Wave-induced Atmospheric Variability Enterprise

Next generation space weather prediction

Publications

2022

  • Chou, M.-Y., Yue, J., Lin, C. C. H., Rajesh, P. K., & Pedatella, N. M. (2022), Conjugate effect of the 2011 Tohoku reflected tsunami-driven gravity waves in the ionosphere, Geophys. Res. Lett., 49, e2021GL097170. https://doi.org/10.1029/2021GL097170.
  • Pedatella, N. M., & Anderson, J. L. (2022), The impact of assimilating COSMIC-2 observations of electron density in WACCMX, J. Geophys. Res. Space Physics, 127, e2021JA029906, https://doi.org/10.1029/2021JA029906.

2021

  • Alexander, M. J., C. C. Liu, J. Bacmeister, M. Bramberger, A. Hertzog, and J. H. Richter (2021), Observational validation of parameterized gravity waves from tropical convection in the Whole Atmosphere Community Climate Model, J. Geophys. Res. Atmos, 126, e2020JD033954, https://doi.org/10.1029/2020JD033954.
  • Baldwin, M. P., et al. (2021), Global effects of disruptions to the stratospheric circulation, Eos, 102, https://eos.org/editors-vox/global-effects-of-disruptions-to-the-stratospheric-circulation.
  • Banyard, T. P, C. J. Wright, N. P. Hindley, G. Halloran, I. Krisch, B. Kaifler , & L. Hoffmann (2021), Atmospheric Gravity Waves in Aeolus Wind Lidar Observations, Geophys. Res. Lett., https://doi.org/10.1029/2021GL092756.
  • Becker, E., & Vadas, S. L. (2020), Explicit global simulation of gravity waves in the thermosphere, J. Geophys. Res. Space Physics, 125, e2020JA028034, https://doi.org/10.1029/2020JA028034.
  • Becker, E., S.L. Vadas, K. Bossert, V.L. Harvey, & C. Zülicke (2022), A high-resolution whole-atmosphere model with resolved gravity waves and specified large-scale dynamics in the troposphere and lower stratosphere, J. Geophys. Res. Atmos., https://doi.org/10.1020/2021JD035018, submitted.
  • Chou, M.Y., Pedatella, N. M., Wu, Q., Huba, J. D., Lin, C. C. H., Schreiner, W. S., J. J. Braun, R. W. Eastes, & J. Yue (2020), Observation and simulation of the development of equatorial plasma bubbles: Post-sunset rise or upwelling growth?, J. of Geophys. Res. Space Physics, 125, e2020JA028544. https://doi.org/10.1029/2020JA028544.
  • Chou, M.-Y., C. C. H. Lin, & J. D. Huba (2021), Modeling the disappearance of equatorial plasma bubble by nighttime medium-scale traveling ionospheric disturbances, Terr. Atmos. Ocean. Sci., 32, 217-228, https://doi.org/10.3319/TAO.2021.03.30.01.
  • Chou, M.-Y., Yue, J., Lin, C. C. H., Rajesh, P. K., & Pedatella, N. M. (2022), Conjugate effect of the 2011 Tohoku reflected tsunami-driven gravity waves in the ionosphere, Geophys. Res. Lett., 49, e2021GL097170. https://doi.org/10.1029/2021GL097170.
  • Forbes, J., X. Zhang, C. Randall, J.A. France, V.L. Harvey, J. Carstens, & S. Bailey (2021), Troposphere-Mesosphere coupling by convectively-forced gravity waves during Southern Hemisphere monsoon season as viewed by AIM/CIPS, J. Geophys. Res. Space Physics, e2021JA029734, https://doi.org/10.1029/2021JA029734.
  • Gasperini, F., Azeem, I., Crowley, G., Perdue, G., Depew, M., et al. (2021), Dynamical coupling between the low-latitude lower thermosphere and ionosphere via the non-migrating diurnal tide as revealed by concurrent satellite observations and numerical modeling, Geophys. Res. Lett., https://doi.org/10.1029/2021GL093277.
