere, Goldreich and Lynden-Bell (1969) 

argued that Io would have a paten tial across it in the 

direction perpendicular to its motion and to the ambient 

magnetic field. Gurevich, et al. (1969) discusses such 

an effect for earth satellites in the ionosphere. 

Whether currents flow or not in response to this potential 

is debatable. The crust of earth's moon (which Chapter 

III takes as a model for Io) has a D.C. conductivity on 

the order of 10-lO to 10- 12 mho/m (Ward, 1969), which is 

five to seven powers of ten lower than the value used by 

Goldreich and Lynden-Bell for Io. If there are no 

currents, then Io has an electric dipole moment. If 

there is cu.rrent flow, then the electric dipole moment 

will be decreased. The current distribution has to be a 

localized one to apply the method of moments, and in 

fact, if there are large currents along the field lines, 

the mathematical techniques (to be developed in Chapter 

V) do not apply. 

2. Because of the different mean thermal veloci­

ties of ions and electrons, the region behind a satellite 

will have a gradient in charge density which is a very 



complicated ( and unknown) function of the satellite 

speed, the temperature, the field strength, and the 

distance behind the body. If the satellite is moving 

rapidly with respect to the ions, but slowly with 

respect to the electrons, shadowing will cause the ions 

to be slightly depleted immediately downstream. The 

difference in charge will be made up elsewhere around 
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the satellite. The result is a charge distribution which 

has a dipole moment parallel to the stream velocity. 

Higher moments will also exist. Charge neutrality cannot 

be violated over a dimension much larger than a Debye 

length, but the latter is inversely proportional to the 

square root of density, and so may be relatively large 

in the close wake. The strength of this dipole moment 

may be estimated by the condition that the electrostatic 

energy of the charge distribution must be of the order 

of the thermal energy in that same volume, since the 

kinetic energy of the individual particle determines the 

amount of charge gradient and a large charge gradient 

will alter this kinetic energy to destroy itself. Not 

even an approximate solution of this problem has been 

achieved for the case of a low S, collisionless plasma 

with strong magnetic field (Gurevich, et al., 1969). 
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4.3 THE MATHEMATICS OF DIPOLE SOURCES 

Maghetic di p oles 

A macroscopic dipole field is representable as a 

super-position of microscopic dipoles. Let M (x)be 

magnetization as a function of position x. The macro­

scopic and microscopic magnetic fields Hand Bare 

related by the equation: 

B = H + 4 n M 

(Gaussian units are used throughout.) 

The current density of any steady system of 

currents can be represented by some function M (x) 

through the relation: 

J = c curl M 

( 4 .1) 

(4.2) 

Consider a singular magnetization density given by 

J " M (x;x) = me a<x - x >, ( 4. 3) 

where A 

e is a unit vector and o (x) is the three-dimen-

sional Dirac delta function, and m is the magnetic 
I 

moment. Similarly, let J be the corresponding current 

density: 

..,..1 - _1 I - _I 

J (x;x) = c curl M (x;x) ( 4. 4) 

Then it is clear that an arbitrary steady current density 

is a linear combination of such currents because of the 

identity: 

m 
f d3 x' 

- _, 
e. j' . (x;x ), 

J J 

(4.5) 
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where the summation convention on the component indices 
I - _ I 

is assumed. It is easy to show that J (x;x) represents 

an infinitesimal dipole (Jackson 1963), so it follows that 

any steady system of currents can be represented as a 

superposition of infinitesimal dipole current loops. As 

a consequence, we need only to study the effect of 

infinitesimal dipoles to determine the effects of finite 

dipoles in a linear system. 

The solution to the equation 

4iT I - _, 
curl B = - :t (x,x ) = -4iTe X grad 0 (x-x ) (4.6) 

C 

I 

is the dipole field centered at X = X 

B = ( 3fi (fi . e> - e)/R 3 ( 4. 7) 

where R is the distance from x to x' and fl is the 

unit vector in that direction. 

Electric di p oles 

An electric dipole source has the charge density: 

q = pe • grad o (x - x'), 

where p is the dipole moment and is related to the 

current density by the continuity equation: 

divJ+!s. =O at 

The current density is clearly given by: 

j = -e ~ o (x - x') at 

( 4. 8) 

(4.9) 

( 4. 10) 



Thus the current density due to electric and magnetic 

dipole sources is: 

_, 
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J = - MC x 
an 

grad o(x-x'} - at 8 (x - x) , ( 4. 11) 

where Mand pare the vectorial magnetic and electric 
- _, ti 

dipole moments, located at x = x and x = x, respectively. 

Movin g and stationa ry di p oles 

It is easy to see that a constant but linearly 

moving dipole is a linear combination of stationary but 

oscillating dipoles stationed along the axis of the 

linear motion. Let 

M (x, t) = M 8 (x - vt) cS (y) cS ( z) 

Then frequency analyze this equation, to obtain 
00 

M (x, t} =J 
-oo 

M 
dw 27fV 

o(y) o(z} e-iwx/v iwt 
e 

Therefore M is manifestly a linear combination of 

dipoles of frequency w and amplitude 

cS(y) c(z) -iwx/v 
e 

( 4. 12} 

(4.13) 

( 4. 14} 

The linear combination of equation 4.13 holds for 

transformation of source terms, so it holds for the 

corresponding fields caused by the sources, or for any 

system of quantities which are linearly related to such 

sources. This fact will be used implicitly in 

discussions of later chapters. 



CHAPTER V 

EQUATIONS DESCRIBING A COLLISIONLESS, 

MAGNETOACTIVE PLASMA 

5.1 THE COLLISIONLESS REGIME 

Bernstein and Trehan (1960) divide plasma collisions 

into three classes. First are those in which the impact 

parameter b is less than that for 90° scattering, b 90 . 

Second are those collisions in which the impact parameter 

is larger than b 90 but less than the Debye length, D. 

The third class includes impact parameters greater than 

D. These are many body collisions when the number of 

particles in a Debye sphere is large. This sort of 

scattering is a collective effect described by Maxwell's 

equations. 

The impact parameter for 90° scattering comes from 

the Rutherford formula: 

2 2 b = (Z 1 z2 e / m <v >) cot 0/2 ( 5 .1) 

where z1 and z
2 

are the charge numbers, m is the reduced 

mass and v is the relative velocity of the particles. 

For electron-proton and electron-electron scattering b 

is lower by 1.8 x 10 3 • For thermal energies of about 

10 ev, the former is about 2 x 10- 8 cm. 

The Debye length D is given by 



D (m < 2 
>/12 N 2) 1/2 = V 'Tr , 

e 

where m is the electron mass. 

For kT 10 and N = 1 -3 
D = 2 X 10 3 = ev, cm cm. I 

The number of particles g in a Debye sphere is 

= 47T ND3 g 3 

For the same values of T and 10 
N, g = 3 X 10 . 
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(5. 2) 

( 5. 3) 

The time T between 90° deflections (Bernstein 
C 

and Trehan, 1960) is 

3(kT) 2 

4 
2N ln (g/9) 

e 

(5. 4) 

This is simply a more exact formulation of the approxi­

mate formula: 

T = l/N7Tb2 
<v>, 

C 

where <v> is a mean relative velocity. 

Equation 5.4 yields Tc ~6 x 10 5 sec for the temperature 

and density used previously. 

One may conclude that at densities of 1 cm- 3 and 

temperatures of 10 ev, any process which has a period 

5 less than 10 sec may be regarded as collisionless. For 

frequencies on the order of 10- 1 , and a temperature of 

10 ev, equation 5.4 implies that the density may be as 

high as 105 and the process will still be collisionless. 

For higher temperatures the densities could still be 

higher and yet the medium will be collisionless at this 

frequency. 
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These estimates imply that the Vlasov equation 

plus Maxwell's equations form the relevant system for 

Jupiter's magnetosphere. 

5.2 EQUATIONS FOR A COLLISIONLESS PLASM.A 

The fields generated by an arbitrary system of 

currents in a vacuum are governed by the equations 

curl curl - - 1 E (x,t)+ c2 a
2 

E cx,t>= 41r .µ_ -t. <x,t> (5.5) 
at2 C a 

= - c curl E (5. 6) 

Equation 5.5 is the wave equation for the electric field, 

and equation 5.6 is Faraday's law, which determines the 

magnetic field in terms of the electric field. The 

function Jon the right hand side of 5.5 may include 

polarization currents jp as well as source currents js. 

The effect of a plasma may be included in the current 

density in the following way (Stepanov 1958): 

1 a
2

E 41re _a f d3-v ( curl curl E + - f (v) f )<v) v 2 a t2 - - -2- at i - e 
C . C 

- -
C 

s (5. 7) 

The first term on the right hand side of 5.7 is 
• 

due to the polarization current j caused by differential p 

motions of the plasma ions and electrons. The second 

term is an arbitrary source function. The quantities 

f. and f are the distribution functions for ions and 
l. e 

electrons, normalized such that their integrals over 



velocity space are each unity. 

The Vlasov equation detennines the distribution 

functions: 
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af at+ V • 
a f + e 

m 
(E + V X B) 

C 
f = o, (5 . 8) ax 

where f may be fi or fe, e is ion or electron charge, 

and m is ion or electron mass. 

Up to this point, the only approximations have 

been the neglect of collisions and the assumption of 

non-relativistic motions. At this point, it is necessary 

to make further approximations. Equation 5. 8 must be 

linearized. This requires the following assumptions: 

1. The "zero order" electric field in the plasma 

frame vanishes. 

2. The "zero order" magnetic field is parallel 

to the Z axis and homogeneous. 

3. The 11 zero order" velocity distributions are 

independent of position and time, and are 

"gyrotropic. 11 

4. "Second order" tenns are negligible. 

The first three assumptions imply that this 

formalism is valid for wave motions is a non-homogeneous 

medium only on a scale small enough that variations in 

the zero order quantities are negligible. This limita­

tion will be discussed in Chapter VII. Assumption ( 3) 

implies that the zero-order velocity distributions are 

functions only of the velocity components Vr and V, 



perpendicular and parallel to the field. Such a 

function satisfies the "zero-order" Vlasov equation, 

which is the "gyrotropic" condition: 
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~ .>< Bo 
C 

a 
av 

f
0 

(v)= O (5. 9) 

Zero subscripts indicate zero order. All functions that 

remain in the theory will be first order. It is conven­

ient to Fourier analyze 5.8 using the transform: 

..,. 1 f(~,w) = 2 (27T) 
r _ik•x + iwt J d 3 

X dte f ( X , t) • ( 5. 10) 

The Vlasov 

[i (w- V 

equation then becomes (Stepanov, 1958): 

eB ] af - o a - e- . o 
• k) + - ~ f (k, w) = - E (k , w) • -me o..,, m -

d V 

(v) • 

The 

n = 

and 

5.11 

(5. 11) 

quantity cp is the azimuth angle of velocity. Let 

eB
0

/mc, with subscripts e or i for each species, 

let a be the azimuth angle for k. Then equation 

has the solution for f in terms of E: 

4> a f 
f (k, w) = c e is(q>) 

Bo 
- f 0 E• -=-- -is("'') 

e "' dq>' ( 5. 12) 
av 

where s ( q>) -

Equation 5.12 gives an order of magnitude esti-

mate relating E 

-C 

f 
fo 

and f 
e 

--c 

f 
e 

or f . • 
1 

v. r1. --
foe c 

f . 
l. 

r. 
01. 

