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This review highlights conceptual issues that have both governed and reflected the 
direction of collisionless shock research in the past quarter century. These include 
MHD waves and their steepening, the MHD Rankine-Hugoniot relations, the super­
critical shock transition, nonlinear oscillatory wave trains, ion sound anomalous 
resistivity and the resistive-dispersive transition for subcriticial shocks, ion reflection 
and the structure of supercritical quasi-perpendicular shocks, the earth's foreshock, 
quasi-parallel shocks, and, finally, shock acceleration processes. 

1. Introduction 

Twenty-five years ago it was hotly debated whether 
collisionless shock waves even existed. Some argued that 
the rarity of collisions in a high-temperature plasma pre­
cluded the existence of shocks, while others maintained 
that collective microturbulence would replace particle 
collisions to create a shock with a thickness much less 
than a collision mean free path. The solar wind proved, 
upon its discovery in 1960, to have an enormous mean 
free path-comparable to the distance from the .earth to 
·the sun-yet the rapid rise times of the sudden com­
mencements initiating magnetic storms suggested that 
solar flare plasma injection did create a thin collisionless 
shock (T. Gold (1955) cited by Sagdeev [1979]) [Levy et 
al., 1964]. Since it had been difficult to make collision­
free plasmas in the laboratory, some foresaw that the 
first truly collisionless shock would be discovered in 
space. And so it was, standing in the solar wind ahead of 
the earth's magnetosphere [Bonett and Abrams, 1963; 
Ness et al., 1964]. 

The following decade (1964--1974) was a golden age of 
collisionless shock research. The study of nonlinear col­
lective plasma processes was in its infancy as the golden 
age opened, and collisionless shocks were the simplest 
example that illuminated the self-regulating inter­
relationship between macroscopic flows and microscopic 
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collective processes that is central to most plasma config­
urations . High-altitude nuclear weapons studies and 
magnetic pinch fusion research motivated major labora­
tory investigations of collisionless shocks in the United 
States, Europe, and the Soviet Union. The discovery of 
the earth's bow shock ensured that space observations 
would play a major role in collisionless shock research. 
Some of the first numerical simulations were of col­
lisionless shocks. There was a marvelous collaboration 
between laboratory and space experimentalists, theorists, 
and specialists in numerical simulation. 

The marvelous collaboration ended suddenly in 1974, 
largely because financial support for laboratory experi­
ments disappeared when interest in magnetic pinch 
fusion waned. The space community was left to its own 
devices. Actually, because space plasmas are collision 
free and boundary free, and because the quality and vari­
ety of space plasma data were increasing rapidly, the 
space community was beginning to assert its dominance 
in collisionless shock research even before laboratory ac­
tivity ceased. 

The major achievement of the bridge years between the 
first and second golden ages, 1974--1979, was a phenom­
enological classification of the dependence of the earth's 
bow shock structure on upstream solar wind parameters 
which revealed a rich~ess of shock structure that did not 
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and could not emerge from the limited number of labora­
tory experiments that had been performed. 

The ISEE spacecraft program initiated a second golden 
age of shock research, which began in 1979---1980 when 
detailed analyses of the earth's bow shock data started to 
appear in the literature. The ISEE program is well suited 
to bow shock studies ; the use of two spacecraft makes it 
possible to measure scale lengths, easy to do in the lab­
oratory but difficult in space, and the ISEE plasma diag­
nostics far exceed the previous laboratory standards of 
accuracy and completeness . A new generation of numeri ­
cal simulations was stimulated by the new space 
measurements, and previously independent research on 
shock structure and the ac celeration of particles by 
shocks began to converge. 

We do not intend to repeat other detailed reviews of 
early collisionless shock research [Tidman and Krall , 
1971; Biskamp, 1973; Formisano, 1977; Sagdeev, 1979; 
Greenstadt and Fredricks , 1979; Eselevich, 1982, 1983] or 
the comprehensive review of our present knowledge by 
Greenstadt et al. [1984]. We will not attempt to apportion 
research credit. Rather, we will highlight conceptual 
issues that have both governed and reflected the direc­
tion of collisionless shock research in the past quarter 
century. 

The first six sections discuss fluid theories of shock 
structure, a natural starting point, and the main success 
of the first golden age. Sagdeev [1979] has reviewed the 
theory of collisionle ss shocks in unmagnetized plasmas ; 
we will consider only the magnetized case. Section 2 
begins by defining the three small-amplitude magnetohy­
drodynamic waves which determine the characteristics 
along which information about boundary conditions is 
propagated in magnetohydrodynamic flows. Viewing 
them as shocks of infinitesimal amplitude illustrates 
what changes in plasma properties propagate along 
which characteristics , shows how fast and slow compres ­
sional waves steepen to form shocks, and illuminates the 
properties of finite amplitude shocks. Considerations of 
shock evolution or steepening, which follow naturally 
from the use of fluid theory , eliminate certain extraneous 
solutions to the MHD Rankine-Hugoniot conditions (sec­
tion 3), explain the formation of diss ipative subshocks 
(section 4) and dispersive wave trains (section 5), and 
define the transition between dissipative and dispersive 
structure in shocks with ion sound anomalous resistance 
(section 6). 

Section 4 discusses the structure of fast shocks predic­
ted by dissipative MHD theory. Here one important 
result has survived : the identification of a critical Mach 
number above which the dissipation can no longer be 
exlusively due to resistivity . Shock steepening arguments 
indicate that the critical Mach number is defined for all 
upstream plasma parameters by the condition that the 
downstream flow speed equal the sound speed. Section 4 
closes with a numerical calculation of the sensitive de­
pendence of the critical Mach number on upstream 

plasma parameters, which even today is not widely ap­
preciated. 

Section 5 deals with dispersive shocks , in which a non­
linear oscillatory wave train accompli shes the shock 
transition . The basic features of finite amplitude wave 
trains can be estimated from the properties of the corre­
sponding small-amplitude waves described by the two­
fluid approximation . We will show that dispersive wave 
trains have the same critical Mach number as laminar 
resistive shocks. Whether a resistive or dispersive subcri­
tical shock will form can be determined once the ratio of 
the resistive to dispersive scale lengths is known . 

The ion sound instability has long been a candidate for 
anomalous resistance in weakly magnetized plasmas like 
the solar wind, and its saturation has been well under­
stood since the early 1970s [Galeev, 1976]. In section 6, 
we review the properties of ion sound anomalous resist­
ance in the quasi-linear regime most pertinent to bow 
shock measurements. Steepening arguments indicate that 
equating the dispersive and ion sound resistive scale 
lengths defines the parameters for which a subcritical 
shock changes from resistive to dispersive. Only recently 
have enough observations of subcritical bow shocks been 
gathered to test this approach. 

The classical treatment of collisionless shock structure 
started with the fluid approximation. The primary con­
cession it made to the kinetic nature of plasmas was to 
recognize the difference between the ion and electron 
inertial responses by using two-fluid theory. To allow for 
dissipation, artificial collision frequencies were inserted 
in the fluid equations, whose solutions then defined how 
and when microinstabilities could grow in the shock 
front. Knowing how a particular brand o( .microturbu­
lence saturated, one then estimated the turbulent dissi­
pation coefficients, and the "anomalous " collision fre­
quencies, and tested the consistency of the fluid and ki­
netic level calculations . 

Underlying the classical approach were two often un­
stated assumptions: first , that plasma dissipation is local 
and diffusive as the fluid model presumes, and, more im­
portant, that microturbulence is the only kinetic effect 
pertinent to shocks. This philosophy appears to .be useful 
primarily for subcritical shocks, which are a minor frac­
tion of the bow shocks observed in space. More modern 
theoretical research, which has been guided exclusively 
by space observations, has therefore gone beyond the 
fluid approach. It has proven fruitful to partition the 
plasma ions into separate phase space classes according 
to how they interact with the shock. Reflected ions con­
trol the structure of supercritical quasi-perpendicular 
shocks, which we discuss in section 7. The fluid theory 
assumption that ion heat flows are negligible breaks 
down for quasi-parallel shocks (section 9), in which the 
interaction between low-energy plasma and superthermal 
ions energized by their interaction with the shock is a 
central structural feature. 

Essential to supercritical and quasi-parallel shock 
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physics is the realization that not all ions are bound into 
a single fluid by microturbulence. Although the highly 
structured ion distributions occurring in such shocks 
may be unstable, the fluctuations produced by the insta­
bilities are often secondary to free-streaming effects and 
provide primarily a means by which complete thermody­
namic equilibrium may be reached. When different re ­
gions of phase space behave differently, the classical 
causality arguments , which were based on the existence 
of unique signal speeds in fluid theory, are no longer 
completely trustworthy. No longer must a shock steepen 
to provide the added dissipation required as its Mach 
number increases. In fact, the long mean free paths of the 
superthermal ions generated by supercritical and quasi­
parallel shocks imply that shocks thicken outside the 
regime for which simple fluid theory is adequate . 

By the early 1970s no laboratory experiment could 
match the range of plasma parameters that had been pro­
vided for free by the variable solar wind. A spacecraft 

. experimentalist with imagination, a sense for geometry , 
cooperative colleagues, and patience could win hands 
down over his laboratory competitors. His advantage 
would have been far less striking were shock structure 
not as parameter sensitive as it turned out to be. In re­
trospect, many early disagreements about the bow 
shock - whether it was thick or thin, for example­
occurred because we were slow to appreciate how 
parameter-dependent collisionless shocks really are. 
Ev entually , a large international effort produced a classi­
fication of the dependence of bow shock magnetic struc­
ture upon upstream solar wind parameters (section 8), 
which revealed the profound difference between thin 
quasi-perpendicular shocks and thick quasi-parallel 
shocks. Quasi-parallel shocks are so thick that they 
could not have been found in the early laboratory experi­
ments, and modern simulations must be carefully de­
signed to contain the large spatial scales which 
characterize them . Their discovery is the most fundamen­
tal achievement of bow shock research. 

The space community also consolidated numerous indi­
vidual investigations of the region upstream of the 
earth's bow shock into a unified phenomenological pic­
ture that motivates much of today's research (section 8). 
Because of the unexpectedly large spatial scale of the 
quasi-parallel shock, this picture must explicitly take 
into account the facts that the bow shock is three dimen­
sional, curved, and of finite extent. The most important 

· new conception arising from this research was that of the 
"foreshock" [Greenstadt , 1975], which not only organizes 
the observations of upstream waves and particles, but 
also links bow shock observations directly to models of 
particle acceleration . 

In recent years, the space plasma, cosmic ray, and 
astrophysical plasma physics communities have been oc­
cupied with different aspects of three general questions: . 

1. How does collisionless shock structure depend on 
upstream plasma parameters? In particular, why are 
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quasi-parallel and quasi-perpendicular shocks so differ ­
ent? 

2. How do collisionless shocks accelerate particles to 
high energies? 

3. How does energetic particle acceleration affect 
shock structure? 

It is gradually becoming clear that all three questions 
are interrelated , and, as a result, fruitful interchanges 
between those interested in collisionless shock structure, 
particle acceleration, and cosmic ray physics are be­
ginning to take place. 

Although theoretical models of quasi-parallel shocks 
(section 9) are over 20 years old, and although the 
suggestion that energetic particles are significant to 
shock structure is equally venerable, experimentalists 
could do little with these ideas until recently . The earth's 
foreshock has a complex phenomenology whose disorder 
had to be reduced before it could be fitted into a theoreti­
cal framework that had once seemed ill adapted to bow 
shock observations. Moreover, quasi-parallel shocks 
have such enormous spatial scale that it now seems 
better to use interplanetary shocks to test theories of 
their structure. 

A coherent viewpoint is now emerging from the re­
search of the past 5 years (section 10). Recent observa­
tions of waves and energetic particles associated with 
interplanetary shocks also reveal the difference between 
the quasi-perpendicular and quasi-parallel parameter re­
gimes found earlier in bow shock studies . Only quasi­
parallel shocks have foreshocks containing magnetohy­
drodynamic turbulence upstream that is the essential in­
gredient for first-order Fermi acceleration. It appears 
that superthermal and energetic particles can stream 
relatively freely through quasi-parallel shocks , and that 
these particles generate the wave fields that scatter 
them. The outlines of a theory that will eventually pre­
dict the intensity and spectrum of accelerated particles 
as a function of shock parameters and time evolution are 
in view. 

2. Small-Amplitude MHD Waves 

2.1. Basic Properties 

Ideal magnetohydrodynamic theory consists of equa­
tions for the conservation of mass, momentum, and spe­
cific entropy , Faraday's law of magnetic induction to­
gether with the "frozen in field " assumption, and V · B = 
0. Because these equations are free of dissipation and 
dispersion , they cannot describe the processes that form 
shock structure , but they do describe small-amplitude 
long-wavelength waves, the steepening of these waves to 
discontinuities, and the changes in plasma state that 
must take place across the discontinuities. 

Linearizing the ideal MHD equations about an infinite 
homogeneous equilibrium leads to three small-amplitude 
plane waves, whose phase speeds depend upon the angle 
8 of their propagation to the magnetic field, B, and the 
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FRIEDRICHS DIAGRAMS 
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Fig. 1. MHD Friedrichs diagrams . The Friedrichs diagram 
displays the dependence of the 3 MHD plane wave speeds (radial 
coordinate) on their angle of propagation to the magnetic field 
(angular coordinate) in a polar plot whose vertical axis is paral­
lel to the magnetic field. Four cases are shown, with C/ /C,/ = 
¼ and ½ in the left-hand column and C5

2/C,.2 = 1 and 2 in the 
right . C

5 
and CA are the sound and Alfven speeds, respectively. 

The fast and slow waves, which steepen, are indicated by solid 
lines, while the intermediate wave, which does not steepen, is 
indicated by a dashed line. The magnetosonic wave propagates 
perpendicular to the magnetic field with the speed CM= (Cs' 
+ CA 2) 1' 2 • For parallel propagation, the fast and intermediate 

speeds equal the Alfven speed when C/ /CA2 < 1, while the slow 
and intermediate speeds equal the Alfven speed when C5

2/CA2 > 
1. When C5 

2 /CA 2 = 1, all three speeds are equal. 

sound and Alfven speeds, Cs and CA• respectively, where 

Cs2 = yP/p cA2 = B2/4np (1) 

and P, p, and y are the plasma pressure, mass density, 
and ratio of specific heats. The three MHD waves are 
ordered by their speeds, which are called fast, intermedi­
ate, and slow (CF C1, and Csv respectively), where 

C/ = CA2 cos 2 0 

CF2 - 1 {(C 2 + C 2) 
C 2-2 A S 

SL 

(2) 

± [(CA2 + Cs2)2 - 4CA2cs2 cos2 0]1/2} (3) 

By defining the fast mode to have the larger of the two 
speeds in (3), it follows that CF ~ C1 ~ CsL for all 0, Cs, 
and CA. 

For propagation perpendicular to the magnetic field 
(0 = 90°), (2)' and (3) reduce to 

(4) 

so that only one wave, the magnetosonic wave, propa­
gates with a nonzero speed. For parallel propagation 

(0 = 0°), (2) and (3) indicate that when CA> Cs, the fast 
and intermediate speeds are identical, whereas when 
Cs > CA• the intermediate and slow speeds are equal. For 
all other angles of propagation, the three MHD speeds 
are distinct. 

The dependences of the MHD wave speeds upon the 
propagation angle 0 may be visualized with the aid of a 
Friedrichs diagram, a two-dimensional polar plot whose 
radial coordinate is the wave speed and whose polar 
angle is the angle 0. Figure 1 shows four Friedrichs dia­
grams adapted from Kantrowitz and Petschek [1966], for 
Cs2/CA2 = ¼, ½, 1, and 2. The vertical axes are parallel to 
the magnetic field. The fast and slow modes are indicated 
by solid lines and the intermediate mode by dashed lines. 