  • Goncharenko, L. P., V. L. Harvey, C. E. Randall, A. J. Coster, S.-R. Zhang, A. Zalizovski, I. Galkin, & M. Spraggs (2022), Observations of pole-to-pole, stratosphere-to-ionosphere connection, accepted at Frontiers in Astronomy and Space Sciences, https://doi.org/10.3389/fspas.2021.768629.
  • Harvey, V. L., S. Datta-Barua, N. M. Pedatella, N. Wang, C. E. Randall, D. E. Siskind, & W. E. van Caspel (2021), NO transport via Lagrangian Coherent Structures into the top of the polar vortex, Journal of Geophysical Research: Atmospheres, v126, e2020JD034523, https://doi.org/10.1029/2020JD034523.
  • Hindley, N. P., C. J. Wright, A.M. Gadian, L. Hoffmann, J.K. Hughes, D.R. Jackson, J.C. King, N.J. Mitchell, T. Moffat-Griffin, A.C. Moss, S.B. Vosper, & A.N. Ross (2021), Stratospheric gravity waves over the mountainous island of South Georgia: testing a high-resolution dynamical model with 3-D satellite observations and radiosondes, Atmos. Chem. Phys.,  https://doi.org/10.5194/acp-21-7695-2021.
  • Hsu, C.-T., N. M. Pedatella, & J. L. Anderson (2021), Impact of Thermospheric Wind Data Assimilation on Ionospheric Electrodynamics using a Coupled Whole Atmosphere Data Assimilation System, J. Geophys. Res. Space Physics, e2021JA029656, https://doi.org/10.1029/2021JA029656.
  • Kogure, M., Yue, J., Nakamura, T., Hoffmann, L., Vadas, S. L., Tomikawa, Y., et al. (2020), First direct observational evidence for secondary gravity waves generated by mountain waves over the Andes, Geophys. Res. Lett., 47, e2020GL088845. https://doi.org/10.1029/2020GL088845.
  • Kogure, M., et al. (2021), Characteristics of gravity wave horizontal phase velocity spectra in the mesosphere over the Antarctic stations, Syowa and Davis, ESSOAR, https://doi.org/10.1002/essoar.10508064.1.
  • Kogure, M., J. Yue, & H. Liu (2021), Gravity Wave Weakening During the 2019 Antarctic Stratospheric Sudden Warming, Geophys. Res. Lett., https://doi.org/10.1029/2021GL092537.
  • Kogure, M., & Liu, H. (2021), DW1 tidal enhancements in the equatorial MLT during 2015 El Niño: The relative role of tidal heating and propagation, J. Geophys. Res. Space Physics, 126, e2021JA029342, https://doi.org/10.1029/2021JA029342
  • Koshin, D., K. Sato, K. Miyazaki, and S. Watanabe (2020), An ensemble Kalman filter data assimilation system for the whole neutral atmosphere, Geoscientific Model Development, 13, 3145–3177, https://doi.org/10.5194/gmd-13-3145-2020.
  • Koshin, D., K. Sato, M. Kohma, and S. Watanabe (2021), An update on the 4D-LETKF data assimilation system for the whole neutral atmosphere, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2020-381, in review.
  • Kruse, C. G., M. J. Alexander, L. Hoffmann, A. vanNiekerk, I. Polichtchouk, J. T. Bacmeister, L. Holt, R. Plougonven, P. Šácha, C. Wright, K. Sato, R. Shibuya, S. Gisinger, M. Ern, C. I. Meyer, and O. Stein (2022), Observed and Modeled Mountain Waves from the Surface to the Mesosphere Near the Drake Passage, J. Atmos. Sci., https://doi.org/10.1175/JAS-D-21-0252.1.
  • Laskar, F.I., N.M. Pedatella, M.V. Codrescu, R.W. Eastes, & W.E McClintock (2021), Improving the Thermosphere Ionosphere in a Whole Atmosphere Model by Assimilating GOLD Disk Temperatures, J. Geophys. Res. Space Physics, https://doi.org/10.1029/2021JA030045.