( 5. 13) 
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(The latter 6Stimates follow from 5.18. The plasma 

currents must be "first order.") Thus for linearization 

to be valid, we must have the following inequalities: 

<< v./c 
l. 

(5. 14) 

Since linearization has been assumed, there must be a 

linear relation between J and E, and this is put into 

the form 5.15 (Stix, 1962), with K denoting the 

"dielectric tensor." 

j(k,w) = 4: 1 I K (k,w) - l l E (k,w) ( 5. 15) 

The tensor K may be determined by taking equation 5.11 

for ions and for electrons, subtracting them, obtaining 

the resulting current density .and equating coefficients 

of electric field components in equations 5.12 and 5.15. 

d<I>' VE. af 0 e~~[i(s(<1>)-s(<1>'))l 
av 1 

( 5. 16) 

The sum is over species ,and Z = + 1 for ions and -1 for 

electrons. 

Stepanov (1958), Stix (1962), and Tajiri (1967} 

(for slightly different assumptions), have evaluated K 

by going through the process mentioned above after taking 

f
0 

to be a Maxwellian distribution function. The most 

general form was taken by Stix who allowed the tempera­

ture to be different for ions and electrons, permitted 



anisotropy with respect to radial and longitudinal 

velocities, and introduced an arbitrary drift velocity 

parallel to the magnetic field. The elements of the 

dielectric tensor can be written as definite integrals 

which are not reducible to simple closed functions 

(Stepanov, 1958), or as infinite series of Bessel 

functions and plasma dispersion functions (Stix, 1962). 

An entirely equivalent, though different analysis was 

carried through by Barnes (1968) in the formalism of 

Chandrasekhar, Kaufman, and Watson (1956) ~ The tensor 

elements are di splayed in Appendix I. 

The Fourier transform of 5.7 coupled to 5.17 

yields the wave equation for collective oscillations of 

a plasma: 

,,,2 = 4 . 
k X k X E (k,w) + ½-K (lc,w) •E (k,w) =- ~iw JS (k,w) 

C 
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(5 .17) 

5.3 FORMAL SOLUTION 

The current density js on the . right hand side of 

this equation is a source current for the electric field 

E. It is specified in advance and E is calculated. B 

follows from Faraday's law. The matrix operator acting 

on E may be inverted to obtain a formal solution for 

E in terms of Js· The general form of the matrix 

operator, in component form, is: 

L .. 
1J 

2 = (n.n . - n cS 
1 J 1

,.J. + K •. ) 
1J 

(5.18) 
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where n. = k. c/w is the vector index of refraction. 
l. l. 

Thus the formal solut i on to (2.13) is given by : 

-1 
E (k, w) 

-4,ric = w L (k,w) • Js (k,w). ( ~ , 19) 

For any source term, in principle, we may do the 

inverse Fourier transform in k and w to find the 

"response• E (x, t) • We may choose a real k vector and 

let w be complex. The frequency transform is a contour 

integral containing the poles of the right hand side of 

5.19. If ILi has zeroes in the upper half w plane, the 

system will be unstable. Much of the plasma physics 

involves searching for these instabilities. Among them 

are the loss-cone and two-stream instabilities, which 

depend on the distribution functions, the firehose 

instability which depends on a species temperature 

anisotropy, and various instabilities depending on 

density gradients, etc. As discussed in Chapter III, 

we will not look into the difficult (but interesting) 

problem of ways in which sources can excite such 

instabilities, but will assume that all of the zeroes of 

ILi are in the lower half w plane. Tajiri (1967) has 

shown that this is true in the low frequency range 

(w<<ni), which is the regime we are interested in. 
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5.4 THE HYDROMAGNETIC MODES 

In the low-frequency limit the explicit form of 

= -1 L is very simple. Appendix II derives the appropriate 

form as a limiting case of the general expression for K. 

Since L is a tensor function of the vector k, it can 

be expressed in terms of products of rotation matrices 

and its value when k is restricted to (say) the xz 

plane. Thus: 

L ( k , k , a.; w) = R (-a) L ( k , k , o; w) R (a) , r z r z (5.20) 

Where a is the azimuth angle of the wave vector 

k, and R is a rotation matrix. For simplicity we look 

at L
0

, the a=O expression of L; k is therefore in the 

xz plane. Equation 5.20 will be used to obtain the 

. = general expression for L. 

From appendix II, 

= 1 
K -n 2 

11 z 

0 

-n n 
X Z 

0 

l 

0 

-n n 
X Z 

0 

(5.21} 

The dispersion relation in this approximation is simply 

(5.22) 



45 

Note that terms of order l/K 33 have been neglected. This 

is an essential part of the approximation, which is 

justified at low frequencies and long wavelengths. Barnes 

(1966) and Tajiri, (1967) derive the same dispersion 

relation for low frequency and lows. The three factors 

correspond to three sets of modes. 

shear Alfven mode. It involves only the wave vector 

component in the field direction, therefore travels along 

2 the magnetic field. K11 -n = 0 for the compressional 

Alfven mode, which is neither purely transverse nor 

longitudinal. At low 6 it involves only the magnitude 

of the wave vector, and therefore propagates spherically 

outward from its source. These two modes are essentially 

the same as the two fastest modes of low 6 MHD (Denisse 

and Delcroix, 1963) or of quasi-hydrodynamics (Chew, 

Goldberger and Low, 1956). The main virtue of this 

formulation is that equation 5.22 can be embellished to 

include collisi ,onless damping effects. 

The third factor yields modes given by K33=o. 

These were first discussed by Fried and Gould (1961). 

There are an infinity of roots to K33=o, all of them in 

the lower half w plane. These "Fried and Gould" waves 

are simply longitudinal plasma oscillations which damp 

out in at most one wavelength by Landau damping effects. 

Appendix III estimates their total amplitude for a 

simply source current and demonstrates explicitly that 

their effect is negligible compared to that of the Alfven 
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waves at low frequencies. 

5.5 THE ALFVEN WAVE FIELDS 

Since the compressional Alfven waves propagate ~ut 

nearly radially from the source, they are geometrically 

attenuated as the inverse square.of the radius. The 

Fried and Gould waves are heavily damped. Thus only the 

shear Alfven modes remain. These modes are slightly 

damped by collisionless processes. Chapter VIII 

discusses this. The electric and magnetic fields of the 

shear Alfven mode can be calculated by extracting the 

appropriate terms from L -l We call this tensor s. 

Appendix IV shows that the shear Alfven electric field is 

formally given by: 

EA (k,w) = 4,ric s js (k, w) 
w 

k 
2 

X 
k k 

X y 0 

k k k 2 
0 

where s = 1 X y y 
2 2 

(Kll-nz ) k r 0 0 0 

(5.23) 

The electric field in time and space can be 

evaluated by inverse Fourier-transforming equation 5.23 

according to the methods described by Briggs (1964). 

Small damping terms must be introduced in that case, in 

order to make the transforms meaningful. An alternative 

method is to convert 5.23 into a partial differential 

equation. This is the method to be adopted and carried 
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through in Chapter VI. 

The collisionless damping terms, though very small 

at low frequencies, produce significant "global" effects 

in the Alfven waves. If the temperature is allowed b.J 

vanish in the expression for the dielectric tensor, and 

then the frequency is made very small, the results are 

qualitatively different than if the reverse procedure is 

followed. The limits T~o and w~o do not commute. For 

this reason, the results of A.K. Sundaram (1969) or 

Arbel and Felsen {1963) for the effects of point sources 

in a cold plasma are inapplicable to our problem. These 

matters will be discussed in Chapter VII. 



CHAPTER VI 

GENERATION OF SHEAR ALFVEN WAVES 

6 .1 THE WAVE EQUATION 

The formal solution 5.23 for shear Alfven waves 

produced by an arbitrary current source may be written in 

the vector form: 

k 
= -4,ri w r k · (k, w) 

c2 r Js 

(6. 1) 

The inverse Fourier transform of this equation yields the 

partial differential equation 

(Kn a2 -::2) VT2 EA 
41T a ..... 

c2 at 2 = 2 'i/',· 'i/T JS 
(6. 2) 

C 
T at . 

where the subscript T designates that the differentia­

tion is transverse to the z (magnetic field) direction. 

According to equation (4.6) the current associated 

with a magnetic dipole source is: 

j
9 

(x~t) = cm x grad o (x - v t), (6. 3) 

where x' has been set equal to vt. Equation 6.3 gives 

the current of a dipole source moving with velocity v . 

An interesting result follows immediately from equations 

6.2 and 6.3. If the magnetic moment m of the source is 

parallel to the z axis, the right hand of 6.2 vanishes. 

This means that a magnetic dipole parallel to the external 

magnetic field does not excite shear Alfven waves. 

Equation 6.2 can be simplified by observing that 

,,,/ 
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Js is solenoidal, so that its transverse divergence 

equals minus the z derivative of its z component. 

Since the right hand side of 6.2 is a two-dimensional 

divergence, EA is a two-dimensional gradient. 

Let 

Then 

V 2 
T 

( 6 . 4) 

o (x - vt) ( 6. 5) .. 

Equation 6.4 shows that V ~ is proportional to a 
T 

vector potential, since in the absence of longitudinal 

electric fields, _the electric field may be written: 

E = .,_ (6. 6) 

Thus the vector potential is -c'v ~ plus an arbitrary 
T 

gradient. We choose the gauge in which 

a~ 
A= c az !, ( 6. 7) 

and the magnetic field of the Alfven wave is given by: 

( 6. 8) 

Equations 6.4 and 6.8 show that the fields of the 

wave are transverse to the ambient magnetic field, as 

expected. Appendix V derives the explicit solution of 6.5 

for velocity directed along the x axis: 

~(x,t) = ~ sgn (z) 
-m y+m (x-vt + vlzl/u) 

X y 
(x-vt+vlzl/u) 2 + y 2 (6.9) 

I 
1 
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where u • c/ -{¾iis the Alfven speed. 

The electric and magnetic fields are therefore 

(for z > o) : 

EA 'G; a~ -u 
V.TA = -v ax = -T C 

BA 
VC z X !lT 

a 4> 
Kll EA X 

A ( 6 .10) = - ax = z u 

~he flux of energy is given by the Poynting vector 

since the waves are non-dispersive, and this is clearly 

parallel to the z axis and proportional to EA2 . However, 

the integral over an area transverse to the flux does not 

converge because of the singularity in 4> at x-vt+vlzl/u=o 

and y = o. The infinity must be treated by going over 

from an infinitesimal to a finite source. 

6.2 WAVES FROM A FINITE SOURCE 

Since the equations are linear, one may take 

linear combinations of the sources and the same linear 

combinations of the fields to find the waves produced by 

any source whatsoever. For example, if the source 

current is given by equation 4.2 with an arbitrary 

magnetization density M = M (x - vt), then the electric 

field EF for a finite source is given in terms of the 

field EA for an infinitesimal source by: 

EF (x,t)= 
fa3x• M(x')EA (x-x 1

, t) 

fa3 
x' M(x') 

Note that if M(x) = o(x), ~=EA as desired. 