Since ideal MHD contains ·no fundamental scale 
length, the MHD wave speeds are independent of wave-

· length, and small-amplitude discontinuities as well as 
periodic waves obey the linearized MHD equations. Such 
step waves, shocks of infinitesimal amplitude, describe 
how changes in plasma properties propagate along MHD 
characteristics. According to Kantrowitz and Petschek 
[1966]: 

1. The fluid velocity increments across the fast, inter­
mediate, and slow waves are mutually perpendicular. 

2. For fast and slow waves, both the velocity and the 
magnetic field remain in the plane defined by the mag­
netic field ahead of the wave and the wave normal. This 
coplanarity property, which is preserved for finite ampli­
tude fast and slow shocks, is often used to determine the 
shock normal from spacecraft data. 

3. For the fast (slow) mode, the magnetic pressure in­
creases (decreases) when the density increases. When the 
density decreases, the magnetic pressure decreases (in­
creases) across a fast (slow) mode. 

4. The intermediate wave rotates the magnetic field 
and fluid velocity out of the coplanarity plane without 
changing any other plasma property . 

Properties 1-4 above also apply to finite amplitude dis­
continuities. 

2.2. Wave Steepening 

Imagine that a piston generates two successive infini­
. tesinial shocks in the same mode. We may determine 
whether nonlinear isentropic MHD waves steepen simply 
by asking whether the trailing wave overtakes the lead­
ing wave. Their speeds differ because the leading wave 
changes the Alfven, sound, and fluid speeds. A compres­
sional wave increases the fluid speed in the stationary 
frame-the principal effect that enables the trailing wave 
to catch the leading wave [Petschek, 19581 

Fast and slow waves steepen when [Kantrowitz and 
Petschek, 1966] 

E._ b(U + C) = 1 
C bp 

In (5), b( U + C) is the speed of the second wave relative 
to the first, U is the fluid velocity component parallel to 
the wave normal, and C is the wave speed relative to the 
fluid (either fast or slow). The expression (5) is always 
positive, so that compressional waves (bp > 0) steepen. 
By resolving a smooth pressure pulse into a number of 
small-amplitude step waves; we infer that the compres­
sional parts of the pulse steepen, while its rarefactive 
portions separate. Intermediate waves do not steepen, be­
cause they do not alter the density, the normal compo­
nent of the flow speed, or the Alfven and sound speeds. 

The quantity b(U + C)/C in (5) may also be interpreted 
as the ratio of the steepening rate, y. = kb( U + C), to the 
frequency, ro = kC, of a periodic fast or slow wave of a 
given density amplitude, bp/p. The normalized fast (solid) 
and slow (dotted) mode steepening rates are plotted in a 
Friedrichs diagram format in the top row of Figure 2 for 
C//CA 2 = 0.3, 1, and 3, assuming bp/p = 1. The exact 
steepening rates may be obtained by dividing the quan­
tities in Figure 2 by bp/p. For a given bp/p, the fast and 
slow steepening rates are roughly independent of propa­
gation angle, are almost equal for all C//CA2, and are 
identical for C//CA 2 = 1. 

Beca1Jse parallel fast and slow waves do not change the 
density when C//CA 2 < 1 and C//CA 2 > 1, respectively, 
it is more illuminating to derive the expressions analo­
gous to (5) for a given perturbed fluid ~peed, bl vJ, or, 
better yet, for a given perturbed energy density. The 
second and third rows of Figure 2, which show the steep­
ening rates for blvJ = (CA2 + C/) 112 and c5 (energy 
density=½ p(CA2 + Cs2

), respectively, indicate that 
parallel fast modes do not steepen when Cs2/CA2 < 1 and 
that parallel slow modes do not steepen when C/ / CA2 > 
1. 

In order that nonlinear waves actually steepen, the 
above fluid steepening rates must exceed the wave damp­
ing rates calculated from kinetic theory. For the solar 
wind conditions prevailing at 1 AU, fast waves will 
nearly always steepen, whereas slow waves of com­
parable energy density will steepen only if the ion fJ is 
very low [Hada and Kennel, 1985]. · 

3. MHD Rankine-Hugoniot Relations 

3.1. Introduction 

A nonlinear pressure pulse steepens until there is suf- . 
ficient dissipation to form a steady shock. The structure 
of the dissipation layer is not describable by ideal MHD. 
However, the stationary states asymptotically far up­
stream and downstream of the shock are spatially uni­
form and therefore free of dissipation . As a result, ideal 
MHD does describe the change in flow parameters be­
tween the two stationary states provided that the specific 
entropy is allowed to increase. These jump conditions, 
the MHD Rankine-Hugoniot (RH) relations, are obtained 
by integrating the MHD conservation laws (with an 
equation for conservation of energy replacing that for 

Density 
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Velocity 
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Energy Density 
Normalization 
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Normalized Steepening Rates 
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Fig. 2. Normalized MHD wave steepening rates. The normal­
ized steepening 'rate defined in equation (8) is displayed in a 
P.Olar plot for C~2/CA2 = 0.3, 1, and 3, and y = j in the top row. 
The vertical and horizontal axes are parallel and perpendicular 
to the magnetic field, respectively . The fast and slow mode 
steepening rates are indicated by solid and dashed lines, respec­
tively. The steepening rates for step waves with {Jp = p are 
shown; these may be adjusted to any given density amplitude by 
dividing by {Jp/p . When C/ /CA2 < 1, the fast mode steepens 
faster than the slow wave, and vice ,,,ersa when C5 

2 /CA 2 > 1. The 
two steepening rate are equal when C5 

2 /CA 2 = 1. The parallel 
propagating fast and slow waves do not perturb the density 
when C/ /CA2 < .1 and C/ /CA2 > 1 respectively, and therefore 
do not steepen. It is more illuminating . to plot the steepening 
rates for a velocity perturbation equal to the magnetosonic 
speed (middle row) or for a perturbed energy density equal to 
1/2 p CM2 (bottom row). 

entropy) across the shock, which is considered to be dis­
continuity [DeHoffman and Teller, 1950]. 

There are fast and slow shocks, and an intermediate 
wave or rotational discontinuity, which neither steepens 
nor changes the specific entropy. Shocks are always com­
pressional. This conclusion, which is consistent with the 
fact that only compressional waves steepen, does not 
follow automatically from the formal RH relations, 
whose solutions correspond to the flow going from low to 
high density or vice versa. However, since the specific 
entropy is higher on the higher-den11ity side of the dis­
continuity, the density must always increase across a 
shock. 

The shock frame flow velocity upstream of a fast (slow) 
shock is greater than the fast (slow) wave speed upstream 
and less than the fast (slow) speed downstream. This 
statement can be made plausible by using evolutionary 
arguments . Let us imagine a shock to l;!VOlve from a 
steepening pressure pulse, which we divide into a number 
of small-amplitude step waves. As the first few compres-
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ALLOWED DOWNSTREAM FLOW SPEEDS 
FOR FAST SHOCKS 

ALLOWED UPSTREAM FLOW SPEEDS 
FOR SLOW SHOCKS 

II 801 
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Fig. 3. MHD shock evolutionary conditions . The top and 
bottom panels show a C/ /C,._2 = ¼ Friedrichs diagram of the 
fast, intermediate, and slow wave speeds. A fast shock takes the 
normal component of the shock frame flow speed from above the 
fast speed upstream to between the fast and intermediate speeds 
downstream. A slow shock takes the flow speed from between 
the slow and intermediate speeds upstream to below the slow 
speed downstream . For parallel propagation, the fast and inter­
mediate speeds equal the Alfven speed when C/ / C,/ < 1. If 
Cs 2 < C,. 2 downstream, the normal component of the flow speed 
must equal the Alfven speed. In this case, the shock "switches 
on" a tangential component of magnetic field and flow speed. 
Switch .-on shocks occur when C/ < C,.2 upstream and the fast 
Mach number is less than or equal to 2. For the maximum 
strength slow shock, the flow speed equals the intermediate 
speed upstream. This shock "switches off"' the tangential compo­
nent of the magnetic field downstream . 

sion waves cross, the shock forms, and subsequent waves 
strengthen the shock until dissipation balances steepen­
ing. 

In order that the pressure pulses overtake the shock, 
the flow speed must be smaller than the fast (slow) wave 
speed downstream. On the other hand, if the flow speed 
upstream were less than the fast (slow) speed, compres­
sional waves would run ahead from downstream, and the 
shock profile would be unsteady. 

The Rankine-Hugoniot relations contain extraneous 
solutions that take the normal component of the shock 
frame flow speed from above to below the intermediate 
speed. Evolutionary arguments indicate that when the 

boundary conditions demand such a flow configuration, 
an additional finite amplitude intermediate wave must be 
inserted in the flow [Kantrowitz and Petschek, 1966]. 
Thus, the shock frame flow speed must exceed the inter­
mediate speed downstream of a fast shock, and it cannot 
exceed the intermediate speed upstream of a slow shock. 
The regions of allowed flow speeds are shaded in the 
Cs 2 = 1/4 C,. 2 Friedrichs diagram of Figure 3. 

The maximum strength slow shock switches off the 
tangential magnetic field component downstream. It 
occurs when the upstream flow speed equals the inter­
mediate speed and is called the "switch-off" shock. For 
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Fig . 4. Fast shock Rankine Hugoniot solutions for Cs 2 = 0 
upstream . The density compression ratio (top), the magnetic 
field compression ratio (middle), and the ratio of the down­
stream internal energy density to the upstream flow energy den­
sity (bottom) are plotted as a function of the fast Mach number 
M assuming y = i-The solutions for shock normal angles (denot­
ed in this figure by 01) in 15° intervals from 0° to 90° are shown. 
The discontinuous change at 01 = 0 and M = 2 is due to the 
disappearance of the switch-on shock. Above M = 2, B 2/B, is . 
unity, and the density compression ratio and normalized inter­
nal energy density equal their strong shock limits of 4 and H 
respectively . The more oblique the shock, the higher the Mach 
number at which it approaches the strong shock limit . The RH 
solutions depend weakly on shock normal angle for 45° < 01 ~ 

90°. Thus , quasi-parallel (01 < 45°) and quasi-perpendicular 
(01 > 45°) shocks differ considerably. This figure is from Kantro­
witz and Petschek [1966]. 
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MHD RANKINE- HUGONIOT SOLUTIONS 
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Fig. 5. Fast shock Rankine-Hugoniot solutions. The magnetic field compression ratio (left column), the 
velocity contrast (the inverse of the density compression ratio, middle column), and the downstream p2 (right 
column) are contoured as functions of fast Mach number Mfl (vertical angles) and upstream shock normal angle 
0N81 (horizontal axes) for upstream p1 = 0 (top row) and p1 = 2 (bottom row). The quantity p is the ratio of 
thermal to magnetic pressure. It is interesting to contrast parallel and perpendicular shocks for low and high p 1• 

Cs 2 < CA 2 and 0 = 0° the fast and intermediate speeds are 
identical; if Cs 2 < CA 2 downstream of a parallel fast 
shock, the evolutionary conditions demand that the 
normal component of the downstream flow velocity pre­
cisely equal the intermediate speed . To accomplish this, 
parallel fast shocks "switch-on" tangential components 
of flow velocity and magnetic field downstream when the 
fast Mach number is less than 2 and Cs 2 < CA 2 upstream. 
Such shocks are called "switch-on" shocks. 

3.2. Numerical Rankine-Hugoniot 
Solutions for Fast Shocks 

The Rankine-Hugoniot relations calculate the depen­
dence of the downstream flow state on the upstream flow 
speed or Mach number, the ratio of the sound to Alfven 

speeds upstream (or, equivalently, the ratio of the ther­
mal and magnetic pressures, fJ 1), and the shock normal 
angle. Although it is sometimes convenient experi­
mentally to specify the Alfven or magnetosonic Mach 
numbers, the steepening argument indicates that the 
physically rigorous parameter is the fast Mach number, 
the ratio of the upstream flow speed to the upstream fast 
speed based upon the shock normal angle. 

Figure 4, from Kantrowitz and Petschek [1966], shows 
the dependences on the fast Mach number and shock 
normal angle of the density compression ratio p2/p 1, the 
magnetic field compression ratio B 2/B 1, and the flow in­
ternal energy (enthalpy) downstream of shocks that prop­
agate into a cold plasma (/J 1 = 0) whose ratio of specific 
heats, y, is i, As the fast Mach number approaches infini-
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ty, the density and magnetic compression ratios approach 
a limit of 4 for all shock normal angles. In general, it may 
be shown that p2/p 1 and B 2/B 1 approach y + 1/y - 1 and 
the downstream internal energy density approaches ti of 
the upstream flow energy density (when y = i) in the 
strong shock limit. 

The complex structure for fast Mach numbers less than 
2 and nearly parallel propagation in Figure 4 is due to 
the switch-on shock . When C/ > C ,/ upstream, or when 
the Mach number exceeds 2, switch-on shocks no longer 
exist, and this structure disappears. 

The three columns of Figure 5 contour the dependences 
on the fast Mach number, Mfl, and the upstream shock 
normal angle of the magnetic compression ratio (left 
columq.), the velocity contrast (middle column), and the 
ratio p2 of the downstream thermal to magnetic pressure 
for y = i- The top and bottom rows correspond to P 1 = 0 
and 2, respectively. The velocity contrast is the ratio, 
U2x/ U1, of the normal components of the downstream and 
upstream flow velocities and is the inverse of the density 
compression ratio. 

The properties of quasi-perpendicular (0NB, > 45°) and 
quasi-parallel (0NB, < 45°) shocks are highlighted by the 
perpendicular and parallel limiting cases. For quasi­
perpendicular shocks, the magnetic compression ratio 
and velocity contrast are virtually independent of both 
the shock normal angle and upstream p,. They depend 
primarily on the fast Mach number and approach · their 
strong shock limits by the time Mfl reaches 5. The down­
stream P2 does depend upon the upstream P,, but is still 
relatively independent of shock normal angle. Perpen­
dicular shocks have the largest magnetic compression 
ratio and produce the smallest p2 for a given fast Mach 
number. However, by the time M11 reaches 3.5, even a 
perpendicular shock propagating into a cold plasma 
creates p2 = 1 downstream. Thus, if the fast Mach 
number exceeds 3.5, P2 is certain to exceed unity. 

When p 1 = 0, all parallel fast shocks with Mach num­
bers less than 2 switch-on a tangential magnetic field 
_component downstream, and the magnetic compression 
ratio exceeds unity. When the Mach number exceeds 2, 
parallel shocks leave the magnetic field unchanged in 
direction and magnitude. When Cs 2 > C,. 2 upstream, there 
can be no switch-on shock, as in the case P = 2. The mag­
netic field never changes, and the shock jump is hy­
drodynamic in character. Except where switch-on shocks 
occur, parallel shocks produce a large downstream p2 , 

because the magnetic field is not compressed. The mag­
netic field compression ratio is virtually independent of 
fast Mach number for quasi-parallel shocks. 

The velocity contrast depends significantly on the 
shock upstream normal angle for P, = 0, whereas it is 
virtually independent of 0NBI when P, = 2. Since high P, 
shocks are dominated by plasma pressure, their down­
stream state should depend weakly on the upstream mag­
netic field magnitude and direction. 