  • Lin, J.-T., P. K. Rajesh, C.C.H. Lin, M.-Y. Chou, J.-Y. Liu, J. Yue, H.-F. Tsai, H.-M. Chao, & M.-M. Kung (2022), Rapid Conjugate Appearance of the Giant Ionospheric Lamb Wave in the Northern Hemisphere After Hunga-Tonga Volcano Eruptions, ESSOAr, https://doi.org/10.1002/essoar.10510440.1.
  • Matsushita, Y., D. Kado, M. Kohma, & K. Sato (2020), Relation Between the Interannual Variability in the Stratospheric Rossby Wave Forcing and Zonal Mean Fields Suggesting an Interhemispheric Link in the Stratosphere, Ann. Geophys., 38,
    319–329, https://doi.org/10.5194/angeo-38-319-2020.
  • Matsuoka, D., S. Watanabe, K. Sato, S. Kawazoe, W. Yu, & S. Easterbrook (2020), Application of deep learning to estimate atmospheric gravity wave parameters in reanalysis data sets, Geophys. Res. Lett., 47, e2020GL089436. https://doi.org/10.1029/2020GL089436.
  • McCormack, J., V.L. Harvey, C.E. Randall, N. Pedatella, K. Sato, D. Koshin, S. Watanabe, & L. Holt (2021), Intercomparison of Middle Atmospheric Meteorological Analyses for the Northern Hemisphere Winter 2009-2010, Atmos. Chem. Phys., Matsuoka, D., S. Watanabe, K. Sato, S. Kawazoe, W. Yu, & S. Easterbrook (2020), Application of deep learning to estimate atmospheric gravity wave parameters in reanalysis data sets, Geophys. Res. Lett., 47, e2020GL089436. https://doi.org/10.1029/2020GL089436.
  • McCormack, J., V.L. Harvey, C.E. Randall, N. Pedatella, K. Sato, D. Koshin, S. Watanabe, & L. Holt (2021), Intercomparison of Middle Atmospheric Meteorological Analyses for the Northern Hemisphere Winter 2009-2010, Atmos. Chem. Phys., https://doi.org/10.5194/acp-21-17577-2021.
  • Minamihara, Y., K. Sato, & M. Tsutsumi (2020), Intermittency of gravity waves in the Antarctic troposphere and lower stratosphere revealed by the PANSY radar observation, J. Geophys. Res. Atmos., 125, e2020JD032543, https://doi.org/10.1029/2020JD032543.
  • Noble, P. E., N. P. Hindley, C. J. Wright, C. Cullens, S. England, N. M. Pedatella, N. J. Mitchell, and T. Maffat-Griffen (2022), Interannual variability of winds in the Antarctic mesosphere and lower thermosphere over Rothera (67S, 68W) in radar observations and WACCM-X, Atmos. Chem. Phys. Disc., submitted.
  • Okui, H., K. Sato, D. Koshin, and S. Watanabe (2021), Formation of a mesospheric inversion layer and the subsequent elevated stratopause associated with the major stratospheric sudden warming in 2018/19, J. Geophys. Res. Atmos., 126, e2021JD034681, https://doi.org/10.1029/2021JD034681.
  • Pedatella, N. M., J. H. Richter, J. Edwards, & A. A. Glanville (2021), Predictability of the Mesosphere and Lower Thermosphere During Major Sudden Stratospheric Warmings, Geophys. Res. Lett., https://doi.org/10.1029/2021GL093716.
  • Pedatella, N. M., & Anderson, J. L. (2022), The impact of assimilating COSMIC-2 observations of electron density in WACCMX, J. Geophys. Res. Space Physics, 127, e2021JA029906, https://doi.org/10.1029/2021JA029906.
  • Pedatella, N. M., and V. L. Harvey (2022), Impact of Strong and Weak Stratospheric Polar Vortices on the Mesosphere and Lower Thermosphere, Geophys. Res. Lett., https://doi.org/10.1029/2022GL098877, accepted.