(6.13) 

_,,/ 



51 

The above integral, for reasonable functions 

M(x), "smears out" the singularity in EA such that EF 

produces a finite energy flux. The vector potential AF 

for a finite source is obtained from the potential A for 

the infinitesimal source in precisely the same way as the 

fields are. In obtaining AF, it is convenient to modify 

the form of A. Equation 6.7 and 6.9 yield the result 

(for z > o) : 

Let X = X - vt + vlzl/u and X' = x' + V z' /u. 

a 4> a4> i-m + ffh, X} A 
vc V d X y = C - = -= 

u ax x2 + az u ax 2 y 

v (-m a a I X I = ay + m ax) x2 + Y2 ( 6 .14) u X y 

Thus A assumes the form (for z > R so lz - z'I = z - z'r-

J 3 -d x' M(x') X - X' 
(X-X') 2 + (y-y')2 

( 6 • 15) 

The integration is over a sphere of radius R. 

When the source speed v is small compared to 

the Alfven speed u, and M(x) is a function of radius 

only, then AF can be written in a simpler form:. 

Appendix VI shows that for z > R, 

V a 
my ~x) { x2 

X 
G (r) l ( 6 . 16) ~ = u (-m - + 2 X oy + y 



R 
where G (r) -· 

r 

and r _ .J x2 + y2 • 

6.3 ENERGY FLUX 

l -

1 

R I 2 2 J M(s)sVs -r ds 
r R M(s)s 2 ds 

0 

, r ~ R 

, r > R 

For sufficiently "smooth" functions M(s), G(r) is 

a continuous, differentiable function, in terms of which 

one may write the radiated Alfven power. The Poynting 

vector may be written as: 

S = T-rr E x B = T,r" I V~I 2 
2 (6.17) 

So the power radiated in Alfven waves along one flux 

tube emanating from the source is: 

P = ~1T f dx f dy I V~I 2 (6.18) 

Appendix VII shows that 6.16 and 6.18 may be combined 

in to the form: 
2 2 00 

1 v2 3m +mx J 
P= ~ s 16 u -R4~ 

0 
( 6 .19) 

The expression inside the integral in a dimension­

less function dependent on the shape of M(r): Since ~(s) 

is known for s > 1, the integral may be evaluated for 

the range (1, 00 ), and it turns out to be 12. The portion 

of the integral between O and l requires an assumption 



53 

about the form of M. However we may apply the calculus 

of variations to find a minimum value of this integral. 

We require that G(s) and its first derivative be contin­

uous at S = 1, and that G(s) be bounded at the origin. 

Solving the relevant Euler equation (see Appendix VII) 

and evaluating the integral for the minimizing function 

leads to the value 4. Thus we may put a lower limit on 

the radiated Alfven power: 

2 3m 2 + m 2 
r > p . = V __ Y ......... __ x_ 

min u R4 
(6.20) 

It is of interest to investigate the extent to 

which this inequality is exceeded for reasonable 

functions M(r). The shape of M(r) is roughly dictated 

by the requirement that the induction currents should 

maximize near the surface of the core of Io at r = R. 

The simplest function for M would be M = 1 for r < R 

and M = o for r > R. By equation 4.2, this would be 

equivalent to a delta function surface current at r = R. 

This would be produced by a perfectly conducting sphere 

of radius R. It follows easily that G(s) = (l-(1-s 2 ) 3/ 2 ) 

/s. But the second derivative of this function contains 

the term (1-s 2 )-l/ 2 and the integral in 6.19 would 

diverge. Perhaps this is not surprising for a perfect 

conductor. If in fact the conductivity is finite, 

there will be a finite slope to M(r) at r = R. We 

therefore try simple functions for M which maximize at 

r = o and fall monotonically to zero at r = R. A class 
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of such functions is given by 

M(r) = , r < R 

0 
, r > R 

(Note that this class of functions tends to the function 

M = 1, r < R; M = o, r >Ras p tends to infinity.) 

For simplicity we choose the functions given by p = l 

and p = 3. These functions and their derivatives 

(proportional to the associated current densities) are 

plotted in figure 5. For p = 1, the induction current 

rises linearly from zero at the center to a maximum at 

r = R. For p = 3, the current density rises as r 5 from 

the center, peaking sharply at r = R. 

The functions G{s) and its derivatives are written 

out in Appendix VII. Numerical integration of the 

integrals in 6.19 yield the result that P(p=l) and 

P(p=3) exceed the minimum value of P by the ratios: 

the 

P(p=l)/P . = 2.54 min 

P(p=3}/P . = 1.38 min 

Thus the power radiated in Alfven waves is of 

order of~ 

2 2 2 .3m . + m 
p 2 V y X { 6 • 21) = -

R4 u 

From the earlier chapters, we have the values 
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Figure 5 

Two model pro£iles of ef£ective magnetization density 
M(r) and their associated current densities. M(r) = 
A(l-(r2/R2), where the constant A is determined by 
normalization. The current is given by J=c$ sin a M' (r), 
where~ is a unit vector in the azimuthal direction and 
a is co-latitude measured from the direction of 
rnagneti zation. 
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v = speed of Io relative to field lines= 56 km/s 

u = Alfven speed z 10 10 cm/s 

B
0 

= ambient field~ 0.05 G 

R = Io radius~ 1700 km 

3 We may assume that m~ (oB
0

)R where o B
0 

is the 

perturbation magnetic field. If this is 25 percent of 

the ambient field, then inserting the above values, 

P - 8 x 10 9 watt 

The form of equation 6.21 for the radiated Alfven 

power can be derived qualitatively. First consider the 

total energy of a magnetic dipole of moment m and 

d . h ' . 2/R 3 b h b ' . ra ius R. Tis ism , as may es own y integrating 

the magnetic field energy over all space. Next consider 

the rate at which this magnetic energy passes through the 

medium. This is V/R. Thus the power radiated must be 

some dimensionless quantity times (m2/R 3 ) (V/R). One 

expects the Alfven speed u to enter, and the only 

dimensionless ratio that may be constructed from rn, R, 

v, and u is v/u to some power. Reasoning from analogy 

with the radiat i on from electric and magnetic dipoles 

in vacuo, (see Jackson 1962) one expects P to be 

proportional to v 2 when v is small compared to the 

signal speed u. Thus the power of v/u must be one and 

p-(v/u) (v/R) (m2/R 2), which is equation 6.21. (When v 

approaches U;, the derivation of 6.21 breaks down, and 

another dimensionless function of v/u enters, but this 



must be determined by a complicated integration which 

we have not attempted.) 

56 

Figure 6 uses equation 6.21 and the approximation 

m = (oB
0

)R 3 to plot the Alfven power against the magnetic 

field strength and the particle density at Io's orbit. 

(The boundaries to the diagram indicate some of the weak 

constraints on B and N calculated in Chapter II. Also . 0 

indicated are the limits of the collisionless regime and 

the large Alfven speed approximation.) The horizontal 

and vertical dotted lines indicate the working estimates 

of B
0 

and N used in this thesis. 
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CHAPTER VII 

AN INDUCED DIPOLE MOMENT IN IO 

'/. 1 LARGE-SOURCE EFFECTS 

The last chapter derived an expression for the 

Alfven power generated by a moving magnetic dipole. 

This derivation is strictly correct only for a dipole 

sufficiently small that the flow passes undisturbed by 

collisions with the body itself, or by fields generated 

by other effects. The method of derivation is good only 

for source currents which lie in the plasma itself, or 

for "point" sources. However, the formulas of chapter VI 

are certainly good to within some dimensionless factor 

multiplying the source terms in the equations for fields 

or for power. Such a factor would contain the effects 

of geometry and "current imaging" between the large 

magnetic source and the surrounding plasma. The factor 

cannot be calculated without going into the nonlinear 

equations describing the local flow and currents, so no 

attempt will be made to estimate it. 

7.2 MAGNETIC FIELD SEEN BY IO 

Since the field of Jupiter is not cylindrically 

symmetric with respect to its rotation axis, Io will see 

a time varying field as it goes around its orbit. The 

inclination of Io's orbit to Jupiter's equatorial plane 

is about 0.03° and the orbit's eccentricity is less than 
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.001 (de Sitter, 1931)" If Jupiter's field is purely a 

centered dipole tilted at 10°, then Io will see fluctua­

tions of+ 26 per cent in the ambient field. The period 

of these variations is half the time for Jupiter to 

rotate beneath Io, or six hours . 

There is evidence that the field of Jupiter's 

southern hemisphere is stronger (Warwick, 1967), which 

might mean that Jupiter's dipole is shifted toward the 

south from the center, or that there are higher multipole 

moments of the field causing this. In order to illus­

trate the effects of displacement of the dipole in addi­

tion to a tilt, we have calculated the field seen by Io 

for an arbitrary displacement along the rotation (z) axis. 

Following Warwick (1963), let the dipole lie in the x z 

plane, a height z = zN above Io's orbit. The co-latitude 

of Io remains constant at the angle S = arctan (-~/RI). 

This quantity is less than arc tan (1/6) = 9.5°. Let the 

tilt angle of Jupiter's dipole b~ a=l0°. Appendix VII 

derives the following approximate equations for the 

magnetic field at azimuth 4> measured from the x z plane: 

B y 

B z 

= 3!:1__ 
Rr 3 

= 3M 
~ I 

-M = 
Rr 3 

cos 4> (sin S + cos 4> sin a) 

sin 4> (sin s + cos 4> sin a) ( 7. l} 
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2 2 Terms of order a or 8 have been neglected. When 

these fields are averaged over aximuth, one gets the mean 

field seen by Io. If these mean components are subtracted 

from the above, one obtains the fluctuating parts of the 

field: 

B - <B >= 
X X 

~ (sin 8 cos ct, + 2
1 sin a cos 2 ct,) 

R _, 
I 

3M 

R:r 3 

0 

1 (sin 8 sin ct,+ 2 sin a sin 2 ct,) 

(7.2) 

Again second order terms have been neglected. A 

probable upper limit to 8 is given by the data of Roberts 

and Ekers (1966) who determined that the centroid of DIM 

emission lay within two seconds of arc in right ascension 

and ten seconds c£ arc in declination from Jupiter's 

center (Warwick, 1967). In terms of Jupiter radii these 

are .10 and .52, respectively. Thus 8 is probably less 

than arc tan (.52/6) = 5.0°. For a= 10°, the amplitude 

of the "displacement" terms in equations 7 .2 to the 

"tilt" terms therefore satisfies: 

2 sin 8 
sin a 2 • 087 _ l O :Tiif - • ( 7. 3) 

Note that the "tilt" terms in 7. 2 have twice the 

frequency of the "displacement" terms. This means that 

the displacement will cause an enhancement of the field 
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when Io is closest to one end of Jupiter's dipole, and a 

partial cancellation when Io is closest to the other end. 

If the ratio of the two effects is one, as in 7.3, 

the peak-to-peak variation of Jupiter's field at Io's 

orbit would be 72 percent of the mean field. If there 

are quad~pole components to the field or equatorial 

displacements of the field center, Io will see additional 

variations in the field. The DIM data of Branson (1968) 

seem to show a small degree of asymmetry in the radial 

direction, which Carr and Gulkis (1969) interpret as a 

field enhancement of A III190°, which is only a few 

degrees from the longitude of the northern end of the 

dipole. This would increase the variation field at Io 

by an unknown, but perhaps appreciable, amount. 