Because V · B = 0, the normal component of the mag-

netic field is conserved across plane shocks. However, 
except for non-switch-on parallel shocks, the tangential 
component increases. Moreover, the magnetic tension in­
duced by the increased tangential field refracts the down­
stream flow velocity away from the shock normal. Figure 
6 contours the dependences of the angles 0N8,, 01,w 2

, and 
0v82 upon fast Mach number and upstream shock normal 
angle. N, B2 , and V 2 are the shock normal, downstream 
magnetic field, and downstream velocity vectors, respec­
tively. The top and bottom panels are for P, = 0 and 2, 
respectively. The shaded regions correspond to "subcriti­
cal" shocks, discussed in the next section. 

The magnetic field does not change direction across 
perpendicular shocks or across non-switch-on parallel 
shocks. For all others, the downstream magnetic field is 
refracted away from the shock normal, as is the velocity. 
The magnetic field is always more strongly refracted 
than the flow velocity. When p = 0, the velocity refrac­
tion is especially pronounced for low Mach number, 
quasi-parallel switch-on shocks. As the Mach number in­
creases, magnetic stresses become proportionally less im­
portant, and the change in flow direction across the 
shock diminishes. When p 1 = 2, the shock is closer to the 
gas dynamic limit for which there is no velocity refrac­
tion, and the downstream flow velocity makes an angle of 
10.8° or less to the shock normal. 

In closing, we emphasize that the MHD Rankine­
Hugoniot conditions relate the uniform, dissipation-free 
states of local thermodynamic equilibrium asymptotically 
far upstream and downstream of the shock. The RH rela­
tions are valid only after all the dissipation processes in 
the spatially nonuniform shock transition have been ac­
counted for. Several such processes are expected to occur 
and to have different characteristic scale lengths. Of 
these, the scale length over which the electron and ion 
temperatures equalize will typically be the longest. In 
principle, the RH relations apply only to states separ11ted 
by a distance greater than the longest dissipative scale 
length. 

4. Dissipative MHD Shocks 

4.1. Introd~ctory Remarks 

A natural first approach to shock structure is to add 
scalar resistivity, viscosity, and thermal conductivity to 
the MHD equations and to solve the resulting nonlinear 
differential equation that describes the transition be­
tween the upstream and downstream stationary states. 
Such an ansatz is almost devoid of physical content, be­
cause the plasma processes that lead to dissipation are 
not specified. Nonetheless, its use has led to one general 
result-the identification of a critical Mach number 
above which resistivity cannot provide all the dissipation 
required by the Rankine-Hugoniot conditions. 

Dissipative MHD has a basic scale length for each dis­
sipation process: the lengths that make the magnetic .and 
0rdinary Reynolds numbers unity, and a thermal conduc-
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tion scale length [Coroniti, 1970]. A nonlinear MHD 
pulse should steepen until . it arrives at the longest scale 
length over which sufficient dissipation occurs to satisfy 
the Rankine-Hugoniot conditions. The question is, to 
which length will it steepen? Without a microscopic 
theory of the dissipation, one cannot go further. More­
over, plasma dissipation is not always a diffusive process, 
as the fluid description assumes. Nonetheless, the fluid 
equations do indicate that resistivity can always initiate 
a fast shock, while viscosity alone cannot provide a com­
plete fast shock transition, and thermal conduction alone 
is sufficient only for weak shocks [Coroniti, 1970]. 

The argument above made it natural to investigate 
when the entire fast shock transition can be accom­
plished by resistivity. It was always assumed that resis­
tivity would provide enough dissipation for weak shocks. 
Such shocks would steepen until they arrive at the mag-

netic Reynolds length, and it was up to plasma physics to 
estimate the anomalous resistivity resulting from the 
saturation of current-driven instabilities in the shock 
front, in order to calculate the shock thickness. 

· The question whether resistivity provides enough dissi­
pation for strong as well as weak shocks was first studied 
by Marshall [1955]. He found that a perpendicular shock 
propagating above a fast Mach number of 2. 76 into a col4 
MHD fluid required more dissipation than the maximum 
possible from resistivity. At the critical Mach number, 
the normal component of the shock frame downstream 
flow speed, U2 , equaled the ordinary sound speed, C82 • It 
was natural to assume that the additional dissipation 
was due to viscosity. Indeed within the fluid framework, 
viscosity was the only option, since finite · thermal con­
ductivity cannot provide for strong shocks. 

Coroniti [1970] showed that the condition U2 = C82 de-
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Fig . 7. Ninety degree resistive and dispersive subshocks. 
The top panels sketch the dispersion relations for a small­
amplitude wave propagating perpendicular to the magnetic field 
in a resistive, viscous, dispersionless plasma (left) and in a 
dissipation-free, dispersive plasma (right). The shapes of the dis­
persion curves are similar for both cases. Finite resistivity (left) 
or finite electron inertia (right) reduces the wave speed from the 
magnetosonic speed to the sound speed when the wavelength is 
less than the magnetic Reynolds length (left) or the electron 
inertial length (right). Finite viscosity (left) or charge separa­
tion effects (right) reduce the wave speed to zero when the wave­
length is less than the Reynolds length (left) or Debye length 
(right) . The dotted and dashed lines correspond to the flow 
speeds downstream of subcritical and supercritical shocks re­
spectively. The supercritical shock structures expected · in the 
dissipative and dispersive cases are sketched in the lower left 
and lower right panels, respectively . The magnetic field in­
creases on the magnetic Reynolds (left) or electron inertial 
(right) scale lengths, and a viscous (left) or ion sound subshock 
(right) is embedded within a broader magnetic field structure. 

fines a critical Mach number for all upstream parame­
ters, by generalizing an evolutionary argument proposed 
for the perpendicular fast shock by Kantrowitz and Pets­
chek [1966]. This argument, outlined in section 4.2, con­
siders the conditions for which a downstream fast wave 
in a resistive MHD fluid can catch the shock. A more 
formal procedure, which examines the stability of the up­
stream and downstream stationary states to small pertur­
bations, leads to the same definition of the critical Mach 

number. We introduce the stationary point analysis in 
section 4.3, subsequently add dispersion to resistivity and 
apply the analysis to dispersive shocks in section 5.2, and 
finally use it to determine when subcritical shocks 
should be resistive and when they should be dispersive in 
section 6.2. 

4.2. General Definition of Critical Mach Number 

The fast magnetosonic speed in a resistive MHD fluid 
depends on wavelength, since causality requires that dis­
sipation be accompanied by dispersion: 

where 

Re CM2 = Cs2 + Re C,/ (6) 

-2 C,/ 
Re CA ~ 2 2 

1 + k Rm 
(7) 

and Rm is the magnetic Reynolds length, 

c2 
R =-- (8) 

m 41tuVph 

c is the speed of light, u the electrical conductivity, Vph 
the phase speed, and k the wave number. Re, here, de­
notes the real part of the expression following it . 

The dispersion relation for a perpendicular fast wave 
in a resistive and viscous fluid is sketched in the upper 
left-hand panel of Figure 7. The dotted and dashed lines 
~orrespond to the fluid velocity downstream of a subcriti­
cal and supercritical shock, respectively. The phase 
speed approaches the magnetosonic speed of ideal MHD 
in the long-wavelength limit. Finite resistivity progres­
sively decouples the magnetic and fluid oscillations as 
the wavelength decreases, so that the phase speed ulti­
mately approaches the sound speed, C5, when the wave­
length is comparable to the magnetic Reynolds length. 
By adding the dispersion due to viscosity, presumed to 
set in at a shorter Reynolds length, R, Coroniti [1970] 
showed that the phase speed finally approaches zero 
when kR » I. 

Imagine that a piston launches a nonlinear mag­
netosonic pulse which steepens into a shock whose scale 
length is the magnetic Reynolds length. The piston now 
launches another magnetosonic wave which, by the evol­
utionary conditions, must overtake the shock. This wave 
also steepens until it arrives at the magnetic Reynolds 
length and its propagation speed is reduced to the sound 
speed. If U2 > C52 , it cannot reach the shock, and the 
shock is steady. If, however, U2 < Cs2 , the wave over­
takes the shock, causing it to steepen until the next 
smaller dissipation length is reached. Since viscosity re­
duces the wave speed to zero, viscosity can always pro­
vide whatever dissipation is needed for supercritical 
shocks. 

The supercritical shock structure expected from the 
above arguments is sketched in the lower left-hand panel 
of Figure 7. The magnetic field and the temperature of 
the electrons, which are resistively heated, should in-
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Fig. 8. Parameter dependence of the critical Mach number. The critical Mach number is defined as that for 
which the normal component of the downstream flow speed in the shock frame, U2x, equals the sound speed C52 • 

The top panel shows the dependence of the critical Mach number on the upstream thermal fJ1 and shock normal 
angle BNBt for y = f The lower panels contour the same dependences for O < /J1 < 4 (left) and for O < /J1 < 2 
(right). The critical Mach number is a strong function of upstream plasma parameters. When /J1 = 0, it decreases 
from 2.76 at 0NBt = 90° to 1.53 when BNBt = 0°. When /J1 > 1, it is close to unity for all upstream shock normal 
angles. 

crease smoothly on the resistive scale length, whereas 
the temperature of the ions, which are heated . by vis­
cosity, should increase across a thin embedded subshock 
whose scale length is the Reynolds length. Part of the 
density increase and the associated decrease in fluid ve-

locity should take place on the resistive scale length, and 
part in the viscous subshock. 

The above argument can be extended from perpendicu­
lar to oblique fast shocks by noting that in resistive 
MHD, the speed CA always replaces the Alfven speed in 
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the fast mode dispersion relation, so that when kRm > 1, 
all fast modes propagate at the sound speed. Thus, equat­
ing the normal component of the downstream flow veloci­
ty to the downstream sound speed defines, for all shock 
normal angles and all upstream conditions, a critical 
Mach number above which resistivity is unable to pro­
vide all the required shock dissipation. 

4.3. Stationary Point Analysis 

To solve for the full shock structure, the dissipative 
MHD equations should be reduced to a nonlinear differ­
ential equation that describes the change in one of the 
fluid variables between the upstream and downstream 
stationary points. The fluid variables at the two station­
ary points satisfy the RH relations. Some of the effects of 
dissipation on shock structure can be obtained by study­
ing the linear development of small perturbations at the 
stationary points [ Coroniti, 1970]. For a proper shock 
transition, dissipation must cause an upstream pertur­
bation to increase approaching the shock, and all down­
stream perturbations to die away leaving the shock. 

After equating the coefficients of viscosity and thermal 
conductivity to zero, and perturbing fluid variables about 
the upstream or downstream stationary points, we arrive 
at the following differential equation which describes the 
evolution in the shock frame of the tangential magnetic 
field [ Coroniti, 1970]: 

R oB '= D(U)oB = (V2 - CF
2
)(U2 - Cs/) oB (9) 

m • • U2( U2 - C/) • 

where superscript prime denotes an x derivative, R,,, = 
c2/4nuU is the magnetic Reynolds length, and u is the 
electrical conductivity. Note that the definition of R,,, 
used in (9) differs slightly from (8). We chose a Cartesian 
coordinate system such that the shock normal is parallel 
to the negative x axis, and the magnetic field upstream 
and downstream is contained in the x-z plane. 

Equation (9) applies to all shocks, and to both their 
upstream and downstream states. The Rankine-Hugoniot 
conditions must be used to determine the magnetic field 
direction, the flow speed, and the fast, slow, and sound 
speeds in the downstream state. For the argument to 
follow, we will need only the most general properties of 
the RH solutions. Since U2 > Cp2 > Cs2 > CsL2 upstream 
of fast shocks, the quantity D is positive upstream, and 
(9) indicates that resistivity initiates the shock by caus­
ing oB, to grow approaching the shock. The Rankine­
Hugoniot conditions require that CF 2 > U2 > CsL 2 down­
stream, so that the sign of D changes when the down­
stream flow speed equals the sound speed. When U2 > 
Cs 2 downstream, resistivity damps all magnetic pertur­
bations with increasing distance downstream of the 
shock. On the other hand, when U2 < Cs2

, oB, grows 
downstream, and the purely resistive shock is unstable. 
An additional dissipation mechanism is therefore re­
quired to complete the shock transition. This stationary 
point analysis confirms the conclusion drawn from evol­
utio ·nary arguments. 

4.4. Parametric Dependence of Critical Mach Number 

The dependence of the fast critical Mach number M* 11 
on the upstream shock normal anlge ONBl and plasma P1 

is shown in Figure 8 [Edmiston and Kennel, 1984]. Mar­
shall's [1955] original result, M* 11 = 2.76, occurs only for 
ONBI = 90° and Pi= 0. The critical Mach number for a 
perpendicular shock decreases to slightly above unity 
when p1 > 1. For a parallel shock propagating into a cold 
plasma it is 1.53, and it, too, decreases as p I increases. It 
is exactly unity whenever Cs 2 exceeds CA 2 upstream and 
ONBI = oo. 

Note that the critical Mach number is less than 2 for 
typical solar wind parameters, rather than the often 
quoted value of 2. 76. This fact, which is not widely ap­
preciated, implies that nearly all bow shocks are super­
critical. 

4.5. Summary 

1. Equating the normal component of the downstream 
shock frame flow speed to the sound speed defines a criti­
cal fast Mach number above which resistivity alone 
cannot provide all the dissipation required by the shock 
jump conditions. 

2. The critical Mach number is a strong function of 
the upstream thermal p1 and shock normal angle. For 
typical solar wind parameters, it is less than 2. 

3. Another dissipation mechanism in addition to re­
sistivity must play a role in supercritic_al shocks. Al­
though in MHD it is natural to assume that viscosity is 
the second dissipation mechanism, anything that con­
verts flow momentum into heat will do. 

In closing, we note that the critical Mach number is 
defined by a limiting argument that indicates when a 
second dissipation mechanism must exist. It need not sud­
denly turn on at the critical Mach number, and it could 
well be present in subcritical shocks. 

5. Dispersive Shocks 

5.1. Introductory Remarks 

The two-fluid model of plasmas contains three basic 
scale lengths, the electron and ion inertial scale lengths, 
c/rop, and c/wpi• respectively, and the Debye length, l 0 , 

which represent the facts that changes in electron or ion 
currents and in charge density cannot take place instan­
taneously. The small-amplitude waves described by two­
fluid theory are therefore dispersive, although they ap­
proach nondispersive MHD waves in the long­
wavelength limit [Stringer, 1963; Formisano and Kennel, 
1969]. In this section, we discuss the shock structure ex­
pected in those cases where a nonlinear pulse steepens to 
dispersive scale lengths before it arrives at the resistive 
scale length defined in section 4. 

Dispersion can limit wave steepening. As a compres­
sional wave steepens, flow nonlinearities populate the 
short-wavelength dispersive part of its Fourier decompo­
sition spectrum. The short-wavelength energy is carried 
away by a nonlinear wave radiated by the steepening 

front. Dissipation, always necessary, ultimately damps 
the nonlinear wave, and a steady, spatially oscillatory 
shock is formed. 

Many properties of nonlinear dispersive wave trains 
can be inferred from those of the corresponding linear 
waves. Whether the short-wavelength linear waves prop­
agate faster or slower than the MHD fast speed deter­
mines whether the wave train leads or trails the main 
shock ramp. The nonlinear wave train must damp to a 
small-amplitude wave asymptotically far from the shock. 
Since the entire wave train is time stationary in the 
shock frame, the asymptotic small-amplitude wave must 
phase stand in the flow. Thus, the oscillatory scale 
length of the wave train may be estimated from the wave­
length of the corresponding small-amplitude wave that 
phase stands in the far upstream or far downstream flow. 
Furthermore, since the dispersive wave must carry 
energy away from the steepening shock front, its small­
amplitude group velocity should be greater than the up­
stream flow speed, it if stands upstream. Similarly, its 
group velocity should be less than the downstream flow 
speed, if it stands downstream. 

