Posts Tagged: Ball Aerospace

An infrared close up of the moon

A first-of-its-kind camera developed in partnership between CU Boulder and Ball Aerospace will soon be landing on the moon.

NASA announced today that it has selected a scientific instrument, called the Lunar Compact Infrared Imaging System (L-CIRiS), for its Commercial Lunar Payload Services program. The camera will ride along with one of three robotic landers that will touch down on the lunar surface in the next several years—a key step in NASA’s goal of sending people back to the moon by 2024.

LASP planetary scientist Paul Hayne, who is leading the development of the instrument, said that the goal is to collect better maps of the lunar surface to understand how it formed and its geologic history. L-CIRiS will use infrared technology to map the temperatures of the shadows and boulders that dot the lunar surface in greater detail than any images to date.

NASA retires LASP-operated Kepler space telescope

After nine years in deep space collecting data that indicate our sky to be filled with billions of hidden planets—more planets even than stars—NASA’s Kepler space telescope has run out of fuel needed for further science operations. NASA has decided to retire the spacecraft within its current, safe orbit, away from Earth. Kepler leaves a legacy of more than 2,600 planet discoveries from outside our solar system, many of which could be promising places for life.

Kepler, which was operated from LASP since its launch in March 2009, has opened our eyes to the diversity of planets that exist in our galaxy. The most recent analysis of Kepler’s discoveries concludes that 20 to 50 percent of the stars visible in the night sky are likely to have small, possibly rocky, planets similar in size to Earth, and located within the habitable zone of their parent stars. That means they’re located at distances from their parent stars where liquid water—a vital ingredient to life as we know it—might pool on the planet surface.

The most common size of planet Kepler found doesn’t exist in our solar system—a world between the size of Earth and Neptune—and we have much to learn about these planets. Kepler also found nature often produces jam-packed planetary systems, in some cases with so many planets orbiting close to their parent stars that our own inner solar system looks sparse by comparison.