7.3 INDUCTION EFFECTS IN IO 

In the reference frame of Io, the magnetic field 

will vary with periods of 6 or 12 hours. If the interior 

conductivity of Io is sufficiently large, eddy currents 

will develop inside in such a way as to cancel the time 

varying components of the field. These currents will 

cause Io to act as a very slowly time-varying dipole 

moving through the plasma. The amplitude of the currents 

depends on the amplitude of the variation field and the 

interior conductivity. 

A very similar effect for the case of earth's 

moon moving in the time-varying interplanetary field was 
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calculated by Sill and Blank (1969). The core conducti­

vities are based on thermal models of the moon by Englandv 

et al.- (1968). The maximum conductivity in the lunar 

interior for a young, cold moon is 10- 2 mho/m, and for 

the old, hot moon with partial melting it is 102 mho/m. 

The relevant parameter for the problem of diffu­

sion of a magnetic field into a conductor is the Cowling 

time. The longest time of decay of a magnetic field in 

a uniform sphere of radius a is µoa 2/n 2 , (Cowling, 1957), 

where the quantities are expressed in MKS units. For a 

radius of 1700 km, the conductivities above yield Cowling 

times in the range of 3 hours to 4 years. These times 

are of the same order as, or much larger than, the 

periods of variations of Jupiter's field as seen by Io. 

Sill and Blank compute the reflection coefficient 

R, which is the ratio of the induced (polar) dipole field 

to the external unifonn field. ~ is proportional to the 

magnetic moment M. 

-+ " 
M = Z ( 7. 4) 

< (7.5) 

Figure 7 shows the magnitude and phase of 

against conductivity, for a= 1700 km and period= six 

hours. If the conductivity is greater than 0.1 mho/m, 

IR I is greater than one~half and the magnetic moment is 

comparable to the maximum value that it can be. If the 
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Reflection coefficient R, giving the ratio of the induced 
field to the inducing field B, is plotted against core 
conductivity. The induced diBole moment is proportional 
to R and reaches a maximum of B a 3/2, where a is the 
core radius, when the conducti vi t~ is very large. This 
figure is derived from Sill and Blank (1969). 



conductivity is less than this, the magnetic moment is 

very much smaller, and the :rrodel is not relevant as an 

Io-effect mechanism. 

7.4 APPLICATION TO IO 
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The ve~y slow variation of the magnetic moment of 

Io as it moves from one quadrant of its orbit to the next 

is negligible in calculating thepower that it radiates. 

We may therefore take the magnetic moment given by 7.4 

where B
0 

is the time-varying component of the magnetic 

field as seen by Io. The behavior of the power radiated 

is very simple for the case of a centered dipole. In 

that case, Equation 7.2 shows that the magnetic moment 

rotates at exactly twice the rate that Jupiter rotates 

beneath Io. The moments due to the tilt of the field, 

parallel and perpendicular to Io's velocity are: 

MT a3 3 M sin = -i- 2 R 3 
(). sin cp 

I f 2 
I 

(7. 6) 

MT 
3 3 M = R~ 2 ~3 

sin (). cos cp 
J. 2 

In this case the magnitude of the moment remains constant 

in time, while the direction rotates around Io. 

A displacement of Jupiter's dipole along the z 

axis adds the following moments to the above: 
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M, I 
D 0 = 

D a3 3 M M = IR 2 2 ~3 
sin f3 ( 7. 7) 

J. 

Thus the displacement along the z axis contri-

butes only {in first order) to the transverse magnetic 

moment. The quantity M/RI 
3 

in Equations 7.6 and 7. 7 is 

the ambient magnetic field strength in the equatorial 

plane. 

Figure 8 shows the relative shear Alfven power 

radiated by Io as a function of Io's aximuth from the 

plane of Jupiter's dipole {AIII198°) for five different 

displacements of the dipole from Jupiter's center. Note 

that when the dipole is displaced in the southern hemi­

sphere, the energy flux peaks when the northern end of 

Jupiter's dipole points toward Io: on the other hand, 

when the dipole is displaced to the north, the peak 

power is 180° out of phase. Since Dulk's {1965) obser­

vations show that the northern end of Jupiter's dipole 

must lean toward Io for the main and early-source 

Io-related emission to occur, this mechanism for the 

Io-effect is inconsistent with a displacement of Jupiter's 

dipole to the north. If future high-resolution obser­

vations of the DIM emission indicate that the centroid 

of emission is north of Jupiter's center, then this model 

can be ruled out. 

The width of the peaks in Figure 8 cannot be 
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related to the width of the peaks in a plot of DAM 

emission probability against Io aximuth, since those 

widths are much smaller and have been attributed to 

beaming effects (Dulk, 1965}. 
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This model does not easily account for the 15° 

asymmetry in the Io azimuths during the Io-related 

emission. In their model, Goldreich and Lynden-Bell 

argue that the flux tube connecting Io to the ionosphere 

is dragged back relative to Io by 15°, but no such 

distortion is likely to result from the flow of Alfven 

waves. If the Alfven waves reach the DAM emission region 

at the time a flux tube has moved 15° in longitude, the 

mean Alfven speed would have to be extremely low, about 

400 km/s--much too low for the possible ranges of density 

and field shown in Figure 6. Perhaps a local inhomo­

geniety like that associated with the longitude dependence 

of the Jo-unrelated DAM emission is an explanation of the 

as yrnme try • 



CHAPTER VIII 

TRANSPORT ALONG FIELD LINES 

8.1 DAMPING OF HIGH WAVENUMBERS 

The terms of the dielectric tensor that lead to 

collisionless damping were first investigated by Landau 

(1946} in the case of no magnetic field. The waves that 

were damped were electrostatic and longitudinal in nat'qre. 

However even transverse waves can be damped by collision­

less processes. This is shown by the dispersion relation 

for shear Alfven waves including thermal effects at 

frequencies low compared to the electron gyrofrequency. 

k 2 
2 w 

Kll (k Z I W) = 
c2 z ( 8 .1) 

2 
1T. 

[ l where Kll l + i 1 i - a F (a) = wn. 
1 

(8.2) 

f 
2 

-i -z 
and F (a) e d z = '\f 'IT z-a 

( 8. 3) 

The contour of integration must be that chosen by 

Landau (1946), i.e., the contour is deformed to encircle 

the singularity from below (above) for propagation in the 

plus (minus) Z direction. F is an entire fwiction of 

its complex argument a. 

a= -{i; :~ ( 8. 4) 

This is the reciprocal of the product of wavenumber and 
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the ion gyroradius. n. is the ion plasma frequency and 
l. 

n. is the ion gyrofrequency. 
l. 

Generally a is very large and F assumes its 

asymptotic form: 

F(a) -+ ,,hr sgn k z 

2 -a 
e 

i 
+ -a 

i 
a (8.5) 

In that case K11 is purely real and simply the ratio 

2 2 c /u, where u is the Alfven speed. But at high 

temperatures or large wavenumbers, 8.5 is not a good 

approximation. The first term of 8.5 leads to damping. 

This damping is equivalent to a limit on the magnitude 

of k in the complex plane satisfying Equation 8.1. z 

Wavelengths smaller than a certain value cannot even 

exist. This follows from the fact that F is an entire 

function and has its maximum magnitude of J;°/2 at the 

origin. Thus 8.1 and 8.2 imply that: 

L 
2 

1T. w 
J. 

= ! i F ( a) I 

k 3 + k z z 

< F12 

w2 
c2 (

1Ti

2 -1) wn. 
l. 

(8.6) 

When w/n. <(n . /n.) 2 = 4 1r MNc2JB 2 (which is very well 
l. l. 1. 

satisfied for our problem), the left hand side is greater 

than the cubic term alone. Thus 

3 2 
lk I < w 7Ti 

z c2 
1 
3 I 
D 

( 8. 7) 
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where v. 
l. 

is the ion thermal speed, and D is the Debye 

length. Therefore all wavelengths at low frequencies 

must be much greater t h an a Debye length . Inserting 

w - 10- 1 , kT = 10 ev, N = l cm- 3 into the right hand side 

of 8.7 we find that the minimum wavelength is on the 

order of a kilometer. All disturbances on this scale are 

heavily damped, but waves of much larger length are 

unaffected. 

These arguments show that if the damping terms 

are dropped by letting the temperature vanish in the 

equations, there is nothing to restrict high wavenumbers 

produced by a source. This throws into question the 

results of Sundaram (1969) and Arbell, et al. (1963) who 

have calculated the waves generated by a source in a 

zero-temperature plasma. Their calculations involve 

Fourier transforms in wavenumber space that give finite 

contributions from infinitely distant contours. But if 

there is even an infinitesimal temperature, the large 

wavenumbers will be exponentially damped, so their 

Fourier transforms will not be valid, even approximately, 

for a finite tempera t ure plasma. This thesis has avoided 

the difficulty by keeping a non-zero temperature and then 

letting the frequency be small. 

The damping rate k. is obtained from Equation 8.1 
l. 

with the asymptotic form 8.5 of F(a). Let k. be the 
l. 

imaginary part of k and assume jk. I << lk I. The low z l. z 

frequency limit of k. is (Stix, 1960): 
l. 
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C ,r. 

k. = 
l. 

_y_:rr ..2:. ( 1 + n 
2 C i 

2 2 -1/2 
/ 7f. ) 

l. 
a e 

2 -a ( 8. 8) 

For a density of 1 cm- 3 , a field of .05 gauss, 

and a temperature of 10 ev, rr. - 10 3 , n. - 5 x 10 2 . At a 
l. l. 

frequency w- 10-l sec- 1 , the Alfven wavenumber is 10- 11 

cm-land !al - 10 7 . Thus k. - exp (-10 14 ) cm- 1 , and 
l. 

collisionless damping of the shear Alfven waves is 

completely negligible. 

8.2 FIELD CURVATURE 

The calculations of Chapters V and VI assumed 

that the ambient magnetic field lines were s~raight. It 

is important to consider whether the Alfven waves genera­

ted by Io will travel around the curved lines of force. 

To do this it is necessary to formulate the problem in 

curvilinear coordinates which match the external, 

curl-free field. This has been in considerable generality 

by Bajwa and Srivastova (1969) and in somewhat less 

generality by Parker (1955). Let s be a coordinate 

along the field lines. Then if we ignore the dependence 

on the other coordinates and say that the density is 

independent of position we obtain Bajwa and Srivastava's 

equation for velocity perturbations V3 perpendicular 

to the field and to the field normal: 

d2v3 1 du dv3 2 
+ + w o, (8.9) 

ds 2 u ds ds u2 V3 = 



where u is the Alfven speed and w is the wave 

frequency. Let W = ju. Then 8. 9 can be written as: 
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+(c.u2 
u2 

W' ' (s) 
W(s) (8.10) 

This form shows that travelling wave solutions exist 

only if 

2 
KWKB - u -1/2 ul/2 > 0 ( 8. 11) 

The critical frequency we, below which waves will 

not carry energy around the curvature of the field is 

= (u 3/2 a2 u112) 1/2 
ds 2 (8.12) 

The behavior of this derivative depends on the 

latitude in the dipole field at which the source is 

radiating. Appendix IX shows that near the maximum 

extent L of a field line, the critical frequency is 

given by 

w -c-
u 2 2 112 
L (1-u /c ) 

3 

£ 
u 2 9 s 2 

-s 2 · 2 2 
c L 

1/2 

( 8. 13) 

The coordinate s is measured from the maximum 

extent of the line either northward or southward. Terms 

of order (s/L) 4 have been neglected. Whens= 0 the 

-1 -3 cricial frequency is O.Ss for a density of l cm and 

field of .OS gauss. Waves of much lower frequency will 

not propagate beyond the bend of the field line, but 
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will be reflected partially and perhaps set up a standing 

oscillation in the outer portion of the flux tube. 