We begin by considering perpendicular dispersive 
shocks in section 5.2. Once again, the dispersion reiation 
of small-amplitude waves suggests the existence of a 
critical shock transition when the downstream flow 
speed equals the sound speed. This suggestion is con­
firmed by a generalization of the stationary point analy­
sis of section 4.3 to include both finite electron inertia 
dispersion and resistivity. A resistively damped wave 
train with a c/rop, scale length stands downstream of sub­
critical shocks, whereas new forms of dispersion and dis­
sipation are required for supercritical shocks. 

Finite ion inertia plays no role in exactly perpendicu­
lar shocks, but it dominates the dispersive structure of 
even slightly oblique small-amplitude waves and shocks 
[Galeev and Karpman, 1963; Karpman, 1964]. In section 
5.3, we infer the properties of oblique nonlinear wave 
trains from the dispersion relation of the corresponding 
small-amplitude waves. We will calculate the maximum 
Mach number for which a nonlinear dispersive whistler 
can stand upstream, and comment upon the possible 
structure of supercritical oblique shocks. 

5.2. 90° Dispersive Shocks 

The two-fluid magnetosonic wave dispersion relation 
in the quasi-neutral approximation is formally similar to 
(6): 

i k2 Ci C,42 C i · "' i ( ) 
(JJ I = s + k2R 2 = s + L, A 10 

1 + • 
where R, is the electron inertial length c/rop,· We have 
neglected dissipation so that R,,, « R, [Formisano and 
Kennel, 1969]. As kR, increases, finite electron inertia 
progressively decouples the magnetic field from _the fluid 
oscillations, and the phase speed decreases from the mag­
netosonic 1 speed to the sound speed. Since the phase 
speed decreases, the nonlinear wave train will trail the 
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shock. Since its group speed is less than its phase speed, 
it will carry energy away from the shock. Such a wave 
can stand downstream only of subcritical shocks, since 
its phase velocity always exceeds the sound speed. 

The generalization to a. two-fluid quasi-neutral plasma 
of the stationary point differential equation for a perpen, 
dicular shock is 

when ion pressure and finite ion Larmor radius effects 
are neglected [Coroniti, 1971]. Assuming solutions of the 
form oB, - e"X, we find 

-R + (R i + 4R iv)112 A. _ m- m e 

±R, - 2R, (12) 

Since D(U 1) > 0 upstream, . there exists one solution, A.+, 
for which oB, grows exponentially approaching the 
shock, and one, l_, which violates the boundary con­
dition that oB, - 0 far upstream of the shock. It is easy to 
show that the scale length~= 1/l+ of the leading edge of 
the shock is approximately 

(13) 

when Rm « R,, and 

(14) 

when R, « Rm. Thus, the shock thickness scales as the 
larger of the magnetic Reynolds length and the electron 
inertial length, the conclusion expected from steepening 
arguments. 

D(U 2 ) is negative downstream of subcritical shocks. 
Therefore, the downstream asymptotic solution is an os­
cillatory wave train which is weakly damped by resistivi­
ty if Rm « R,. It can be shown, using (11) and (13), that its 
wave number satisfies the phase-standing condition. On 
the other hand, since D(U 2) is positive downstream of 
supercritical shocks, the A.+ solution grows with distance 
downstream, indicating that steepening will continue 
until new forms of dissipation or dispersion complete the 
shock transition. 

The quasi-neutral approximation used in (10) and (11) 
breaks down when the supercritical shock steepens to 
the Debye length. When the dispersive effects at the elec­
tron inertial length and the Debye length are both in­
cluded, the two-fluid dispersion relation for small­
amplitude magnetosonic waves has a form similar to that 
in a resistive-viscous fluid, as may be seen by comparing 
the upper left-hand and right-hand panels of Figure 7. 
The dotted line in the upper right-hand panel corre­
sponds to the flow speed downstream of a subcritical dis­
persive shock, in which a trailing wave with a c/rop, scale 
length stands. The dashed line in the upper right-hand 
panel corresponds to the flow speed downstream of a 
supercritical dispersive shock. Since Debye length disper­
sion reduces the phase speed, a trailing electrostatic ion 
sound wave with a Debye length scale will stand down-
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stream. Since the plasma currents cannot follow oscil­
lations with scales less than the electron inertial length, 
the electrostatic oscillations will be decoupled from those 
of the magnetic field, and the nonlinear ion sound wave 
train will form a subshock that is embedded in a broader 
magnetic field structure. This wave train is expected to 
be similar to the one that forms in an unmagnetized 
plasma [Sagdeev, 1979]. Another form of dissipation, be­
sides resistivity, is required to damp the ion sound wave 
train and complete the supercritical shock transition. 

The variations in flow. parameters across a supercriti­
cal dispersive shock are sketched in the bottom right­
hand panel of Figure 7. The magnetic field forms a trail­
ing wave train with an electron inertial scale length. The 
number of magnetic field oscillations depends upon the 
resistive damping rate. Embedded in the magnetic field 
structure near the local sonic point is a dispersive ion 
sound subshock, illustrated by the Debye length oscil­
lations (not to scale) in the electrostatic potential <f>. Part 
of the reduction in flow speed required by the RH rela­
tions occurs across the electron inertia wave train, and 
part across the ion sound subshock. 

At this point, we approach the limits of fluid theory. 
Nonlinear ion sound waves are damped, and rendered 
irreversible, by ion reflection, a nonfluid effect [Moiseev 
and Sagdeev, 1963; Sagdeev, 1979]. This indicates that 
the extra dissipation needed for supercritical shocks 
cannot be anything as simple as viscosity. Nonetheless, 
the two-fluid equations have served us well, for they too 
indicate the existence of the supercritical shock transi­
tion and, also, some of the physics needed to describe 
supercritical shocks. 

5.3. Oblique Dispersive Shocks 

The left-hand panel of Plate 1 sketches the quasi­
neutral two-fluid dispersion relation for C//CA 2 small 
and oblique propagation [Formisano and Kennel, 1969]. 
It has three branches whose phase speeds approach the 
three MHD speeds in the long-wavelength limit. At short­
er wavelengths, the fast mode is converted into an ellip­
tically polarized whistler wave whose speed exceeds the 
fast MHD speed. Finite ion inertia progressively decou­
ples the ion mass from the magnetic field oscillations as 
the wavelength of the fast mode decreases. Its phase 
speed therefore increases and approaches a maximum of 
about the electron Alfven speed, in which only the elec­
tron mass inertially loads the magnetic field oscillations. 
Finite electron inertia then begins to decouple the mag­
netic field and fluid oscillations, and its phase speed de­
creases. Eventually, it approaches the sound speed, at 
which point the fast mode is entirely electrostatic. The 
intermediate speed decreases to the sound speed, and the 
slow speed tends to zero, as the wavelength decreases. 

The right-hand panel of Plate 1 sketches the two-fluid 
quasi-neutral dispersion relation for oblique propagation 
and C//CA 2 > 1. There are two important differences 
with respect to the previous C//CA 2 < 1 case. First, the 

wavelength at which the whistler phase speed first ex­
ceeds the fast speed and the ratio of the maximum whis­
tler phase speed to the fast speed both decrease with in­
creasing C//CA 2

• Second, when C1 = CA cos 0 < Cs, the 
intermediate speed increases to the sound speed at ion 
inertial wavelengths. 

The fact that the fast wave speed increases with de­
creasing wavelength implies that the nonlinear wave 
train will lead oblique shocks, in contrast to the 90° case 
discussed above. We may use an evolutionary argument 
to determine the shock normal angle at which the wave 
train switches from trailing to leading. The upstream ion 
inertial scale length, R;, is determined rigorously in Co­
roniti's [1971] derivation of the stationary point differ­
ential equation (22}-(24) described in the next section: 

R. = ..:... C1 = ..:... CA cos 0NB1 

' O)pi U1 O)pi MCF 
(15) 

Note that R; tends to zero as 0NBl approaches 90°. The ion 
inertial scale length for small-amplitude waves may be 
obtained by setting the fast Mach number, M, equal to 
unity in (15). A nonlinear pulse will steepen until it en­
counters the first scale length at which a dispersive 
shock can form. Thus, if R; > R., the wave train will lead 
the shock, and vice versa. Equating R; to R. defines the 
shock normal angle 0* NBl at which the dispersive struc­
ture changes : 

COS 0* NBl = _e __ F (M)1i
2MC 

M; CA 
(16) 

where m. and M; are the electron and ion mass, respec­
tively. For a low /31 hydrogen plasma and M ~ 1, the ' 
angle 0*NBl is approximately 87°. Thus, we expect leading 
ion inertial wave trains for nearly all shock normal 
angles. The trailing 90° electron inertial wave train has 
never been definitively identified in space. 

Let us now calculate the upper limit fast Mach number 
for which a whistler can phase-stand in the upstream 
flow. The dash-dotted lines in either panel of Plate 1 indi­
cate that the upstream flow speed intersects the fast 
mode branch provided . that it is below the maximum 
whistler phase speed. The top and bottom panels of 
Figure 9 show, in polar and contour formats, respec­
tively, the dependence on shock normal angle and up­
stream C//CA 2 of the fast Mach number corresponding 
to the maximum whistler phase speed. No wave train 
stands ahead of perpendicular shocks, and the "whistler 
critical Mach number," which is relatively small for very 
oblique shocks, increases rapidly with decrasing 0NBl and 
approaches an upper limit of ½(M;/m.) 112 ~ 22 for parallel 
shocks in zero /31 hydrogen plasmas. The whistler critical 
Mach number at all 0NBl decreases rapidly once C/ ex­
ceeds CA 2 upstream. Above the whistler critical Mach 
number, the shock will be initiated by a monotonic ramp 
on electron inertial scales when Rm« R •. It is particu­
larly important to note that for typical solar wind param-

eters an upstream whistler wave train need not form if 
the shock is sufficiently oblique and has a sufficiently 
high Mach number. 

We next consider the waves that phase-stand down­
stream of shocks, focusing on the subcritical case first. 

MAXIMUM FAST MACH NUMBER FOR 
LEADING WHISTLER WAVETRAINS 

118 

Fig. 9. Whistler critical Mach number. The top and bottom 
panels show the dependence on shock normal angle and up­
stream C8

2/C';.2 of the fast Mach number above which a whistler 
wave cannot st~nd in the upstream flow, in polar and contour 
formats, respec'tively. The radial coordinate in the polar dia­
gram is the fast Mach number, and the angular coordinate is the 
shock normal angle. 
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The dashed lines in Plate 1 indicate a flow speed between 
the fast and intermediate speeds, the state downstream of 
fast shocks. The left-hand panel, applied to the down­
stream state, corresponds to a subcritical shock with 
U2 < C82 • In this case, a short-wavelength whistler stand­
ing in the downstream flow can carry energy away from 
the shock, thereby leading to a stable shock transition 
when the downstream whistler is damped by resistivity. 

The right-hand panel, which, when it is applied to the 
downstream state, corresponds to a supercritical shock, 
suggests that a dispersive mode on the intermediate 
branch could stand downstream. Because its group veloc­
ity exceeds the downstream flow speed, it could carry 
energy towards the shock and therefore might cause the 
shock to steepen. However, since the long-wavelength 
MHD intermediate wave does not steepen, evolutionary 
arguments shed no light on how such a standing wave 
might develop. Debye length dispersion is also expected 
at short wavelengths. In short, although it has not been 
investigated in detail, a definite change in the structure 
of oblique dispersive shocks at the critical Mach number 
is predicted by two-fluid theory. 

5.4. Summary 

We have outlined the physical picture of shock struc­
ture that emerges from two-fluid theory. The two-fluid 
approximation contains ion and electron inertial scale 
lengths in the quasi-neutral approximation, and, in addi­
tion, the Debye length, when quasi-neutrality is relaxed. 
Small-amplitude waves are dispersive at each of these 
basic scale lengths. When the ion /3 is significant, low­
frequency waves are also dispersive at ion cyclotron 
wavelengths [Fredericks and Kennel, 1968; Coroniti, 
1971], an effect we neglected in order to focus on the 
classical wave train analyses in the literature. Our dis­
cussion is therefore strictly valid for plasmas in which 
the ratio of electron to ion temperature is large, though 
we believe it illuminates shock behavior over a wider 
range of plasma parameters. 

We tacitly assumed that all dissipative scale lengths 
are shorter than all pertinent dispersive scale lengths in 
order to emphasize the possible dispersive wave trains 
expected from two-fluid theory. We reached the following 
con cl us ions: 

1. Finite electron inertia dispersion creates a trailing 
wave train with a c/wpe magnetic field scale length down­
stream of perpendicular subcritical shocks. 

2. Supercritical magnetosonic shocks steepen to form 
a trailing ion sound dispersive subshock. The dil;1sipation 
required to damp the ion sound wave train- and thereby 
complete the shock transition cannot be resistivity. 

3. Finite ion inertia dispersion creates a leading whis­
tler wave train with the scale length R; (defined in (15)) 
upstream of oblique shocks. Leading ion inertial wave 
trains are expected for nearly all shock normal angles. 

4. Above the whistler critical Mach number defined 
in section 5.3, a small-amplitude whistler cannot stand in 
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the upstream flow, and the shock will be initiated by a 
monotonic r~p with a c/wpe scale length. 

5. Inspection of the two-fluid dispersion relation sug­
gests that supercritical oblique shocks potentially in­
volve downstream oscillations on the intermediate 
branch. An electrostatic ion sound wave train may also 
form, 

This section primarily illustrated the content of classi­
cal theoretical structures obtained in the weak dissi­
pation limit, and not necessarily the true structure of 
shocks. To approach greater realism, it is necessary to 
specify the shock dissipation mechanisms and to grapple 
with the limitations of the fluid approach. 

1. A microscopic theory of resistivity is needed to 
decide whether subcritical shocks will be resistive or dis­
persive (section 6). 

2. The weak dissipation limit probably does not apply 
to supercritical shocks, although it does define the criti­
cal shock transition. It is dangerous to proceed above the 
critical Mach number without including the new dissi­
pation processes that must operate. For example, without 
explicitly considering the dissipation, one cannot say for 
sure whether nonlinear whistlers will stand upstream of 
supercritical shocks. 

3. The use of fluid theory requires that heat flow 
parallel to the magnetic field be neglected, an assump­
tion which is suspect for quasi-parallel shocks. 

6. Subcritical Shocks With Ion Sound 
Anomalous Resistance 

6.1. Introductory Remarks 

Sections 4 and 5 summarized two very different 
theories of subcritical shock structure, one of which pre­
dicts a monotonic shock jump and the other an oscil­
latory wave train. Both types have been found in studies 
of the earth's bow shock. According to the thickest shock 
hypothesis, nonlinear steepening is limited by dissipation 
or dispersion, whichever occurs first. Since resistivity is 
the only dissipation required for subcritical shocks we 
need only compare the resistive and dispersive scale 
lengths to decide whether a subcritical shock will be re­
sistive or dispersive. This can only be done by examining 
the theory of anomalous resistivity in colli.sionless plas­
mas. 

6.2. Ion Sound Anomalous Resistance 

Since the earliest investigations of collisionless shocks 
[ Sagdeev, 1966], it has been believed that the ion sound 
instability could provide the anomalous resistivity neces­
sary to complete the subcritical shock transition. The 
theoretical reasons for this belief have been good ones. 
The ion sound instability has a low current threshold 
when the electron temperature exceeds the ion temper­
ature. It produces Debye length electrostatic fluctuations 
which. are microscopic compared to the electron inertial 
length, so that fluid theory may be used even for perpen­
dicular shocks. When the electron plasma frequency ex-

ceeds the electron cyclotron frequency, as it does in the 
solar wind, ion sound waves are essentially un­
magnetized and can interact with the bulk of the electron 
distribution, so that runaway can be prevented for most 
of the electrons. Finally, since resistivity implies the 
transfer of momentum from streaming electrons to ions, a 
good anomalous resistivity instability must involve both 
electrons and ions, as the ion sound instability does. ~ 

The quasi-linea~ theory of the ion sound instability is 
well understood [Galeev, 1976]. When Te» T;, its growth 
rate, y, is 

where Cs= (Te/M;)1I2 , the ion sound speed, w and k are 
the frequency and wave vector, respectively, and V De is 
the electron drift velocity associated with the current. 
Since ion sound waves obey 

z k2cs2 
W =l+k2)._D2 (18) 

where )..Dis the electron Debye length, they will be unsta­
ble when VDe > Cs. 

In steady state anomalous resistance, the waves radi­
ated by drifting electrons must be absorbed by ions, in 
order that electron momentum be transferred to ions. The 
ion distribution therefore develops a high-energy tail ex­
tending to speeds comparable to the ion sound speed. The 
electron distribution develops a flat top at low velocities 
[Sagdeev and Galeev, 1969; Dum, 1978a, b]. A self-similar 
solution with the following properties has been found 
[Bekshtein and Sagdeev, 1970; Bekshtein et al., 1971; 
Dum, 1978a, b] 

V*De = Cs(M;/Me)l/4 

X = (Me/M;) 1I4 
(19) 

where Tm is the effective temperature and X the frac­
tional density of the hot ion tail. V*De• above, is the speed 
at which the electron drift is limited by ion sound anoma­
lous resistance. 

The above quasi-linear solution, the one most pertinent 
to typical solar wind conditions, is valid for relatively 
small driving currents and electric fields. For stronger 
drivlng fields, the bulk of the ion distribution is heated 
by nonlinear Landau damping, and the limiting VDe in­
creases. When Te~ T;, VDe must be comparable with the 
electron thermal speed for unstable growth, and the ion 
sound instability passes to the so-called Buneman [1959] 
limit. Galeev [1976] discusses these strongly driven re­
gimes of the ion sound instability, a relatively academic 
topic insofar as most collisionless shocks in space are 
concerned. 

6.3. Resistive Dispersive Transition 

We may estimate the anomalous magnetic Reynolds 
length, R* m• as follows. For the shock geometry used in 
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110, 
2 

3 

RESISTIVE 

~ ~ DISPERSIVE 

2 

Fig. 10. Subcritical resistive-dispersive transition. Each quadrant is a different Friedrichs diagram for 
C//C,..2 = 10- 3

, 10- 2
, 10- 1, and 1 upstream in which the radial coordinate is the fast Mach number and the 

angular coordinate is the shock normal angle. The critical Mach number is indicated by the thick solid curves 
bounding each diagram. Subcritical shocks should be resistive in the shaded regions, and dispersive in the 
hatched regions. 

(6) and (11), Ohm's law reduces to 

. (E U X B) U1B,1 J =<J +--- ~(J---
y C y C 

(20) 

Assuming that a* U1B,ifc ~ neV*D., we find, using (19), 

c2 C 
R*m=---~-(M /M.) 114{3- 112 sin0 (21) 

4na* U1 Wp; e ' e NBl 

Pe= 8nnTe/B 2
• The estimate (21) is probably accurate up 

to a numerical factor of order unity [Galeev, 1976]. 
We estimate the parameter dependence of the resistive­

dispersive transition by substituting R* m• calculated 
using upstream parameter values, into the upstream 
stationary point, differential equation that takes finite 
electron and ion i11ertia and resistivity into account, as­
suming quasi-neutrality [Coroniti, 1971]: 

Re 2bB," + Rm *bB,' - R;bB/ = D(U 1)bB, (22) 

R. 2bBy" + Rm *bBy' + R;bB,' = (1 - C//U 1
2)bBy (23) 

where the upstream ion inertial scale length R; is 

(24) 

when the ioi:i pressure may be neglected. Since upstream 
whistlers are elliptically polarized, the z and y compo­
nents of the magnetic field perturbation are coupled in 
(22)----(24). 

Choosing an elx spatial dependence reduces (22)----(24) to 
a quartic, one of whose four solutions corresponds to an 
upstream whistler that is resistively damped as it propa­
gates away from the shock. We then seek the conditions 
for which Re ).. = Im )... The whistler radiated by the 
steepening shock would then be damped after it propa­
gates one wavelength upstream, and the shock transition 
would be monotonic. Our procedure is therefore based on 
the assumption that the nonlinear scale length and the 
wavelength of the upstream phase-standing wave are 
comparable. Its formal results are not valid above the 
critical Mach number, because the additional dissipation 
needed has not been taken into account in calculating 
the whistler damping length. 

Figure 10 shows the curve Im ).. = Re ).. in a polar plot 
whose radial coordinate is the fast Mach number and 
whose polar angle is the shock normal angle. The critical 
Mach number is also shown. Each quadrant corresponds 
to a different value of C//CA 2 upstream. We assumed 
that Te/Ti » 1. In general, quasi-parallel shocks should 
be dispersive and quasi-perpendicular shocks resistive. 
The range of 0NBl for which the shock is resistive in­
creases with increasing Mach number, and for a given 
Mach number, the resistive 0N 81 range decreases with 
increasing C//CA 2 upstream. 

Mellott and Greenstadt [1984] have summarized the ex­
isting data on the resistive-dispersive transition in sub-

· .,,,,,,-. 
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critical bow shocks. They calculated the resistive and 
dispersive scale lengths using Galeev's [1976] estimates 
of ion sound anomalous resistance and measured values 
of the density, 0N81 , and {3.1 • They found that for shocks 
with upstream wave trains, the dispersive scale length 
exceeded the ion sound resistive scale length, whereas, 
with one exception, monotonic shocks corresponded to 
the opposite limit. 

6.4. Summary 

1. When Te/Ti is large, the ion sound instability has a 
low current threshold. 

2 When w /Q » 1 as it is in the solar wind, ion 
, pe ce ' 1/4 C 

sound anomalous resistance limits V* ne to (M;/ M.) s 
in the quasi-linear regime. The corresponding Reynolds 
length, R* m• is approximately 

Rm* ::::c c/wp; (M./ M;)114 /3. - l/
2 sin 0NB1 

3. When R * exceeds the dispersive scale length, a 
subcritical shomck will be resistive, and dispersive other­
wise. A slightly more sophisticated criterio~ for ~he 
resistive-dispersive transition was developed m sect10n 

62. b 
4. When the electron /3. is very small, nearly all su . -

critical shocks are resistive. For the range of /3. app_ropn­
ate to most solar wind shocks, the more perpendicular 
subcritical shocks will be resistive, and the more parallel 
shocks will be dispersive. 

5. Observations of subcritical bow shocks app~a~ to 
agree with the ion sound theory of the resistive-
dispersive transition. . 

The relatively complete treatment of 10n sound a~oma­
lous resistance remains the prototype for theori~s of 
other microinstabilities in collisionless shocks: The illu_s­
trative computations presented here are strictly va~id 
only for large Te/Ti and small upstream /31-As /31 i?­
creases it becomes increasingly difficult for magnetic 
gradie~ts to induce an electron drift spe~~ that ~xceeds 
the ion sound speed. The ion sound cntical dnft also 
increases as Te/Ti decreases. In fact, Te/Ti is ofte~ so 
small in the solar wind that theoreticians sometimes 
question whether the ion sound instability should occur. 
(This makes Mellott and Greenstadt's [1984] result ~ome­
what puzzling.) When Te/Ti is small, other current msta­
bilities, such as the modified two-stream or the ~ower 
hybrid drift instabilities [Lemons and Gary, mys; ~ms~e, 
this volume] may be important. Because the 10n merti~l 
scale length increases with decreasing 0NB!• qu~si­
parallel subcritical shocks will con~in~e to be d1spersi~e, 
and quasi-perpendicular shocks resistive, when other n~­
stabilities provide the anomalous resistanc~. The qu~1:1ti­
tative specification of the resistive-dispersive tr3:nsit10n 
will of course, differ. Finally, there may even exist con­
diti~ns for which anomalous resistance may not develop 
at all, for example, in high /3 quasi-parallel shocks. 

7. Supercritical Quasi-Perpendicular Shoc~s 

7.1. Introductory Remarks 

Nearly all bow shocks are supercritical. Nearly all 
quasi-perpendicular bow shock magnetic field profiles re­
semble the one in the top panel of Figure 11, rather than 
the resistive or dispersive profiles predicted by fluid 
theory. They consist of a foot, a ramp, and at least one 
overshoot-undershoot cycle downstream. Instead of a 
leading whistler wave train with an ion inertial scale 
length, the overshoot-undershoot resembles a trailing 
wave train whose scale length is an ion Larmor radius. 

Classical fluid theory had suggested the new physics 
required beyond the supercritical transition. Ions would 
reflect from the Debye length electrostatic potential 
layer that would develop above the critical Mach 
number. If the upstream magnetic field were weak, re­
flected ions would free stream away from the shock. fon­
ion instabilities induced by the relative streaming of in­
coming and reflected ions would produce a turbulent vis­
cosity which would decelerate the incoming flow and re­
gulate the size of the potential jump. Many early experi­
ments [Paul et al., 1965, 1967; Keilhacker et al., 1972; 
Segre and Martone, 1971] and simulations were ef­
fectively in the weak field regime, because they were 
completed in less than one upstream ion gyroperiod. In 
the strong field regime or, equivalently, when the shock 
is followed for longer than a gyroperiod, the reflected 
ions turn around in the upstream magnetic field and gain 
energy from the transverse flow electric field. The up­
stream ions decelerate. the incoming flow, thereby com­
pressing the magnetic field to produce a foot [Woods, 
1969, 1971; Eselevich et al., 1971]. The energized ions 
transmitted through the shock on their second encounter 
create a superthermal ring distribution downstream. 

Recent numerical simulations indicate that a self­
consistent ion reflection shock can exist in a quasi­
neutral plasma without Debye length substructur~ 
[Leroy, 1983]. Since the simulated shocks resemb!e typi­
cal bow shocks in several important ways, we review the 
physics that went into, and came out of, these simula­
tions (section 7.2). In section 7.3, we review those bow 
shock data analyses which were specifically designed to 
test the theory of ion reflection shocks. In section 7.4, we 
discuss the range of parameters for which an ion reflec­
tion shock is expected. 

7.2. Ion Reflection Shocks 

Leroy et al. [1981, 1982] simulated perp~ndicular s~ocks 
using a one space dimension, three velocity ~pace dimen­
sion hybrid code, with kinetic ions and fluid elect~on~. 
The ions and electrons interacted by means of an artifici­
ally implemented resistivity that was constant in spa?e 
and time but could be varied from run to run. The resis­
tivity was typically chosen according to standard esti­
mates of ion sound anomalous resistivity. The simula-

tions were entirely quasi-neutral, since Debye length spa­
tial structure was not resolved numerically. The simula­
tion runs lasted several ion Larmor periods, and were 
completed before interactions with the boundaries af­
fected the interior solution. 

Understanding how Leroy et al. [1981, 1982] initialized 
their simulations is essential to understanding the forma­
tion ofthe ion reflection shock. The simulation box was 
initially divided into three regions, with the upstream 
and downstream Maxwellian ion plasmas and magnetic 
fields linked by the MHD RH relations, given specified 
electron-to-ion temperature ratios. These regions were 
connected by a thin layer in which plasma quantities 
varied linearly from upstream to downstream. 

During the first half Larmor period of the simulation, 
the magnetic ramp sharpened to the magnetic Reynolds 
length, and some downstream ions crossed the shock. 
These were reflected in the upstream magnetic field. 
They reduced the center-of-mass velocity of the upstream 
ion distribution, and as they turned in the upstream mag­
netic field, their Lorentz field added to the longitudinal 
electric field Ex. Both effects contributed to the forma­
tion of a potential overshoot in the shock ramp, which 
effectively insulated the downstream region from the up­
stream region after the first half Larmor period. Al­
though downstream ions no longer penetrated upstream, 
upstream ions began to be reflected from the potential in 
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Fig. 11. An ion reflection shock simulation. The top panel 
shows the magnetic field magnitude for a perpendicular shock 
simulated by Leroy et al. [1982]. The foot, ramp, and overshoot 
are indicated. An undershoot follows the overshoot. The bottom 
panels present Vx-x (left) and VY-x (right) ion phase space dis­
plays, which show the locations of individual ions (top), and 
schematic trajectories ofreflected ions (bottom). 
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the shock ramp. After they were reflected, they could 
Larmor orbit in the direction of the flow electric field. On 
their next encounter with the shock, the energized ions 
had enough energy to overcome the potential barrier and 
be transmitted downstream. The number of reflected ions 
and the shock potential adjusted to one another so that 
the transmitted ions contributed enough to the down­
stream ion pressure to satisfy the RH relations. About 
20% of the incoming ion stream was typically reflected. 
Cross-field currents induce substantial turbulence in 
two-dimensional shocks that reduces the reflected ion 
fraction [Forslund et al., 1984]. 

The added dissipation in supercritical ion reflection 
shocks occurs in the magnetic foot, where the reflected 
ions gain the energy required to satisfy the RH relations 
by free streaming in the flow electric field. This dissi­
pation is accomplished without benefit of a diffusive vis­
cosity or microturbulence. 

Since Leroy et al.'s [1981, 1982] simulations were one 
dimensional, the transmitted ion ring distribution was 
stable. The instability of the ring distribution expected in 
higher dimensions will thermalize the ions downstream 
[Papadopoulos, 1981a; Tanaka et al., 1983]. Thus, true 
thermal equilibrium will be achieved only over a scale 
longer than that of the foot-overshoot system. 

Instabilities of the foot ring distribution may heat a 
high-energy electron tail which escapes upstream [Papa­
dopoulos, 1981b], possibly accounting for the energetic 
electrons observed to escape from the quasi­
perpendicular zone of the bow shock. Wu et al. [1984] 
have discussed in considerable detail the various insta­
bilities that might occur in ion reflection shocks. 

7.3. Observations of Ion Reflection Bow Shocks 

In this section, we summarize those bow shock data 
analyses which were specifically designed to test the 
theory of ion reflection shocks. Earlier measurements 
had found a second peak in the ion distribution down­
stream of supercritical shocks [Montgomery et al., 1970; 
Formisano and Hedgecock, 1973a, b; Bame et al., 1979; 
Greenstadt et al., 1980] which we now attribute to trans­
mitted ions. Paschmann et al. [1981, 1982] found that 
about 20% of the incoming ions are reflected in the foot 
region. 

A particularly impressive comparison between numeri­
cal simulation [Leroy et al., 1981, 1982] and observation, 
for a 0N81 = 82° bow shock of Alfven Mach number 8 
detected by ISEE 1 and 2 on November 7, 1977, found 
good agreement not only between the computed and ob­
served amplitudes and spatial scales of the magnetic foot 
and overshoot, but also at the level of the ion phase 
space distribution. Reflected ions in the foot, a ring dis­
tribution in the overshoot, and gradual downstream ion 
thermalization were observed [Sckope et al., 1983]. 