Eventually, however the energy will either be dissipated 

or be transmitted down the flux tube. Note that as Io 

moves to higher zenomagnetic latitudes in its orbit, we 

will decrease, perhaps allowing a largerflux of energy 

to flow down the field lines. 

These calculations are very crude and not meant 

to give anything but order of magnitude estimates of 

the effects of curvature. The equations are derived 

from the WKB approximation, which is only accurate for 

wavelengths much smaller than the scale of the system. 

Thus these results can only give the trend of the critical 

frequency versus field and position. Accurate informa­

tion on the critical frequency wc for the Alfven waves 

would require at least a numerical solution of the three 

dimensional system of equations derived by Bajwa and 

Srivastova (1969) for a point source of waves. Other 

effects, such as dispersion in shape of the wave pulse 

due to the finite size of the source will not even be 

discussed . 

8.3 DENSITY EFFECTS 

Parker (1955) has estimated the effect of density 

variations on Alfven waves by using a WKB approach. (He 

takes u << c so that U = B (4 v p)
112 . For u - c, 

density effects will be less important.) For slowly 
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varying density, the WKB solutions for velocity and field 

perturbations are: 

[
VJ [-1/4] 
B = const x : 

114 
exp [ iw(t ,! f ~">] (8 . 14) 

Even when the field varies with s, to this approxi­

mation, the wave amplitudes depend only on the density but 

weakly so. The density of Jupiter's magnetosphere 

probably does not vary so rapidly in the vicinity of Io's 

orbit that the wave amplitudes will be modified drastically 

by the effects included in Equation 8.14. Only if the 

density nearly vanishes somewhere along the field line 

would the Alfven waves be greatly affected. This is 

conceivable if the trapped particles of the magnetosphere 

fall into outer and inner families as Melrose (1967) has 

suggested. In that case, v would increase without limit 

and the wave would become nonlinear or be modified or 

reflected. We will not speculate any further on this. 

8. 4 ROTATIONAL EFFECTS 

Kendall and Plumpton (1964) have shown the effects 

of rotation on MHD waves in a perfectly conducting fluid. 

The addition of the Coriolis acceleration to the momentum 

equation yields a new dispersion relation for the shear 

Alfven waves. Let w
0 

be the rotation rate of the fluid, 

with rotation vector at an angle l1 to the unifonn 

magnetic field. Then the frequency satisfies either of 

/ 
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two equations: 

w 2 ± 2 w w 
O 

cos T - k z 
2 

u 2 
= 0 

-4 -1 -1-1 For Jupiter, w
0 

~ 2 x 10 s , while w ~ 10 s so the 

rotational term is very small, and the phase velocity is: 

w (1 ± w "fl ) k = u cos L 

z WO 

Thus the shear Alfven waves are split up into two modes 

of slightly different group velocity, but the same 

direction since w is still only a function of k. The z 
relative change is only of order 10- 3 and negligible. 
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CHAPTER IX 

DISCUSSION 

9 .1 ALFVEN WAVES INTO ELECTROMAGNETIC WAVES 

It is not the purpose of this thesis to calculate 

the generation of DAM radiation from the interactions of 

the Alfven disturbance with the plasma medium. However 

we will suggest a few avenues of approach to the problem. 

The amplitude of the Alfven waves becomes relatively 

smaller compared to the local field as the waves propagate 

down toward Jupiter, but the waves tend to steepen because 

the Alfven speed is larger in the wave. Thus the waves 

may steepen into shocks (Warwick, 1967) and therefore 

nonlinear effects will play a role in their interaction 

with the plasma. 

If the shear Alfven waves propagate along the field 

lines, they are not likely to encounter high energy parti­

cles unless Io is in a radiation belt. If we consider 

the compre s sional waves, which start out radiating 

spherically from Io, or if the shear waves are deflected 

by curvature o r rotational effects into lower L shells, 

then the Alfven waves generated by Io may interact with 

the high energy belts. If so, then there are two types of 

cyclotron overstabilities that it might excite (Stix, 1962). 

The first depends on a pitch angle (or temperature) aniso­

tropy which feeds on the wave. The power absorption is 

small unless the wave frequency is comparable to the 
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gyrofrequency. Such a case is possible if the wave 

steepening drastically shifts the frequency spectrum of 

the wave to peak at much higher values, (e.g. from 10-l 

to 10 5 Hz). The second instability depends on the 

Doppler-shifted frequency of the wave matching the 

gyrofrequency for a group of drifting electrons. The 

electrons absorb energy from the wave strongly only if 

their velocities are highly relativistic. There is a 

large amount of energy available in the radiation belts, 

-2 3 
up to a maximum on the order of 4 x 10 erg/cm, accord-

ing to equation 2.3. An Alfven wave traveling through 

these belts may tap some of this energy, which may be 

radiated or dumped into the ionosphere, where reflection, 

mode conversion, and/or re-radiation may occur. 

A large amplitude Alfven wave will tend to drive 

gyrating charged particles before it if their transverse 

velocity (and therefore their magne ,tic moment) is small 

because the magnetic moment is an adiabatic invariant. 

This is the Fe:rmi mechanism for particle acceleration, 

but its effects should be weak because particles of small 

magnetic moment will be few in nwnber, most having leaked 

through the loss cone of Jupiter's dipole field. If the 

Alfven waves accelerate particles by one means or another, 

there is a wealth of mechanisms by which electromagnetic 

radiation can be produced. For example, coherent-elec­

tron bunching (Goldreich and Lynden-Bell, 



1969; Ellis and McCulloch, 1963n or Cerenkov emission 

(Warwick, 1963a). 

Marshall and Libby ( 196 7) have suggested that a 

disturbance might trigger spin-flip transitions in 

molecules of the ionosphere. Perhaps a propagating 

distortion of the magnetic field would be a suitable 

disturbance. 

9.2 MODEL-TESTING AND OBSERVATIONS 
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It is important that many models of the Io-effect 

be presented and their consequences carried out as far 

as possible, so that there be adequate hypotheses to be 

compared with observations. The dynamo model of Gold­

reich and Lynden-Bell (1969) and the Alfven-Generation 

model presented in this thesis might be tested indirect­

ly by close observation of large earth satellites. The 

forthcoming space stations may be adequately large that 

the relevant dimensionless ratios are scaled properly. 

If these satellites cause dynamo currents or Alfven 

waves, then the theories may be at lea:s t partially 

justified. The absence of such effects might only 

suggest that the properties of Io and Jupiter's magneto­

sphere are too different from those of earth satellites 

and earth's magnetosphere for similar effects to be 

produced. 

A 10 ev proton will have an average gyro-radius 

of roughly 100 meters; thus for the small La.nnour radius 
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approximation used in Chapter VII to be valid, the 

satellite must be on the order of 100 meters in diameter, 

unless the thermal energy is much smaller than 10 ev. 

The existence or non-existence of Alfven waves generated 

by such a satellite could be tested by magnetometer 

observations near the feet of the magnetic lines of force 

which connect the satellite to the ionosphere. If dynamo 

currents are generated, there should be electron enhance­

ments and perhaps electron auroras at the feet of the 

satellites' flux tube. Tiuri (1965) and Tiuri and Kraus 

(1965) have received radar reflections from electron 

enhancements in the ionosphere in the magnetic shell 

occupied by small earth satellites. Whether these 

enhancements are caused by waves or currents is unknown. 

To determine which is involved in the disturbance would 

probably require in situ measurements of the flux tube 

electric and magnetic fields by a second satellite. An 

Alfven wave will have no longitudinal currents or fields, 

while an electron current should be associated with a 

longitudinal electric field. Since a satellite measuring 

such effects will be moving rapidly with respect to the 

flux tube connected to a larger, outer satellite, these 

phenomena may be difficult to observe. 

Direct tests of the beaming hypothesis (Dulk, 

1965) and the Alfven-wave and dynamo models of the 

Io-effect could be made with a satellite-borne radio 

telescope at a distance on the order of one A.U. or more. 
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In the dynamo model the DAM emission occurs at all 

longitudes of Io except when Io is in the shadow of 

Jupiter. The beaming effect postulated by Dulk: causes 

the radiation to be observed only when the emission cone 

passes through the radio telescope. When Io is in shadow 

no DAM bursts should be observed even when the telescope 

is in this emission cone because no photoelectrons can be 

liberated from Io's surface to produce dynamo currents. 

The emission should also be reduced steadily as Io's flux 

tUbe moves from the sunset to the sunrise zone of Jupiter's 

ionosphere, since the conductivity of the ionosphere 

should decrease as Jupiter's night progresses. It will 

probably be impossible to have a telescope in the cone at 

such times except on a Jupiter fly-by, but a Mars or Venus 

mission may provide sufficiently large angular separation 

from earth to observe some of these effects . 

In the Alfven-wave model, the radiation of the 

Io-related into the early and main sources should only 

be a function of the longitude of Io measured from 

A111 200°, the plane of Jupiter's magnetic dipole moment. 

The emission should peak when this longitude is zero, and 

it should be one-third of this or less when the longitude 
0 

is near= 90 , assuming that the dipole of Jupiter is 

centered or displaced southward. 

Suppose that it is shown that Jupiter's dipole is 

displaced southward slightly, and further suppose that a 

satellite telescope moves south of the ecliptic plane and 
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observes an emission cone directed from Jupiter's southern 

hemisphere. (Sulk, 1965, suggests that this cone does not 

intersect the ecliptic plane.) In this Alfven wave model, 

the ratio of the strengths of the emission when the 

northern end and the southern end of Jupiter's dipole are 

tilted toward Io should be: 

p 2 2 ~r n [Mt I + 3M1 ]cp= 0 = ( s~n a. + sin (9 .1) -= p 2 2 sin a. - sin s [M1J + 3M1 ] cp= 7r 

(See equations 7.6 and 7.7). For a tilt angle of 10° and 

southward displacements of the dipole by 0.1, 0.2, 0.3, 

and O. 4 Jupiter radii, the ratio above would equal 1. 5, 

2.2, 3.4, and 5.2, respectively. If a ratio inconsistent 

with equation 9.1 is not found, then the model presented 

in this thesis may be ruled out. This assumes that the 

foot of Io's flux tube will excite all longitudes of 

Jupiter equally well, which may only be approximately 

true. 

As yet there is no direct observational evidence 

that the feet of Io's flux tube are in any way different 

in character than the feet of the rest of the flux tubes. 

Although the size of the Io-related DAM source has been 

delimited, its position is unknown. In principle this 

position could be detennined by careful radio interfero­

metry. Such an observation would give a clear victory to 

Oulk's hypothesis that the Io-related emission comes from 

one particular flux tube. It is also possible that the 

foot of Io's flux tube would stand out against its 

/ 
/ 
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background at other wavelengths. Particular attention 

should be directed to this region in future high-resolu­

tion ultraviolet and infrared observations of Jupiter. 

Auroras may be produced preferentially by the disturbance 

in that tube, and these may be visible in Lyman-alpha or 

forbidden molecular lines in the u.v. Heating effects 

may also make this region radiate in the far infrared. 