Livesey et al.'s [1982, 1984] statistical studies of the 
magnetic profiles of some 60 quasi-perpendicular bow 
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.Fig. 12. Statistical studies of bow shock magnetic structure. 
The overshoot amplitude (top panel) and normalized foot thick­
ness (bottom panel) are plotted as a function of the ratio of the 
fast Mach number to the critical Mach number M,. The over­
shoot amplitude and foot normalization are defined in the text. 
Error bars indicate typical uncertainties in overshoot ampli­
tt1de, foot thickness, and Mach number ratio [Livesey et al., 1982, 
1984]. Subcritical shocks have neither a foot nor an overshoot. 
The overshoot amplitude increases suddenly in the range M, < 
M < 1.2 M,. The foot thickness is independent of shock parame­
ters when M > M,. 

shocks (43° < 0NBl < 88°) are summarized in Figure 12. 
The top panel shows the overshoot amplitude, defined as 

B -B 2 A = -=m---" 
B2 

(25) 

where Bm is the maximum magnetic field in the overshoot 
and B

2 
is the downstream magnetic field, as a function of 

the ratio of the fast Mach number to the critical Mach 

number. The use of ISEE 1 and 2 measurements permit­
ted an accurate calculation of spatial scale lengths. The 
bottom panel shows the dependence of the foot thickness 
upon the Mach number ratio. Livesey et al. [1984] gener­
alized to oblique shocks Woods' [1971] and Phillips and 
Robson's [1972] estimate of the foot thickness for perpen­
dicular shocks, assuming that upstream ions specularly 
reflect from the main shock ramp. The foot thicknesses 
were normalized to the distance d along the shock 
normal at which a reflected ion turns back to the shock. 
Subcritical shocks had neither a foot nor an overshoot, 
while supercritical shocks had both. The foot thicknesses 
scaled as d and were independent of Mach number and 
other shock parameters. The overshoot thicknesses 
scaled as the reflected ion Larmor radius based on the 
upstream magnetic field. 

7.4. Parameter Space for Ion Reflection Shocks 

7.4.1. Range of 0NBl· For 90° shocks, all reflected 
ions are turned back into the shock. However, for 
oblique shocks some reflected ions recross the shock and 
some escape upstream, depending upon the ions' Larmor 
phase angles at the point of reflection. The fraction of 
the ions that can escape upstream increases with de­
creasing 0NBl• and most escape for 0NBl ::;; 45°, [Phillips 
and Robson, 1972; Edmiston et al., 1982; Leroy and 
Winske, 1983]. Thus, ion reflection shocks should be 
quasi-perpendicular, consistent with the fact that Livesey 
et al. [1984] found shocks with an overshoot and a foot 
only for 0NBl ~ 43°. 

7.4.2. The second critical Mach number. We argued 
section 5 that an electrostatic ion sound subshock is ex­
pected to form above the critical Mach number, yet the 
ion reflection shocks discussed in section 7.2 occur in a 
quasi-neutral plasma. In this section, we discuss the 
possibility that the ion sound subshock and the ion re­
flection shock occur in distinct Mach number ranges. 

There has to be enough shock-heated ions approaching 
the shock surface from downstream to initiate a reflec­
tion shock. Leroy et al. [1982] suggested that the down­
stream flow speed must equalthe ion thermal speed, C;2 , 

for this to happen. If so, strong ion reflections shocks set 
in at a second critical Mach number, defined by the con­
dition U2 = C;2 , which exceeds the (first) critical Mach 
number defined in sections 4 and 5. The second critical 
Mach number can only be calculated by taking into ac­
count the dissipation in the shock front, so that the 
downstream electron-to-ion temperature ratio, T, 2/T;2, 
may be determined. We can estimate the second critical 
Mach number using the Rankine-Hugoniot relations if 
we treat T, 2 T;2 as a free parameter to be determined em­
pirically. It is clear that the first and second critical 
Mach numbers approach one another as T, 2/T;2 ap­
proaches zero. Furthermore, since U2 always exceeds 
C

82
/5 1i2 for y = ¾ (and approaches C82 /5 112 in the strong 

shock limit), the condition U2 = C;2 cannot be satisfied 
for T,

2
/4T;2 (and Y; = y,). Figure 13 plots the dependence 
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Fig. 13. Second critical Mach number. Leroy et al. [1982] and Manheimer and Spicer [1985] have proposed 
that U2 must equal C,2 , the downstream ion thermal speed, for quasi-neutral, strong ion reflection shocks to 
occur. The upper left-hand panel contours the dependence of the ratio of the second critical Mach number to the 
first on the downstream electron-to-ion temperature ratio and the upstream shock normal angle, for p1 = 1. The 
other panels contour the dependence of the second critical Mach number on p1 and 0NBt for T,2/T,2 = 0.5, 1, and 
3. 

of the second critical Mach number upon upstream shock 
parameters for O ::;; T, 2/T;2 ::;; 4. The upper left-hand panel 
contours the dependence of the ratio of the first and 
second critical Mach numbers upon T, 2/T;2 and the up­
tream shock normal angle, for an upstream electron plus 
ion P 1 = 1. The other three panels contour the second 
critical Mach number as a function of P1 and 0NBl for 
T,2/T,2 = 0.5, 1, and 3. 

A laboratory experiment by Eselevich et al. [1971] 
found an isomagnetic potential jump with -1002 0 , scale 
length between the first critical Mach number and a 
Mach number of 4.5-5.5. This isomagnetic jump is pre­
sumably the ion sound subshock predicted by two-fluid 
theory. Manheimer and Spicer [1985] review other lab­
oratory evidence for an electrostatic subshock between 
the first and second critical Mach numbers. These lab-

oratory experiments typically have small p1 upstream, so 
that the second critical Mach number is relatively large. 

The subshock is difficult to observe at the bow shock, 
because high time resolution potential and ion distri­
bution functions are required. Moreover, Figure 13 
shows that for typical solar wind parameters (P1 = 1, 
T, 2/T;2 = 1), the first and second critical Mach numbers 
differ by about 50%, so that high-precision Mach number 
estimates are required to determine which regime the 
shock is in. Eselevich [1982] has reviewed the bow shock 
evidence favoring the existence of the ion sound sub­
shock. 

Manheimer and Spicer [1985] argue that the dissi­
pation between the first and second critical Mach num­
bers is due to "longitudinal resistivity," basically, that 
the ion and electron flow velocities parallel to the shock 

I ""_.-. 
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normal are coupled by an interaction with the ion sound 
subshock that amounts to Landau damping in the small­
amplitude limit. At the second critical Mach number, the 
electrostatic subshock is completely damped, and the ion : 
reflection shock is essentially quasi-neutral. While some 
reflected ions are expected between the two critical 
Mach numbers, ion reflection is strong enough to domi­
nate the dissipation only above the second critical Mach 
number. 

7.4.3. A third critical Mach number? A heuristic 
argument suggests that ion reflection cannot supply all 
the dissipation needed for steady high Mach number 
shocks. The internal energy density approaches a limit of 
H of the upstream flow energy density downstream of 
strong shocks (assuming y = j). The state downstream of 
ion reflection shocks consists of heated electrons, a frac­
tion (1 - cc) of compressed thermal ions, and a fraction cc 
of gyrating ions with speeds of about 1. 7 times the up­
stream flow speed. Assuming that well above the second 
critical Mach number most of the downstream energy 
resides in the gyrating ions, the energy density down­
stream would be about 1.5 cc p 1 U1 

2
• Thus, cc must exceed -& 

for the strong shock limit to be satisfied. However, simu­
lations [Leroy et al., 1981, 1982], laboratory experiments 
[Chodura, 1975], and bow shock observations [Pashmann 
et al., 1981] all find that cc, which presumably is self­
consistently regulated, is roughly 0.2. Furthermore, simu­
lations [Leroy et al., 1981, 1982; Forslund et al., 1984] also 
indicate that the ion reflection shock becomes unsteady 
beginning at Alfven Mach numbers of 12 or 13, at least 
on the spatial scale treated by the computations. 

The above arguments imply that there might exist a 
third critical Mach number, above which ion reflection 
cannot provide all the needed dissipation. If we could 
calculate the dependence of the properties of downstream 
reflected ions on upstream plasma parameters, evolution­
ary arguments would permit us to estimate the third 
critical Mach number. The phase speed of a long­
wavelength sound wave would be the sound speed calcu­
lated using the sum of the y = 2 reflected ion and the 
y = j thermal pressures downstream. As such a wave 
steepens to the reflected ion Larmor radius, its phase 
speed should decrease to the thermal sound speed. Thus, 
the third critical Mach number should be defined by 
equating the downstream flow speed to the sound · speed 
based upon the thermal pressure alone. 

8. Bow Shock and Interplanetary Shock 
Observations 

8.1. Introductory Remarks 

Observational studies of the dependence of bow shock 
structure, and of the region upstream of the bow shock, 
on solar wind parameters have shown that the magnetic 
profiles of quasi-parallel shocks are much broader and 
more disorderly than any quasi-perpendicular profile. 
Their magnetic field appears to pulsate between up-

stream and downstream values on spatial scales that are 
a significant fraction of an earth radius [Greenstadt et 
al., 1970]. It is often difficult using magnetic data alone 
to determine where the quasi-parallel "shock" is, since 
the shock turbulence blends imperceptibly into the low­
frequency waves that are found upstream on · field lines 
that connect to the "shock surface." In sections 8.2 and 
8.3, we discuss the relationship between the waves and 
the superthermal particles upstream and the local bow 
shock parameters, and the organization of the observa­
tions by the foreshock concept. The relationship between 
quasi-parallel shock parameters 'and the upstream region 
is obscured by the fact that the foreshock thickness is 
comparable with the radius of curvature of the bow 
shock. However, in section 8.4, we argue that recent 
studies of interplanetary shocks, which have much larger 
radii of curvature, indicate without ambiguity that fore­
shocks are inherent to quasi-parallel shock structure 
(section 8.4). 

8.2. The Earth's Fores hock 

As early as 1968, we knew that the solar wind can have 
foreknowledge of an impending shock crossing, when it 
is connected magnetically to the shock [Asbridge et al., 
1968; Fairfield, 1969]. It seemed at first that the fast par­
ticles escaping along field lines, and the MHD waves 
they generate, were energetically insignificant tracers 
that gently signaled connection to the bow shock. When 
we realized that they are important parts of shock struc­
ture, the most fundamental conception of the fluid de­
scription of shocks-that no hydromagnetic signal propa­
gates upstream-was compromised. 

The most important new concept arising from the study 
of the magnetically connected up~tream region is that of 
the "foreshock" [Greenstadt, 1975, 1976a, b]. If the solar 
wind and its magnetic field were uniform and steady, it 
would be easy to identify the field line that is tangent to 
the bow shock which defines the leading edge of the fore­
shock. However, because the solar wind is variable, it is 
laborious indeed to relate upsteam observations to the 
instantaneous foreshock. Nonetheless, the labor has 
yielded rich rewards which are summarized in the beauti­
ful picture drawn by Tsurutani and Rodriguez [1981] for 
an ideal gardenhose interplanetary field interacting with 
a steady bow shock (Plate 2). Upstream of the foreshock, 
all disturbances do seem intrinsic to the solar wind. Par­
ticles originating at the shock are only found down­
stream of the foreshock's leading edge. Given the speeds 
with which particles escape along field lines and the 
solar wind speed, simple kinematics successfully predicts 
where each velocity class of particle ought to be found. 
There is an electron (yellow) and an ion (red) foreshock. 
Because electrons move faster than ions parallel to the 
~agnetic field, the electron foreshock stands upstream of 
the ion foreshock, and the most energetic electrons are 
found closest to the field line that is instantaneously 
tangent to the bow shock. 

The electron and ion velocity distribution functions 
evolve progressively with distance downstream from the 
leading edge of their individual foreshocks, and different 
plasma and hydromagnetic waves are uniquely associ­
ated with the particle distributions characteristic of each 
region [Greenstadt et al., 1984]. Field-aligned beams of 
energetic electrons are found nearest the leading edge of 
the foreshock [K. Anderson, 1968, 1969; Feldman et al., 
1973, 1983; K. Anderson et al., 1979; R. Anderson et al., 
1981]: The energetic electron angular distributions 
become progressively more diffuse with distance down­
stream of the foreshock, and the typical energies de­
crease in a pattern consistent with the sweeping back of 
electron trajectories by the solar wind electric field [An­
dersoTJ, et al., 1979]. At lower energies, the electron heat 
flux in the foreshock is often directed upsteam away from 
the bow shock, reversing the normal direction of the 
solar wind electron heat flux. 

The spatial evolution of the foreshock ion distribution 
mirrors that of the electrons. Few ke V field-aligned 
beams are found at the leading edge of the ion foreshock. 
Further downstream, so called "intermediate" ion distri­
butions are spread in energy and pitch angle [Gosling et 
al., 1980; Bonifazi and Moreno, 1981a, b] which extend to 
energies of several hundred keV [Scholer et al., 1979; 
lpavich et al., 1981a, b], comparable with the energies 
achieved by Fermi acceleration in interplanetary shocks 
[Lee, 1983a]. Phase-bunched "gyrating" ion beams are 
often observed deep within the foreshock [Gurgiolo et al., 
1981; Eastman et al., 1981]. 

The upstream superthermal ion energy density can 
exceed that of the interplanetary field by as much as a 
factor 5 [lpavich et al., 1981a]. More significantly, the 
solar wind is decelerated and deflected when it enters the 
ion foreshock [Bonifazi et al., 1980] by an amount com­
patible with the momentum flux carried by shock escap­
ing ions [Bame et al., 1980; Sentman et al., 1981a] . Since 
part of the overall shock transition is accomplished in 
the foreshock, the foreshock is part of shock structure. 

The superthermal particles generate a rich spectrum of 
plasma waves in the foreshock [Scarf et al., 1970, 1971]. 
Escaping Ellectrons generate electron plasma waves 
[Scarf et al ., 1971; R. Anderson et al., 1981; Etcheto and 
Faucheux, 1984], low-frequency (-1 Hz) whistler waves 
[Feldman et al., 1983; Sentman et al., 1983], and higher­
frequency whistlers [Fairfield, 1974; Tokar et al., 1984]. 
Broadband 0,5--5 kHz electrostatic fluctuations, whose 
frequency is consistent with Doppler-shifted ion sound 
waves, are associated with both superthermal ions and 
electrons [Scarf et al., 1971; Rodriguez and Gurnett, 1975; 
R . Anderson et al., 1981; Parks et al., 1981; Fuselier and 
Gurnett, 1984]. However, there is no definite proof that 
the measured particle distributions are unstable to ion 
sound waves. 

It is important to both shock structure and particle 
acceleration theories that large-amplitude long­
wavelength (-1 RE) hydromagnetic waves are associated 
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with ions escaping from the bow shock. Transverse MHD 
waves are found in the ion beam region [Hoppe et al., 
1982], and steepened, more compressional waves achieve 
large amplitudes (ll.B/B - 0(1)) in the diffuse proton zone 
[Greenstadt et al., 1968; Fairfield, 1969; Paschmann et al., 
1979; Greenstadt et al., 1980; Hoppe et al., 1981]. 

The upstream ions appear to generate the large­
amplitude low-frequency waves in the earth's foreshock, 
as Barnes [1970] first suggested. Gary [1981], Gary et al., 
[1981], and Sentman et al. [1981b] have shown for several 
specific examples that the measured ion distributions are 
unstable to MHD waves of the observed wavelength and 
polarization. Thus, the ions propagate upstream and gen­
erate waves which are then blown back towards the 
shock by the solar wind. 

8.3. Relationship Between Upstream Phenomena 
and Local Bow Shock Parameters 

The kinematic mapping arguments which led to the 
foreshock model shown in Plate 2 relate the orderly pro­
gression of the electron and ion distributions to the local 
shock normal angle at the point where the particles first 
escape upstream. The energetic electron and ion beams 
originate from the quasi-perpendicular zone of the bow 
shock. Energetic electrons can be accelerated by instabil­
ities generated by the reflected ions in the magnetic foot 
of a supercritical quasi-perpendicular shock [Papado­
poulos, 1981b]. Furthermore, as the downstream ion ring 
distribution is thermalized and isotropized, some energet­
ic ions will be scattered onto trajectories that reintersect 
the curved bow shock surface from behind. Those ions 
that cross that shock can form the ion beams that are 
observed to stream from the quasi-perpendicular zone of 
the bow shock [Tanaka et al., 1983]. 