It may be worthwhile attempting a ground-based infrared 

observation with high resolution in one of the atmos­

pheric IR windows, say at 10 or 22 microns. 

Future high resolution photographs of Jupiter 

should check Lyot's observation {Dollfus, 1961) that the 

Galilean satellites rotate synchronously. If a satellite 

has even small librations it should generate Alfven waves 

which may well be stronger than the waves calculated in 

this thesis. 

9.3 LIMITATIONS OF THIS MODEL 

The major li~itation of the calculations of 

Chapter VIII is that the source currents cannot be 

calculated exactly. It is possible only to calculate 

the currents inside Io that are caused by induction 

effects. Currents in the plasma generated by the flow 

around Io or particle collisions with Io have not been 

calculated, and can only be determined by a fully 

nonlinear model. Such currents will also generate Alfven 

waves. 
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Another limitation of the calculations is the 

neglect of high wavenwnbers and the consequent lack of 

information about the waves in the close vicinity of the 

source. Inclusions of high wavenumber effects would 

almost certainly have to be obtained by use of a high 

speed computer to sum series of Bessel functions multi­

plied by plasma dispersion functions. The solution for 

transverse Alfven waves that has been obtained is an 

asymptotic one, valid only far from the source where 

compressional wave effects have decayed away. If the 

compressional waves were calculated in detail it might be 

found that the disturbance near the source has magnetic 

moments of its own. If that were the case, then the waves 

could be found as functionals of arbitrary magnetic 

moment densities and the complete solution determined by 

iteration or invariant irnbedding. Such computation is 

far beyond the scope of this thesis. However, it is 

plausible that the resultant Alfven power in such a 

computation will be larger than we have calculated. The 

reasoning is as £allows. A plasma is diamagnetic and 

generally acts such as to cancel out variations in the 

magnetic field. If the compressional waves alter the 

local source, they should act in such a way as to tend 

to cancel out the "external" field of the source inside 

of Io. Such cancellation is equivalent to a current 

loop outside of Io which is opposite to the interior 

loop. Thus the field lines which pass from the undisturbed 
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region into the disturbed region will undergo new bends 

or twists in addition to those already computed. The 

interior bends will not be altered by the external 

currents so the Alfven waves can only be increased . The 

mathematics of the problem agrees with these qualitative 

arguments. An "image" current outside of Io will make 

the magnetic moment density more like the limiting case 

of a spherical shell of Dirac delta magnetic moments, and 

for that case the Alfven power diverges. Thus our 

neglect of any such moment density produced by the 

compressional waves yields a smaller radiated power than 

actually will exist. 

Perhaps the most stringent limitation of our model 

is the neglect of global effects. In principle it is 

possible to calculate the generation of Alfven waves by 

a current source in an arbitrary magnetosphere. However 

it is unclear how dependent on the properties of the 

magnetosphere the solution would be. The generation of 

shear Alfven waves will be modified in some way by the 

inclusion of curved field lines and variable density. 

The compressional Alfven waves which are generated may 

not be entirely attenuated by geometry, since as Parker 

(1955) has suggested, focussing effects can conceivably 

occur when the Alfven speed is a function of position. 

There are two major limitations on the extent to 

which the model presented here fits the observations. 

First is its inability to explain the asymmetry in the 
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pvsition angles at which Io excites DAM emission. (See 

the discussion at the end of Chapter VII.) Second is the 

lack of explanation of the third and fourth sources which 

appear in the regions near cf>= -70° and+ 60° respectively. 

(~ is the azimuth of Io measured from the longitude of 

Jupiter's north magnetic pole.) These sources, however, 

occur with frequency less by a factor of five or more 

than the early and main sources. 

9.4 OTHER SATELLITE EFFECTS? 

The theory given in Chapters VI and VII would 

apply equally well to the other satellites of Jupiter, 

provided that the plasma density and field strengths are 

such that the medium is collisionless, and the rate of 

flow past the satellite is much lower than the plasma 

frequency and the ion gyrofrequency. The ion gyrofre-· 

quency at Callisto's orbit may be too low for this to be 

true. 

Let a be the radius of the induced magnetic 

dipole in each satellite, and let the moment m - fBJ RJ 3 

3 3 a /r , where BJ is Jupiter's surface field, RJ is its 

equatorial radius, and r is the orbital radius of the 

satellite. f is some fraction of unity determined by 

the efficienpy of the source. Then equation 6.21 gives 

for the Alfven power generated by the satellite: 

v2 
p - u 

2/ 6 a r ( 9. 2) 
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The Alfven speed u depends on the model of the magneto­

sphere. If we assume Melrose's (1967) equation for 

density determined by centrifugally dominated interchange 

instabilities (see equation 2.10) and a density of 1 crn- 3 

at Io's orbit, u will be roughly proportional to r- 3 

For the moment we identify r with the satellite radius. 

Then for Io , Europa, Ganymede and Callisto, the values of 

r, v, u, a lie in the proportions: 

Distance 

Velocity 

Alfven Speed 

Radius 

r 

V 

u 

a 

1 : 1.6 2.5: 4 . 5 

1 

1 

2 . 0 : 3.2 5.7 

1/4 1/16 : 1/90 

1: 0.86 : 1.48: J..40 

Thus the power given by equation (9.1) gives the 

proportions for Io, Europa, Ganymede, and Callisto to be: 

Alfven Power: 1: 0.7: 1.5: 0.7 

These figures are no more than order of magnitude 

estimates. As stated in Chapter VIII the formula for 

power is an overestimate when v approaches u, which 

might be true for Ganymede and Callisto. The unknown 

factor f may be highly different for the four satellites. 

However these figures indicate that the other satellites 

may _ generate Alfven waves as well. The feet of their 

flux tubes will be at higher latitudes of Jupiter, so 

their emission cones in Dulk's (1965) theory will not 

intersect the ecliptic plane. It would therefore be 

highly profitable for satellite-based radio telescopes 



to look for such emission out of the eclipt i c plane. 

The radiated power for Jupiter V will be very 

small because of its very small radius (estimated from 

its albedo to be only on the order of 100 km) and its 

nearly synchronous motion. 

9.5 CONCLUSIONS 

We have shown, under very weak assumptions about 

the nature of Io and its environment, that Io will have 

an induced dipole moment and will continuously generate 

transverse Alfven waves which can carry energy of at 
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9 . 
least 10 watt into each flux tube down to the surface of 

Jupiter. 

There is a variety of ways by which satellite 

radio telescopes can distinguish between this mode.I and 

Goldreich and Lynden Be.ll's (1969) model of the Io effect, 

assuming that Dulk's hypothesis (1965) about the beaming 

of the radiation is correct. 

When suitable models of Jupiter's magnetosphere 

become available, ray tracing effects should be consi­

dered in the propagation of compressional Alfven waves 

to see if focussing effects can cause them to be of 

appreciable amplitude close to Jupiter's magnetosphere. 

Much more work needs to be done on the interaction 

of large satellites with a magnetoactive plasma medium. 

There should be constant interplay between observational 

results of earth satellites and theoretical computations. 



The problem of the Io-effect is far from closed. 

The wake problem, wave propagation, current generation, 

and particularly conversion of waves and currents into 

electromagnetic radiation will remain intriguing fields 

of research for years to come. 
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APPENDIX I 

Stix {1960) shows that the dielectric tensor is 

given by: 

(1) 

where k is the species index, Zk is the species charge, 

and Mis the "mobility tensor" given below. It is assumed 

that the zero order distribution function for each species 

is a two-temperature Maxwellian with zero mean velocities. 

(The effect of introducing drift velocities is simply to 

Doppler-shift some of the frequency terms of Kij" For 

phase velocities much larger than the drift velocities, 

the drifts are negligible.) 

Let the parallel and perpendicular temperatures be 

T11 and T1 respectively. Let T = T11/T 1 • The coordinate 

system is rotated such that the propagation vector lies 

in the xz plane; n is gyrofrequency; K is the Boltzmann 

constant; mis the particle mass, and A= k; KTi_1/mn 2 • We 

suppress species subscripts in the expansion of M ..• 
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I (>..) is the modified Bessel function of the n 

first kind of degree n. 
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where the contour of integration extends from 

z = - 00 to z = +00 an d encircles from below if 
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Rek < o and from above if R k
2 

< o. For the ·z 
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former contour, Fis related to other tabulated 

functions wand Z: 

-1/2 n F(z) = w(z) 
2 -z = e erfc (-iz), 

(Fadeeva and Terent'ev, (1954) 

iF(z) = Z(z) (Fried and Conte, 1961). 

The long-wavelength, low frequency approximation to 

the dielectric tensor is obtained by expanding the Besnel 

functions in powers of A: 

I (A) = (A/2)n (1/n! + :..2/4(n + 1) ! + ••• ) for n ~ o n 

I (A) = I (A), n integral. 
n -n 

The first terms in the expansion of the M .. are: 
l.J 

Ml2 - -M21 = iz(A -A 1 )/2 -1 

M22 = (Al +A_ 1 )/2 

Ml3 = M31 = lA (Cl -c ) 
2 -1 



The required combinations of A's and C I s are, 

explicitly: 

1 
! (Al ± A_l) = ; I n [ F [ w+n ] ± F 

kz"i1 kZ~I (~:~ J] -
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Q 1-T 
[ F' (w+O ) +F' r~~.lJ I w 2'r kz"i1 -
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2 (Cl - C_l) = zk 

3
KT I [ X F' 

4k mS'lT .· 
z 

(~] -F
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kz~ I (~:tl] 
n 
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k 
= X F' 

2k
2

T (K:~.) 

We have utilized the thermal velocity, ~
1 
= (2KT 1rlm) 1

/
2 

for simplicity. At this point it becomes necessary to make 

a further approximation. Assume that Q/k V >> 1. 
z 11 

This is 

equivalent to requiring that the wavelength be much greater 

than the gyroradius. Couple this to the assumption that 

w << n and we are able to use the asymptotic form of F: 

F(x) 
k 2 

-+ rrr~e-x + i(!+ 1 + 0 •• ) 
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The expression for c
0 

cannot be simplified by this tech­

nique, since.? u,/k V is not necessarily very large. In 
z 11 

fact it can be of the order of unity. 

We may now insert the above expressions into 

equation (1) to obtain: 
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Evaluating the sums over species, the low-frequency, long­

wavelength approximation to the dielectric tensor may be 

found. Let cr = T (i)/T (e) · n = k c/w· n = k c/w· 
II II II ' z z , X X I 

m and Mare the electron and proton masses, respectively, 

and kD = F 2 /2KT, 1e is the Debye wavenumber. 

Then: 

K12 =-K21 

Kl3 = K31 

4rrNMC2 
~ 1+ 

B 2 
0 

[ 
m 1 

l+ M + 2 (cr11 (1-1/T . ) +1-1/T ) 
. 1 e 

.w [ 4~::q rv·~ T 2 
:::! l.- n fo

11 
(1-1/T, )- (1-1/T ) J n. z 1 e 

J. 

:::! (~.) 2 
4TINMC2 [' er \, 3 2 

n n 0
11 

(l-T . )/2 
B 2 C Z X J. 