The diffuse distributions certainly appear to escape 
from the quasi-parallel zone of the bow shock. However, 
because of an inherent ambiguity, earth foreshock 
measurements cannot conclusively settle whether the ap­
parent difference between quasi-perpendicular and quasi­
parallel shocks is fundamental. It has been argued that 
many of the diffuse ions come from the ion foreshock 
beam [Bame et al., 1980; Bonifazi and Moreno, 1981b]. As 
the beam propagates upstream, it destabilizes low­
frequency hydromagnetic waves which subsequently 
scatter and decelerate the beam ions. The decelerated 
ions and the waves are blown back into the quasi-parallel 
zone of the bow shock surface. If there are enough of 
them, they may possibly account for the disordered mag­
netic structure and diffuse ion distribution that are ob­
served. In this interpretation, the quasi-parallel structure 
we observe is an artifact of the small radius of curvature 
of the bow shock. On the other hand, Edmiston et al. 
[1982] argued that shock-heated ions ought to escape up­
stream from plane quasi-parallel shocks, in which case 
the observed structure is intrinsic to quasi-parallel 
shocks. Whatever the situation, the curvature of the bow 
shock does alias the results, so that it is difficult to 
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assign uniquely the phenomena observed upstream to a 
particular shock normal angle. Nonetheless, it appears 
that the quasi-parallel, quasi-perpendicular transition 
occurs suddenly near 0Nsi = 45°-50°. 

The large-amplitude waves upstream also blur the re­
lationship between waves and particles and the parame­
ters of the bow shock. For example, when the local shock 
normal angle based on the averaged upstream magnetic 
field is near 45°, the instantaneous shock normal angle 
may oscillate between the quasi-perpendicular and quasi­
parallel regimes, thereby making the local shock struc­
ture and the distribution of escaping particles unsteady 
[Greenstadt, this volume]. 

8.4. Structure Upstream of Interplanetary Shocks 

Since their radii of curvature are 250---2500 times larger 
than the bow shock's, interplanetary shocks should 
reveal what is intrinsic to quasi-parallel structure. How­
ever, detections of the classical foreshock signatures­
superthermal ions and magnetohydrodynamic waves­
hours before an interplanetary shock have been difficult 
to relate to the shock, not only because the solar wind 
normally has energetic ions and is magnetically turbu­
lent, but also because the global shock and interplan­
etary field geometry is difficult to ascertain. Our increas­
ingly complete understanding of bow shock upstream 
phenomenology has helped to clarify the shock associ­
ation, since MHD turbulence that is accompanied by 
other upstream signatures can now be related to inter­
planetary shocks. 

The first evidence that quasi-parallel interplanetary 
shocks have large foreshocks came from a study of up­
stream ion sound fluctuations [Kennel et al., 1982]. Ion 
sound fluctuations, whose spectrum was similar to that 
upstream of the bow shock, extended hundreds of earth 
radii upstream of quasi-parallel interplanetary shocks. 
They were not found upstream of quasi-perpendicular in­
terplanetary shocks. Shortly thereafter, magnetometer 
studies [Russell et al., 1983; Tsurutani et al., 1983; Kennel 
et al., 1984a, b; Vinas et al., 1984] revealed that MHD 
waves similar in period and amplitude to those upstream 
of the bow shock occur upstream of quasi-parallel inter­
planetary shocks. The measurements of superthermal 
electrons and ions upstream of interplanetary shocks 
have been discussed by Gosling et al., [1983, 1984] and 
Tsurutani and Lin [1985]. Thus, it appears that a fore­
shock is intrinsic to quasi-parallel shocks. 

9. Quasi-Parallel Shocks 

9.1. Theories of Parallel Shocks 

The first parallel shock theory [Parker, 1961] visual­
ized the shock layer as consisting of two count­
erstreaming ion beams which would be firehose unstable 
when the upstream /J1 is high-a remarkably prescient 
forecast. 

The first parallel shock theory to incorporate classical 
steepening arguments is due to Moiseev and Sagdeev 

[1963]. When C//CA 2 > 1, the parallel fast mode is an 
ion sound wave which will steepen until it reaches Debye 
length scales. Reflection of upstream ions would then 
lead to an irreversible ion sound wave train which ac­
complishes the shock transition. Moiseev and Sagdeev 
[1963] went on to argue that, in the absence of collisions, 
shock compression would increase only the temperature 
parallel to the magnetic field, so that if {J

2 
were high 

enough, a firehose instability would grow on the down­
stream thermal anisotropy. This suggestion motivated 
Kennel and Sagdeev [1967], Kennel and Petschek [1968], 
Berezin and Sagdeev [1969], and Galeev and Sagdeev 
[1970] to develop a theory of low Mach number parallel 
firehose shocks in very high fJ plasmas (see also Sagdeev 
[1979]). At low Mach numbers, relaxation of the ion ani­
sotropy through the growth of Alfven waves can provide 
for a shock transition. Auer and Volk's [1973] numerical 
calculations confirmed the general features of this 
theory, but indicated that an ion sound subshock was 
required at higher Mach numbers [Jackson, 1983]. A 
recent simulation of a 10° shock with an Alfven Mach 
number of 4 showed that the downstream thermal ani­
sotropy relaxed to firehose marginal stability via the 
growth of Alfven waves [Kan and Swift, 1983] but, be­
cause the code assumed quasi-neutrality, could not have 
found an electrostatic substructure. 

The above firehose shock models do not pay attention 
to upstream structure, either a standing whistler wave 
train [Kan and Swift, 1983; Quest et al., 1983] or the 
injection of energetic particles into the foreshock. Lee 
[1982, 1983a] considered the idealized case in which a 
thin, parallel planar, shock injects a monoenergetic ion 
beam into a broad foreshock. He then computed the 
growth rate of parallel propagating Alfven waves by the 
resonant analog of the firehose instability [Kennel and 
Scarf, 1968], the spatial decay of the ion beam due to 
quasi-linear pitch angle scattering, and the subsequent 
ion Fermi acceleration by shock compression. Lee's 
[1982, 1983a] theory is the foreshock analog of the fire­
hose shock models discussed above. 

In summary, nearly, all theories of quasi-parallel shock 
structure agree that long-wavelength MHD turbulence is 
central to the dissipation in both the shock and fore­
shock. 

9.2. Escape of Superthermal Ions Upstream 
of Quasi-Parallel Shocks 

The fact that quasi-parallel shocks allow significant 
access upstream of ions that have interacted with the 
shock seems to be their primary observational character­
istic, since the upstream waves can be derived from the 
ions. The types of ion distributions observed upstream­
"reflected," "intermediate," "diffuse"-reflect both how 
they are generated and how they interact with upstream 
turbulence, and sophisticated studies are presently under 
way to unravel these detailed interrelationships [Sch­
wartz et al., 1983]. 
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Plate 1. The two-fluid quasi-neutral dispersion relation for oblique propagation. The left-hand and right­
hand panels sketch the two-fluid quasi-neutral dispersion relation obtained by Formisano and Kennel [1969] for 
C/ < CA2 and C/ > CA2

, respectively. The fast, intermediate, and slow branches are indicated by red, blue, and 
green lines, respectively. The dashed and dash-dotted lines indicate the flow speed upstream of fast shocks (both 
panels) and downstream of subcritical (left) and supercritical (right) shocks, respectively. In principle, a whistler 
wave can stand upstream of both Cs 2 < CA 2 and Cs 2 > CA 2 oblique shocks. When the shock is subcritical (left), 
an almost electrostatic wave on the whistler resonance cone can phase-stand downstream. It is possible for a 
dispersive mode on the intermediate branch to phase-stand downstream of supercritical shocks. A Debye length 
structure (not included in the right-hand panel) might also be part of the downstream structure of supercritical 
oblique sh9cks. 



Plate 2. Foreshock schematic [Tsurutani and Rodriguez, 1981]. Energetic electrons escape upstream from 
the quasi-perpendicular zone of the bow shock (yellow) near the point of tangency between the upstream 
magnetic field (solid blue lines) and the bow shock. Superthermal ions (red) escape upstream from the quasi­
perpendicular zone of the bow shock, but because they propagate more slowly than electrons, the leading edge of 
the ion foreshock is downstream of the leading edge of the electron foreshock. Large-amplitude, long-wavelength 
MHD waves are found downstream of the ion foreshock's leading edge. 
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Fig. 14. Foreshock critical Mach number and angle. The right-hand panel contours the dependence of the 
upstream Mach number for which U2 = 3C;2 cos 0N82 on the upstream P1 and shock normal angle 0N

81
, assuming 

Te2/T; 2 = 1 downstream. To the right and below each curve, the flux of downstream escaping ions will be small. 
For the Mach number range appropriate to the bow shock, the escaping flux turns on at a critical shock normal 
angle. The left-hand panel contours the dependence of this critical shock normal angle upon the upstream p

1 
and 

the downstream Te2/T; 2 , for an upstream fast Mach number of 4. The critical shock normal angle depends weakly 
on p1 and somewhat more strongly on Te2/T; 2 • 

We have already pointed out that when the'upstream 
shock normal angle is less than 45°, most reflected ions 
escape upstream. However, quasi-parallel shocks also 
cannot confine heated ions downstream. A downstream 
ion can free stream along the magnetic field and catch 
the shock if its parallel velocity V11 satisfies U2 = V

11 
cos 

0Nsi, when 0Nsi is the downsteam shock normal angle. 
Edmiston et al. [1982] estimated the superthermal ion 
flux upstream by assuming that shock-catching ions are 
transmitted back through the shock, conserving their 
magnetic moments. The upstream fluxes will be main­
tained if the loss region in the downstream ion phase 
space is continuously refilled by wave-particle scattering. 
It is clear that no particles can escape upstream of a 
perpendicular shock, and that the escaping flux will in­
crease with decreasing upstream shock normal angle. Ed­
miston et al. [1982] found that near 0NBt ~ 45° the flux of 
upstream ions suddenly becomes comparable to that ob­
served. Thus, this mechanism can account for the rapid 
change between quasi-parallel and quasi-perpendicular 
behavior. 

To conform to the spirit of this paper, we will construct 
a "foreshock critical Mach number,'' at which significant 
fluxes of downstream ions are expected to escape up­
stream. The condition U2 = 3C;2 cos 0N82 defines a rough 
threshold Mach number at which the number of shock­
catching ions becomes significant. The right-hand panel 
of Figure 14 contours the dependence of the foreshock 
critical Mach number upon the upstream p1 and shock 

normal angle, assuming TE2 = T;2 downstream. To the 
right of each curve, U2 will exceed 3C;2 cos 0N82 , and the 
escaping flux will be small. For the Mach number range 
appropriate to the bow shock, the escaping flux turns on 
at a critical shock normal angle. The left-hand panel of 
Figure 14 contours the dependence of this critical shock 
normal angle upon the upstream p1 and the downstream 
Te2/T; 2 , assuming the upstream fast Mach number is 4. 

A more sophisticated view of the ion transport across 
the shock has been put forth by Eichler [1979] and El­
lison, [1981], who argued that the scattering mean free 
path is proportional to the ion Larmor radius and is 
therefore energy dependent. In such a case, we would 
observe the low-energy ion "temperature" to jump across 
a thin "shock," whereas we would find that energetic 
ions free stream through the "shock" and only scatter 
upstream and downstream. Far upstream, we would 
divide the ion distribution into a low-energy part and a 
distinct superthermal component. The entire region 
would be filled with hydromagnetic waves over the broad 
wavelength range required to resonate with both thermal 
and superthermal ions. 

10. Shock Acceleration of Energetic Particles 

10.1. Interaction of Single Particles With Shocks 

Until recently, most theories of cosmic ray acceler­
ation concentrated on elucidating how single particles 
can attain high energy by single or multiple encounters 
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with collisionless shocks which are consi~ered to be infi­
nitely thin and whose plasma structure is theref?re a~­
sumed to be relatively unimportant. Looked at in this 
fashion, shocks can accelerate particles in severa! ways. 
Ions whose Larmor radius exceeds the shoe~ thickness 
conserve their gyrophase-averaged ma_~netic moment 
[Chen and Armstrong, 1972; Shabansku, 1962; P~sses, 
1979; Terasawa, 1979a, b; E. N. Pa:ker, unpublished 
manuscript, 1958]. Such ions approaching the shock from 
upstream would therefore be either re~ected from or 
transmitted through the jump in magneti~ fi~ld and po­
tential at the shock, depending upon their pitch angle. 
Reflected ions grad-B and curvature drift parallel to the 
flow electric field and thereby acquire energy, the more 
efficiently the more quasi-perpendicular the shock [Son-

1969] However since multiple reflections are 
nerup, · ' . l 
needed to account for the higher-energy particles acce er-
ated by interplanetary shocks [Pesses, 1979], reflected 
ions must be scattered from upstream MHD tu~bulence 
back towards the shock. They then can be either :e· 
reflected or retransmitted at their next encounter with 
the shock. Re-reflected particles can repeat the above 
cycle and some can reach high energy. 

En~rgetic particles that are transmitted thr~ugh the 
shock can be scattered by downstream magnetic tu~bu­
lence back toward the shock. Such partic_les are sub_Ject 
to first-order Fermi acceleration by multiple reflections 
between upstream and downstream waves that convect 
approximately with the local flow speed [Fisk, 1971]. The 
shock then serves primarily to decelerate the flow so that 
the scattering centers appear to converge toward one a~­
other in the shock frame. The integral spectrum for parti­
cles Fermi-accelerated by infinite plane shocks depends 
only upon the ratio of upstream and downstream flo"': 
speeds [Krimsky, 1977; Axford et al., 1971; Bell, 1978a, b, 
Blandford and Ostriker, 1978; Lee, 1982, 1983a]. Because 
the calculated spectral index is close to the observe~ ~a­
lactic cosmic ray index, supernova shocks are promising 
candidates to accelerate galactic cosmic r~ys [Axford, 
1981]. In the test particle limit, this mechamsm does not 
take into account the momentum transfer between 
cosmic rays and the plasma which decelerates the up-

stream flow. 

10.2. Tests of Fermi Acceleration Theory 
For the solar system, first-order Fermi acceleration 

theory has been applied to the diffuse ions 1:1pstream o~ 
the bow shocks [Terasawa, 1979a, b, 1981; Eichler, 1981, 
Lee et al., 1981; Forman, 1981; Ellison, 1981; L~e, 19~2], 
and to energetic solar particle (ESP) events, _in which 
energetic ions increase smoothly upstream of interplan­
etary shocks [Scholer and Morfill, 1975; Scholer et al., 
1983; Lee, 1983a]. Lee's [1982] theory predicts t~e energy 
spectra of different species reported . by lpavich et al. 
[1981a] and the spectrum and amplitude of the low­
frequency waves observed upstream of the bow shock by 
Hoppe et al. [1981] and others. The spectrum of bow 

shock diffuse particles cuts off above about 100 keV, a 
fact which may be explained by the finite e~tent of ~he 
bow shock. Either a given magnetic field line_ remains 
connected to the region where the bow shock is strong 
for a finite time, or the particles diffuse ac~oss the m~g­
netic field onto field lines which no longer interact _with 
the shock [Eichler, 1981; Skadron and Lee, 1982]: Either 
effect limits the number of shock crossings a particle can 
have and, therefore, the energy to which it can be accel-

erated. · 1 
The field line connection time is larger for interp an-

etary shocks than for the bow shock, so the first-order 
Fermi mechanism will have longer to operate. The ener­
getic ion fluxes theoretically should increase e_xp~nen­
tially, approaching a steady, planar ~hock, maximize at 
the shock, and hold approximately constant 
downstream-features characteristic of ESP ev~nts. T~e 
accelerated ions should be, and are, essentially isotropic 
in the shock frame upstream and isotropic in the solar 
wind frame downstream. 