1 
0 

Qi 41rNMC2 1 , i , e 
= w ---=-- - [ F ( w /k V ) / -r . - F ( w /k V

1 
) / T ] 

B 2 2 ZII 1. Z I e 
0 
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It terms of order w/Q. are neglected in the above expres­
l. 

sions, and if we let T. = T = 1, there i s complete agree-
1 e 

ment with the low frequency limit of the dielectric tensor 

calculated by Stepanov (1958). The above form of K .. is 
l.J 

far too complicated for our purposes, so we make the 

e 2 further approximation that terms of order (~ 1 /c) are 

negligible. The neglect of such terms is legitimate, pro­

vided that n
2 

is not extremely large. This will be found 

to follow from the solution to the dispersion relation for 

shear Alfven waves. In this approximation, we have: 

41TNMC2 
~ 1+ ---=- (l+m/M) 

B 2 
0 

and K23 , K32 , and K33 are unchanged. Note that in this 

limit, temperature anisotropies play a role only in the 

latter three tensor elements. Since these are the only 

elements left which are related to the plasma analogue of 

sound waves, while the others are related to the magneti­

cally dominated Alfven waves, this result is not 

unexpected. 



APPENDIX II 

To the approximat i on of Appendix I, the wave 

operator in the sourceless plasma wave equation can be 

written as: 

k 

where t is the 

-+ 
L = 

X K X E + 
w2 

2 
C 

matrix: 

0 

n n 
X Z 

+ 2 
K . E = w 

2 
C 

-+ 
L 

0 

. E, 

n n 
X Z 

We have taken the propagation vector k to lie in the xz 
->-

plane. The general form of Lis obtained by a simple 
+ 

rotation ink space. The inverse of Lis given by: 

+_1 1 
L = ---

<p(k,w) 
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Now it is appropriate to look at the relative 

ratios of the elements of these tensors. K11 is of order 

4TINMc2/B 2 , while 
0 

!K33 1 is of order 

IK23 j is of order 0.
1
/w times this, and 

2 2 i 2 . 
M~i /kz (~ 1 ) times the lat t er. Thus 

at low frequencies and long wavelengths, 

These inequalities are not always true, since at isolated 

points in the complex w plane K23 and K33 vanish. However, 

Barnes (1967) showed in his calculations of Landau damping 

effects in hydromagnetic waves, that the transverse Alfven 

wave is unaffected by the zeros of these quantities. Thus 

~e may legitimately expand our expressions in powers of 

l/K 33 and obtain an approximate solution by neglecting 

high powers. 

It will be shown that nz 2 is of order K11 for the 

Alfven waves . The determinant~ of matrix Lis given by : 

<j)(k,w) 

Therefore it is, approximately: 

<j)(k w) , 

2 2 This vanishes when K33 = o, n
2 

= K11 , or n = K11 . The 

first zero is as sociate d with t he longitudin a l i on sound 



11 
! ' 

waves, the second and third zeros are associated with 

transverse and compressional Alfven waves. 

~-1 
L = 

To the same order of approximation then, 

1 

Kll-nx 
2 

0 

-n n 
X z 

2 
K33(Kll-nz) 

0 

1 

Kll-n 

0 

2 

-n n 
X Z 

0 

1 

K33 
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APPENDIX III 

The waves produced by the K33 element of the 

dielectric tensor are heavily dampened by collisionless 

effects. This is as true in a magnetic field as without 

one, since K33 depends only on kz and does not involve 

B
0 

explicitly. If the collisionless damping effects were 

neglected, these electrostatic modes would propagate as 

sound waves along the magnetic field lines. 

We may simplify the equations by neglecting tem­

perature anisotropies, which cause negligible effect if 

they are small. Then in Fried and Gould's (1958) nota­

tion, K33 is given by: 

I I 
[Z (z.) + Z (z )], 

J. e 

where Z is the plasma dispersion function, and z. and z 
l. e 

are the phase velocity divided by the ion and electron 

thermal velocities. 

The portion of the wave equation with source, 

S(x,t) = S o(x-x')o(t-t'), 
0 

yielding electrostatic modes E, is simply: 



Thus the electrostatic wave has the field: 

E(x,t) = 
( 2Tf) 2 

- - - I t ik · (x-x ) -iw (t-t ) 
e 

K33 (k,wJ 

lOJ 

The contour of integration in w is chosen to satisfy 

causality. ' No waves can be produced before t=t , so for 

t<t' the contour is considered to encircle the half-plane 
I 

containing no zeroes of K33 , and for t>t, the contour is 

altered to encircle all of the poles. 

Fried and Gould show that the zeroes of K33 are at 

points w = Z lk 1~,,i, n = 1,2,3, .•• , where {z} is a n n z n 

set of complex numbers in the lower half plane. Thus for 

I 
t>t , 

E(x,t) = 
s 

0 

(21T)2 

f d 3k -ik•(x-x') ro iZ lk IV
11

i(t-t') 
e 2TI i l e n z 

n=l K;3 (wn) 

where 
, I ( ) _ 1 ( k 2 /k 3 i ) ( '7. II ) ,, 11 ( )) h33 wn - -j d z ~ 1 ~ < 2 n +~ Z szn ' 

and c is the ratio of the ion to the electron thermal 

speeds. 

3 
Note that K33 (wn) = 1/cnkz where en is a constant 

for each n. Thus we may evaluate E in terms of these 

constants: 

E(x,t) = 

00 

l 
n=l 

2niS 6(x-x')6(y-y')X 
0 

f 
00 

k 3 (i Z I k I v; 1 i ( t - t 
1 

) - i k ( Z - Z 
1 

>) cl k en 
2 

e n z z z 
-oo 



where 

00 

- 21ris o(x-x ' )o(y-y
1

) l 6cnrs
1

••4 - s - 4] 
o n=l 2 

s1 = -iz v i (t -t ' } + i(z-z
1

) 
n il 

2 

Thus the electrostatic field drops off in distance as 

( I) -4 d • • ( I ) -4 z-z an in time as t-t . We may therefore 

J.O 4 

neglect the electrostatic waves at large distances from 

the source even if K33 were not small compared to K11 . 



APPENDIX IV 

· -1 -1 
When K

23 
and K33 are negligible compared to 

-1 K
11 

, and the propagation vector is in the xz plane, the 

wave electric field is given formally by the equation 

(see Appendices I and II): 

E(k,w) = 
4;ric --w 0 

0 

0 

1 
2 

Kll-n . 

0 

0 

0 J (k,w). 
s 

0 

In order to determine the electric field for an arbitrary 

k vector, the matrix must be rotated by means of the 

r~tation matrix R(a): 

R(a) = 

cos a 

-sin a 

0 

sin a 

cos a 

0 

0 

0 

1 

The quantity a is the azimuthal angle of the k 

vector measured from the x axis. Let the matrix for 

a= 0 be L{O), and the matrix for arbitrary a be L(a). 

Then 

L(a) = R(-a)L(O)R{a), 



where juxtaposition indicates matrix multiplication. 

The resulting expression for Eis: 

2 sino.cosa 0 cos Cl 

- -hicll l . 2 E(k,w) = sj no.cos sin a 0 
w 2 K 2 

11-nz 
0 0 0 

sin 2 -sinacosa 0 Cl 

+.!. 1 -sinacosa 
2 

0 2 2 cos a 
Kll-n 

0 0 0 
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j js 

If we write cos = k /k and 
X X 

sina = ky/kr, where 

kr is the radial component of k, the above equation 

assumes the form: 

k2 k k 0 
X X y 

E ci<, w) -4uic{!_ 1 
kxky k2 0 js = 

wk 2 2 Kll-nz 
2 y 

r 
0 0 0 

k2 
y -k k 

X y 0 

+.!. 1 -k k k2 0 js 2 
Kll-n 

2 X y X 

0 0 0 

Obviously, the first matrix on the right hand side refers 

to the shear Alfven mode which propagates along the field, 

and the second refers to the compressional mode, which 

propagates almost spherically. Care must be used in 

using the second matrix for propagation directions where 

I 



io1 

k is small, since some of the assumptions made in com-z 

puting this form of the equations would break down in 

that case. Such problen1s, however, do not arise in the 

case of the first matrix. 



APPENDIX V 

The wave equation for shear Alfven waves with a 

steady, translating current source of magnetic moment m 

is 

Let V = (v,o,o) so that o(x-vt) = o(x-vt)o(y)o(z). The 

solution to this may be obtained from the Green's functions 

g 1 and g 2 for the one··dimensional wave equation and the 

two-dimensional Laplace equation. Let g 1 be the solution 

to: 

[
l a 2 a 2] , , , , 
2 ~ - -2 gl(z,t;z t) = o(z-z )o(t-t ). 
u at az 

Clearly we have taken u2 2 = C /Kll" 

Let g 2 be the solution to: 

I I o (x...;x ) o (y-y ) • 

Then the well-known solutions for g 1 and g2 are: 



g 1 ( z , t; z ' , t ' ) = } uH (-1 z- z ' I +u ( t-t ' ) ) , 

g 2 (x,y;x' ,y') =¼-log (<x-x')2+(y-y') 2J. 
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The function His one when its argument is positive and 

zero when its argument is negative or zero. The solution 

to the equation 

[~ 2 -~~ - .:~JG= F(x,y,z,t) 

is clearly 

Thus for F = o{x-vt)o{z)o(y), 

G = ~ v6(y)H(-1zl+u(t-x/v) ]. 

Thersfbre the function ~ is obtained from the par­

ticular soltition to: 

And this is obviously: 



From the theory of generalized furtctions, (Lighthill, 

1958), 

J H(-lzl+u(t-x/v) = -sgn(z)o(-lz/+u(t-x/v) ). 

110 

In generalized function theory, integration and differenti­

ation may be interchanged with considerable arbitrariness. 

Thus we obtain <Ii in the form: 

<Ii(x,y,z,t) = -
4

~ (-mx ai +my a!) Jax'fay' 

!rr log (cx-x')2 
+ (y-y')

2
)c-u/2v) sgn(z) 

o(y')o(-lz/ + u(t-x'/v)) 

= ~c sgn(z) (-mx ai +my a!) log((x-(ut-lzl)v/u)
2 

+y
2

) 

Applying the x and y differential operators, we find the 

solution for <P: 

1 -my +m (x-vt +vlzl/u) 
<Ii = - sgn ( z} __ x ___ y _ ______ _ 

c (x-vt +vizl/u) 2 +y 2 
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The Alfven wave vector potential is given by: 

where 

I d3xlM (xl) x-x1 I 3 -F = 
(X-Xl)+(y-y l ) 2 

/ d xM(x) 

and X = x-vt+vlzl/u 

xl = x 1+vz 1/u 

The integration is limited to the region lx1 1<R so that 

x 1~x1 when v<<u. We therefore change to cylindrical 

coordinates: 

X = r cos w, 

y = r sin w, 

and similarly for the primed coordinates. We assume that 

Mis a function only of I 2+ 2 , the spherical radius. r z 
Then: 

27T 

F !:: (fr1ar1faz1 
M(r

1
,z

1
) faw1 

0 

r cos w-r
1 cos w1

) 
2 I 1 r -2rr cos(w-w >-+(i:-Jf 

+(41rfs 2 M(s)ds) 



lJ.2 

The integral over azimuth w1 can readily be shown 

to be: 

2'JT cos w -r 

0 'f 1 1 r >r 

Converting r 1dr 1dz 1 to spherical coordinates and 

integrating over co-latitude, we find that: 

Therefore 

F cos = r 

Letting 

F cos = R 

~ 
1 V = - .... 
Ru 

where 

R 

I M (s) 

w 1- t 
R 

I M (s) 

0 
l 

1
1-/t ~r 2/ 8 2, s>r 

M(s) 
1 , s<r 

sj
5

2_,r2 ds 

, r~R 

s 2ds 

I r>R 

w G(r), we have, finally: 

(-mx a + m ~) cos w G (r). ay y 

cos w 



APPENDIX VII 

Let a 
[ cos G(r)) Al = ay w 

A2 
a 

( cos w G (r)) = ax 

Then 1 V 

~ = R ( -mxAl +myA2 ) • u 

Since the Poynting vector is proportional to 

IV~I , 2 where Vis the two-dimensional gradient, we con­

sider the integrals 

P .. f VA. • VA. dxdy , i,j = 1,2. 
1) 1 J 

The integral P 12 vanishes because VA1 is a y deriva­

tive and VA
2 

is an x derivative and integration yields 

their values at infinity, which are zero. P
11 

and P 22 are 

another matter. Convert a;ax and 3/3y to cylindrical 

coordinates (r,w). 

sion is legitimate.) 

3 = ax 

a 
ay = 

(Note that 3/3x = 3/3X, so the conver-

1 · . a a r sin w aw+ cos war 

½ cos w a!+ sin w a! 
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Then evaluate the quantities: 

I i = 1,2, 

using the integrals: fsin
2

wdw = Jcos
2

wdw = 

I . 2 2 4f 4 4 sin w cos wdw = 3 cos wdw 41 . 4 d = 3 sin w w = TI 

The results are: 

2TI : (+G/r) ']2 G' ) Jaw(VA 1 )
2 2 

+ 2(G/r)' = + 3 (GI I) 

0 

2TI (+G/r) 'l 2 + (G",2 - 2(G/r)' G) Jaw(VA 2 )
2 1T 

= 4 
0 

These must be integrated over r to obtain P11 and P 22 . 

But first we note that a linear combination of the above 

forms is a perfect derivative when multiplied by r. 

co 27T 

f dr r f dw 

0 0 

co 

f 
d I 2 

-TI - (G/r - G) dr a r 

It is easily shown that G/r - G
1 

vanishes ~t zero and 

infinity. Thus the radial integral above vanishes. So 

we have the quite general result. 



' : 
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That is, the moment directed transverse to the direction 

of motion is three times as effective in generating waves 

as is the moment directed parallel to the velocity. This 

integral can be simplified by observing the identity: 

sr((;J/ + r(G")2 - 2r(;]' G" = 

r 13 r (ir r + r2 uir r l + ,; I r2 [(;r rJ 
The argument of the derivative on the right hand side 

vanishes at zero and infinity. This is easily seen from 

the integral expression for G (r) • Thus the expressions 

for Pll a nd P22 reduce to: 

00 

/
3 [(irr [[;]'']2/ pll 3 p22 

3rr f rdr + r 2 = = 4 
0 

Non-dimensionalize by lettings= r/R and let f(s) = 

R2 (G/r)
1

• 'I'hen 

3 l = 4 R2 

This form is particularly suitable for application 

of the Calculus of ~ariations to find the minimum value of 

the integral. First of all note that G(s) (and hence f) 

is known for s~l. G(s) = 1/s so f(s) = -2/s 3 . Continuity 

requires that f(l) = -2 . Also the behavior of G at s = 0 

• 
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implies that f(O) = O. These two conditions are needed 

as boundary conditions for determination of the minimum 

of the above integral. The extremum of this integral is 

obtained from the Euler equation: 

d (s 3 df) - 3sf = 0 
ds ds 

The solution is 

f(s) 

Clearly for s<l, c 2 = 0 and for s>l, c 1 = O. (Note that 

this gives the function f(s} for s>l as it actually is. 

Gr(s) for s>l is of the form that minimizes the portion 

of the integral for s>l.) When we match the boundary 

condition at s = 1, f(s) = -2s. Inserting this function 

into the integral yields the extremum (which obviously 

is a minimum}: 

It is instructive to compute Gr(s) and its 

derivatives for examples of M(r). 

Case (a) Let M(s) = 

Then Gr(s) 
= ½ I:-

s<l 

s>l 

Isl 2 -2 2 1/2 ( 1.,-r ) r ( r - s ) dr 
1 · 2 2 J0 (1-r )r dr 

![1- ( 1-s
2 

) 512
]/ s 

1/s 

= 

, s<l 

, s>l 

, s<l 

1 S>l 
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For s<l the first and second derivatives are: 

a-"(s) = - (1-(1-s2)3/2(1 + 4s2))/s2 

' •I) (1-s2}1/2(1 + 1 2 6s 2
) /s3 Gll(s) = 2 1- 2s + 

I 1 l l · 
Note that G, G and G are finite at s = 0 and 

continuous with the corresponding derivatives of 1/s at 

s = 1. 

Case (b) Let M (s) l 
6 s<l = 1-s 

0 s>l 

t-
fl 

(1-r 6)r (r 2-s 2) 112ar , s<l Then G1.-( s) .s = 1 6 2 J0:(1-r )r dr 

, s>l 

= rl- (1-s2)5/2(1+}.,2+~5s4))1s, s<l 

1/s , s>l 

The first and second derivatives are: 

G • (s) = -(1-(1-s2} 3/2 (1 + ~s23 + 1;s2 + ~ 4}) /s2 

G'' (s) = 2(1-(1-s2)l/2(l+~s2+~~s4+~6+l~;sa))/s3 

I I 't 
Again, G~ , G~ , and G~ · are finite at the origin 

and continuous with 1/s and its derivatives at s = 1. 

These functions have been coded and integrated on 

the Olivetti Programrna 101, yielding for the integral 



'\ 

( ,, 2 ( ")2 J~s ds (3 (G 
5

) ) + s
2 

(\) ) 

the values: 

Case (a) 14.540 

Case (b) 7.071 

These are, respectively, 7.27 and 3.13 times the 

theoretical minimum value of 4 for the integral. 

The final form for the Alfven power is 

p = ~7T. (~ ~) 
2 J dxf dy{mx 

2 
(v.A1) 

2 + my2(VA2)2) 

1 v2 1 
(3mx 

2 + rn 2) p22 = - - ;2 47T u y 

1 2 1 ( 3mx 2 + my 2) s ds (3£ 2 + s
2(f ') 2) p V rX) = I6 u R4 0 

where f (s) = (G· (s) /s) 



APPENDIX VIII 

Let a magnetic dipole lie at the origin of a 

Cartesian coordinate system with its moment M lying in 

the xz plane, tilted at an angle a. with respect to the z 

axis. · The components of the magnetic field are: 

Bx = ~5 ( 3 COSCI. (X COSCI. - z sinet.) ( z cosa. + x sina.) 
r 

+ (3(z cosa. + x sina.) 2 - r
2

)sina.) 

B 
M 3y(z COSCI. + X sina.) = ;s y 

B 
M 

[( 3(z cosa. + x sina)
2 

- r
2

) cosa = -5 z r 

- 3 (z cosa + x sina.} (x cosa. - z sina)sina] 

where r 2 
m x 2 + y 2 + 2 z . 

Consider the field components measured on a 

circle centered at (x,y,z) = (-xN,-yN,-zN), lying 

parallel to the xy plane, and having radius R. 

The locus of that circle in terms of parameter$; 

which corresponds to the azimuth measured from the xz 

plane, is given by: 
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X = •X + R cosijJ N 

y = -y + R sinljJ N 

z = -z 
N 

and 2 R2 + 2R(XN COS1jl + YN sinljJ) + rN2 r -

where r~2 = x~2 + yN2 + zN2 

If we assume that I sincx!~<<l and rN<<R, we may 

neglect terms of second order in these quantities. 

Convert to spherical polar coordinates with z the polar 

axis e = O, and azimuth¢ is measured from the x axis. 

B M 
[3 cos¢(cose + cos¢ sincx}- sina.] = - 3 X r 

B 
M [3 sincp(cose + cos¢ sincx)] = 3 y r 

Bz 
-M = -3 

r 

where r = R - (XN cosip + YN sinip) to first order. 

-3 Expand r to first order in xN and yN, and let~ be the 

distance of the dipole from the z axis. 

Then to first order, ip =¢,and the fields are: 

M [ 2 ZN ] Bx= R3 (3 cos cp -l)sina - 3 R coscp 
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B -- M f 3 - sin~ cosQ sina 
y R3 

The mean values of these quantities over 0<¢~2~ are: 

<B ·> 1 M sina = 2 R3 X 

<B > = 0 y 

<B > -M = 
R3 z 

Therefore the fluctuating parts of the field are: 

oB - B 
X X 

<B > 3M r -zN cos¢ + 1 sina cos 2<1> 1 = 2 X R3 R 

6B - B y y 
<B > 3M [-z: sin¢ + 1 sina sin 2<1>J = ;3 2 y 

oB - B z z <B 
-3M [XN + 

YN 
sin¢) > = - - cos¢ R z R3 R 

The azimuthal (¢) and radial (R) coraponents of 

these fluctuating parts are: 

= oB cos<j> + oB sin¢, 
X y 

= -oB sin¢+ oB cos¢. 
X y 



Explicitly, 

3M ( 
-z l 

oB<I> 
. N + sincx. cos¢), = ,..._. -

2 R3 R 

oBR = ll sina. sin¢. 2 .... 3 
R 



APPENDIX IX 

In the following; let u0 = B/(4nNM) 112 • ' u' is 
0 

the Alfven speed in the limit of infinite light speed. 

We assume that density is constant and desire to 

calculate the quantities 

K = -1/2 d l 1/2) -1/2 £.__ 8 1/2 u - u = B 1 o ds o as 

and 
2 -1/2 d2 Bl/2 

K2 
-1/2 d ( 1/2) = uo ~ uo = B 

ds ds 2 

wheres is arc length measured along a field line. For 

convenience we parametrize spherical coordinates as 

follows: 

r = 

sine - (l-t 2 ) 112 

Then the dipole field is given by: 

Br= 2 B1t(l-t 2}- 3 

where B1 is constant on a field line. The line element 

is given by: 

(ds) 2 = (dr) 2 + r 2 (de) 2 = L2 (1 + 3t 2)dt 

For small departures from the magnetic equatorial plane, 

s = L(t + 1/2 t 3 + · · · ) 
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The exact forms of K1 and K2 turn out to be: 

and 

The critical frequency was obtained from the WKB form of 

the Alfven wave equation for curved lines of force: 

- ·~1 ( -1/2 d2ul/2Jl/2 
WC - U U 2 . , 

ds 

where u is the Alfven velocity equal to c/(l+c 2/u
0

2) 112 • 

By differentiating we find: 

-1/2 d2ul/2 ( ) 2 ( - 5u2 K 2/c2) u :--2" = u/u
0 

K2 1 ds 

2 If we expand K1 and K2 to order t and substitute 

s to order s 2 , we find: 

~12 d 2u 112 2 9 1 5 2 2 81 2 • ( / ) ( ( 1 - -t ) - 5~ (-t. ) ) 
u ds2 = u uo 2 L2 6 c2 4 L2 

Therefore 

1 2 3 w
0 

= -u 
uo 2L 

This equation is approximately true for s < L/4. 

This covers the range of the field lines where the 

curvature is greatest. 