There have been relatively few measurements of 
moderate-energy ions in ESP events in the energy range 
(tens of keV) that bridges the low-ener~ plasma and 
high-energy cosmic rays (however, see Lin et al. [1974], 
Gosling et al. [1980, 1981, 1983, 1984]). A recent study of 
30-150 keV/Q protons and alphas in th~ee ESP events 
[Scholer et al., 1983] finds that the particle energ~ and 
angular distributions and spatial profiles are consistent 
with first-order Fermi acceleration theory. 

Lee [1983a] applied his foreshock mo~el to the Nove~­
ber 12, 1978, interplanetary shock, which was a quasi­
parallel (41°) shock with a fast Mach numbe~ of 2.7 
[Kennel et al., 1984b]. Starting with Scholer et al. s [1983] 
measured 30 keV/Q ion intensity, Lee [1983a] accounted 
for the ion intensity and spectrum up to 200 ke V and 
predicted an Alfven wave amplitude in good agreement 
with observation [Kennel et al., 1984a, b]. 

10.3. Correlations of the Properties of Accelerated 
Particles With Shock Parameters 

Lee and Fisk [1982] and Lee [1983b] have re~iewed th~ 
association of energetic particles and shocks in the heli­
osphere. Interplanetary shocks near 1 AU .. are acco~p~; 
nied by ESP events [Klecker et _al., 1981], shock spike 
events [Sarris and Reinhard, 1981], and "p?stshock en­
hancements" [Gosling et al., 1980]. As mentioned ~hove, 
ESP events are upstream ion enhancements extendi_ng to 
energies of a few Me V occurring for a f~w ho~rs ~r10r to 
shock passage. Shock spike events are imp~lsive ion en­
hancements (0.1-1 hour) occurring at the time of shock 
encounter. In this section, we concentrate on rece1:1t stud­
ies that relate the properties of accelerated particles to 

shock parameters. . . . 
Interplanetary shocks as a clas~ comprise subcntic~l 

and supercritical shocks, quasi-parallel and quasi­
perpendicular shocks. They may be generated by ~he 
quasi-steady interaction of fast and slow solar wind 

streams, or by impulsive motions in the solar corona. The 
energetic particle profiles associated with them are cor­
respondingly diverse [Van Nes"et al., 1984]. Van Nes et 
al. [1984] and Tsurutani and Lin [1985] found that quasi­
perpendicular and quasi-parallel shocks are responsible 
for shock spike and ESP events, respectively. The largest 
energetic proton fluxes are generally produced by 
oblique but definitely quasi-parallel shocks [Van Nes et 
al., 1984]. It is not clear if the accelerated particle inten­
sity changes at the first (or second) critical Mach 
number. 

Mitchell and Roelof [1983] have shown that the prob­
ability of observing a 50-200 ke V ion flux above a given 
threshold intensity upstream of the earth's bow shock 
increases exponentially with cos 0N81 , where 0Nst is the 
shock normal angle on the field line connecting the 
spacecraft to the bow shock. The highest peak intensities 
are also observed for quasi-parallel connection. The peak 
intensities at the bow shock are about an order of mag­
nitude smaller than those associated with strong quasi­
parallel interplanetary shocks. 

In summary, the distinction between quasi-parallel and 
quasi-perpendicular shocks is beginning to emerge from 
recent studies of energetic particles associated with in­
terplanetary shocks. Quasi-parallel shocks appear to pro­
duce the largest fluxes of diffusively accelerated protons. 

10.4. Self-Consistent Foreshock Models 

E. N. Parker (unpublished manuscript, 1958) first real­
ized that if interstellar shocks do accelerate the observed 
galactic cosmic rays, it follows that cosmic rays have 
sufficient energy density to contribute to shock struc­
ture. The test particle limit discussed in section 10.1 may 
therefore be misleading. Wentzel [1971], Axford et al. 
[1977, 1982], and Drury and Volk [1981] included the 
pressure, but not the number and momentum densities, of 
the cosmic rays in the calculation of the structure of 
shocks in an unmagnetized plasma. They assumed that 
cosmic rays diffuse spatially with a long characteristic 
scale length, and that the thermal plasma is subject to 
unspecified dissipation due to microturbulence. Their 
calculations retrieve the gas dynamic jump conditions 
when no energetic particles are present. On the other 
hand, if the upstream cosmic ray pressure is nonzero and 
the sonic Mach number exceeds about 10, the entire 
shock transition takes place in the cosmic rays without a 
discontinuity in the thermal plasma. For lower sonic 
Mach numbers, there must be both a cosmic ray fore­
shock and a local plasma subshock-the situation which 
should pertain to typical solar system shocks. 

We have generalized Drury and Volk's [1981] gas dy­
namic calculations to magnetohydrodynamics, to illus­
trate the dependence of subshock properties on shock 
normal angle. At the subshock critical Mach number, the 
downstream flow speed equals the fast MHD speed based 
upon the plasma pressure, excluding the cosmic ray pres­
sure. Each quadrant of Figure 15 plots a different proper-
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Subshock Density Compression Ratio 

Subshock Alfven Mach Number Subshock Normal Angle 

Total /3n ,Q.3 Cosmic Ray /3,,'0.1 

Fig. 15. MHD cosmic ray subshocks. This figure presents 
our generalization of Drury and Volk's [1981] gas dynamic cal­
culation to MHD. The upstream total Pn and energetic particle 
Pc1 are 0.3 and 0.1, respectively. Each quadrant represents a 
different property of the subshocks which are expected in the 
hatched regions between the dashed curves, which indicate the 
upper and lower critical Mach numbers. A plasma observer 
would call the subshock the shock itself. The radial coordinate 
is the Alfven Mach number, and the angular coordinate is the 
shock normal angle. The subshock density compression ratio 
(top left quadrant) and Alfven Mach number (bottom left) are 
reduced, because part of the RH relations are satisfied in the 
cosmic ray foreshock. Similarly, magnetic field refraction in the 
foreshock increases the subshock normal angle relative to that 
of the entire structure (lower right). The ratio of downstream 
cosmic ray to total pressure is probably an overestimate. 

ty of that subshock expected when the total plasma plus 
cosmic ray PTi upstream is 0.3, and the upstream cosmic 
ray Pc1 is 0.1. Energetic particle scattering can provide 
all the dissipation for very weak and very strong shocks. 
Thus, there are upper and lower critical Mach numbers 
(dashed curves) between which plasma subshocks are re­
quired (shaded). The left-hand quadrants contour the sub­
shock Alfven Mach number and density compression 
rate, and the lower right quadrant contours the local 
subshock normal angle. Since the flow is decelerated in 
the foreshock, the subshock is weaker than it would be in 
the absence of energetic particle scattering, and part of 
the magnetic field refraction required by the Rankine­
Hugoniot relations occurs in the foreshock. The upper 
right quadrant contours the ratio of the cosmic ray pres­
sure to the total particle pressure downstream. 

Our oversimplified computations assume that the MHD 
turbulence needed to scatter energetic particles exists 
upstream of all shocks, rather than just quasi-parallel 
shocks. They do not include the Alfven wave energy den­
sity in the conservation laws used to determine the 
properties of the subshock [McKenzie and Volk, 1982; 
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COLLISIONLESS SHOCK FRIEDRICHS DIAGRAM 
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1st Critical Mach Number 
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· · · Sh here for C 2 = 0.1 C,/ upstream, are the dependence 
Fig . 16. Collisionless shock Fnednchs d1agra;r ( o~~d l' • ) ec~nd (dashed) and foreshock (dot-dashed) 

upon the upstream shock normal angle of the . ~st s_o 1 ~nes • s ition for su~ritical shocks. We assumed 
critical Mach num~ers, and the ion sound :es~st1~; :d1~p~=~~e n::~:rs. The radial coordinate is the fast Ma~h 
T,2 = T,2 in computmg the seco_nd an~ fores oc en ica le Pro a ation parallel to the upstream magnetic 
number, and the angular coordmate is_ t~e shockhno;;a~ :~ h. dia~:m depends sensitively upon the upstream 
field is along the vertical axis. The colhs10nless s oc n~ 1c s . 
C//C,.2, and this figure only illustrates the general behavior that 1s expected. 

Volk et al 1984]. They do not take into account any 
dependenc~ of the superthermal "seed" particle injection 
rate on subshock parameters [Edmiston et al., 1982; J: P. 
Edmi&ton and C. F. Kennel, unpublished manu~cript, 
1984]. They overestimate the downstream cosmic . ray 
pressure because they assume steady st~te, whereas ions 
only have time to diffuse to - 200 ke V m the foreshocks 
of the bow shock and interplanetary shocks (H. ~ olk, 
personal communication, 1983). Nonetheless, they illus­
trate the relationship between the foreshock an? s~b­
shock which will eventually be made more quantitative 
with a more refined theory. 

Before we can arrive at a comprehensive theory that 
computes the energetic particle intensity and spectrum 
as a function of shock parameters, we must understand 
how particles that are originally part of the :herm~l 
plasma begin to be accelerated. P_resent energetic .. part~; 
cle diffusion calculations start with a source of seed 
particles which can either be in the upstream flow or be 
injected at a subshock. It matte~s not for_ t?e final spec­
tral index whether the seed particles are mJected far up­
stream [Axford et al., 1977; Blandford and Ostriker, 1978] 
or at the subshock [Lee, 1982, 1983a]. However, the ener­
getic particle intensity will depend upon the nature of 

the source and therefore upon the shock normal angle as 
well as the Mach number. It now seems clear that seed 
particles are thermal ions that interact with the sub­
shock once on their way to participating in the Fermi 
process. In the case of the bow shock, these are the few 
ke V "upstream" ions that are reflected from or transmit­
ted through the shock . 

10.5. Supernova Shocks 

The discoveries that most of the volume of the inter­
stellar medium is in a hot low-density phase and that the 
composition of galactic cosmic rays is that of the inter­
stellar medium and not of material recently processed in 
supernova explosions have revived the notion that super­
nova shocks Fermi accelerate the cosmic rays directly 
out of the interstellar medium . MHD shocks can produce 
the observed galactic cosmic ray energy spectrum . The 
density, temperature, and magnetic field in the hot inter­
stellar medium are similar to · those in the solar wind, and 
the Mach numbers of the supernova shocks at the phase 
when they accelerate the most cosmic rays are similar to 
those of solar system shocks. Thus, in addition to their 
intrinsic interest, studies of collisionless shocks in the 
solar system are directly relevant to the plasma physics 
of supernova shock acceleration . 

11. Concluding Remarks 

This review has focused on the critical Mach numbers 
at which collisionless shock structure changes. Figure 
16, a Friedrichs diagram for collisionless shocks, summa­
rizes, for C/ = 0.1 CA2 upstream, the dependence upon 
the upstream shock normal angle of the first, second, and 
foreshock critical Mach numbers, and the ion sound 
resistive-dispersive transition for subcritical shocks. We 
assumed T, 2 = Ti2 in computing the second and fore­
shock critical Mach numbers. The whistler critical Mach 
number and the critical Mach ' number discussed in sec­
tion 10 are not shown. We hope that the use of such 
collisionless shock Friedrich diagrams will facilitate rig­
orous studies of the dependence of shock structure upon 
upstream plasma parameters. 

The staggering variety of collisionless shock structures 
predicted by theory and found in experiments over the 
past 25 years reflects the richness of contemporary 
plasma physics. Understanding collisionless shocks, the 
simplest of all nonlinear flow configurations, has re­
quired merging sophisticated concepts from nonlinear 
fluid physics with microscopic plasma physics, and, at all 
times, an exquisite sensitivity to parameter dependences. 
The next 25 years of collisionless shock research promise 
to be as fruitful as the past 25 years, as we extend our 
understanding to higher p and higher Mach number fast 
shocks, to slow shocks, and to relativistic shocks, and 
find further applications to the plasmas in the labora­
tory, at the sun and in the solar system, and in astro­
physics. 
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Some Macroscopic Properties of Shock Waves in the Heliosphere 

A. J. HUNDHAUSEN 

High Altitude Observatory, National Center for Atmospheric Research, Boulder, Colorado 80307 

In situ plasma and magnetic field observations demonstrate the existence of col­
lisionless shocks associated with spatial inhomogeneities or temporal variations in 
the solar wind and with solar wind-planetary interactions. Remote observations sug­
gest that similar shocks occur in association with solar activity in the solar corona. 
This tutorial will be focused on the formation and propagation of such shock.waves in 
the heliospheric plasma. I will draw upon simple theoretical models (both analytic and 
numerical) of these phenomena to illuminate the basic physical processes controlling 
shock formation and propagation in the interplanetary medium. 

1. Introduction 
Kennel [this volume] describes physical processes that 

can account for the existence of shock fronts in plasmas 
where Coulomb collisions are extremely rare. The thick­
ness of such a collisionless shock (or more precisely, the 
spatial scale over which the entropy of plasma flowing 
through the shock front is increased) depends upon the 
detailed nature of those processes. From a macroscopic 
point of view, in which the plasma flow in a physical 
system is considered on a spatial scale much larger than 
the thickness of any shocks it may contain, these details 
are unimportant. Such a flow can be described using the 
methods of fluid dynamics or magnetohydrodynamics 
without specific knowledge of, or reference to, the actual 
nature of the shock mechanism. The physical properties 
of the plasma on the two sides of the shock "layer" can 
be related by mass, momentum, energy, and magnetic 
conservation laws to yield the well-known [e.g., Colburn 
and Sonett, 1966; Burlaga, 1971] Rankine-Hugoniot rela­
tions. 

The existence of collisionless shocks was first suggest­
ed as an explanation of the sudden commencement of 
some geomagnetic storms; a shock was postulated at the 
leading edge of a plasma cloud ejected from the sun by a 
solar flare [Gold, 1955] despite the objection that the 
material in interplanetary space must be so tenuous that 
ordinary Coulomb collision lengths were astronomically 
large. Interplanetary observations have since confirmed 
the existence of such shock waves propagating outward 
through the solar wind. These observations have also re­
vealed the existence of large-amplitude variations in 
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solar wind speed that correspond to the "corotating 
streams" suggested by other studies of geomagnetic ac­
tivity. These streams are usually not preceded by shocks 
near the orbit of earth but are observed to steepen and 
form shock fronts farther out in the solar system. Thus 
nature affords us, in the solar wind, the opportunity to 
study both the formation and propagation of shocks in a 
natural, collisionless plasma. These two aspects of macro­
scopic or large-scale shock behavior will be the foci of 
this paper. This emphasis will lead to neglect of several 
other interesting shock phenomena stemming from the 
interaction of the supersonic solar wind with obstacles in 
its flow: for example, planetary or cometary bow shocks 
and the termination of the solar wind through its interac­
tion with the interstellar medium. Discussion of these 
phenomena can be found elsewhere in this volume [Sprei­
ter and Stahara, this volume] and in the work by Axford 
[1972]. 

The tone of this exposition will be "tutorial." Shock 
phenomena are inherently complicated, and I have often 
heard it said that those who have not worked extensively 
with shock waves have little intuitive understanding of 
their behavior. Of course, much of the intuition we have 
for complicated physical phenomena is "educated in­
tuition" based on the study of idealized examples that 
illustrate general behavior and lead to the capability of 
"guessing accurately" the behavior of real, physical sys­
tems. I will attempt to follow this path by illustrating the 
formation and propagation of shock waves in the heli­
osphere through examples based on the simplest possible 
quantitative model that contains the physics basic to 