  • Rajesh, P. K., C. H. Lin, J. T. Lin, C. Y. Lin, J. Yue, T. Matsuo, & S. P. Chen (2021), Day-to-day ionosphere variability during solar minimum using global ionospheric specification electron density derived from FORMOSAT-7/COSMIC-2 measurements, Terrestrial Atmospheric and Oceanic Sciences, https://doi.org/10.3319/TAO.2021.08.01.01.
  • Sassi, F., J.P. McCormack, J.L. Tate, D.D Kuhl, & N.L. Baker (2021), Assessing the impact of middle atmosphere observations on day-to-day variability in lower thermospheric winds using WACCM-X, J. Atmos. Sol.-Terr. Physics, https://doi.org/10.1016/j.jastp.2020.105486.
  • Siskind, D. E., V. L. Harvey, F. Sassi, J. McCormack, C. E. Randall, M. E. Hervig, and S. M. Bailey (2021), 2 and 3-dimensional structure of the descent of mesospheric trace constituents after the 2013 sudden stratospheric warming elevated stratopause, Atmos. Chem. Phys., 21, 14059-14077, https://doi.org/10.5194/acp-21-14059-2021.
  • Vadas, S. L. & Azeem, I. (2021), Concentric secondary gravity waves in the thermosphere and ionosphere over the continental United States on March 25–26, 2015 from deep Convection, Journal of Geophysical Research: Space Physics, 126, e2020JA028275. https://doi.org/10.1029/2020JA028275.
  • Vadas, S.L., E. Becker, K. Bossert, G. Baumgarten, L. Hoffmann, & V.L. Harvey (2022), Secondary gravity waves from the stratospheric polar vortex over ALOMAR Observatory on 12-14 January 2016: observations and modeling, J. Geophys. Res. Atmos., https://doi.org/10.1029/2022JD036985, submitted.
  • Wright, C.J., N.P. Hindley, M.J. Alexander, L.A. Holt, & L. Hoffmann (2021), Using vertical phase differences to better resolve 3D gravity wave structure, Atmos. Meas. Tech., 14, 5873–5886, https://doi.org/10.5194/amt-14-5873-2021.
  • Wright, C.J., N.P. Hindley, M.J. Alexander, M. Barlow, L. Hoffmann, N. Mitchell, F. Prata, M. Bouillon, J. Carstens, C. Clerbaux, S.M. Osprey, N. Powell, C.E. Randall, & J. Yue (2022), Tonga eruption triggered waves propagating globally from surface to edge of space, ESSOAr, https://doi.org/10.1002/essoar.10510674.1.
  • Wu, X., L. Hoffmann, C. J. Wright, N. P. Hindley, S. Kalisch, M. J. Alexander, & Y. Wang (2021), Stratospheric Gravity Waves as a Proxy for Hurricane Intensification: A Case Study of Mesoscale Simulations for Hurricane Joaquin, Geophys. Res. Lett., https://doi.org/10.1029/2021GL097010.
  • Xu, S., , S. L. Vadas, & J. Yue (2021), Thermospheric traveling atmospheric disturbances in austral winter from GOCE and CHAMP, J. Geophys. Res. Space Physics, 126, e2021JA029335, https://doi.org/10.1029/2021JA029335.
  • Yasui, R., K. Sato, and Y. Miyoshi (2021), Roles of Rossby Waves, Rossby-Gravity Waves, and Gravity Waves Generated in the Middle Atmosphere for Interhemispheric Coupling. J.
    Atmos. Sci., https://doi.org/10.1175/JAS-D-21-0045.1.
  • Yue, J., & Q. Gan (2021), Quasi-two-day wave modulation of carbon dioxide in the mesosphere and lower thermosphere, J. Atmos. Sol.-Terr. Physics, 224, 105750, https://doi.org/10.1016/j.jastp.2021.105750.
  • Yue, J., Miller, S. D., Straka III, W. C., Noh, Y.-J., Chou, M.-Y., Kahn, R., & Flower, V. (2022). La Soufriere volcanic eruptions launched gravity waves into space. Geophysical Research Letters, 49, e2022GL097952. https://doi.org/10.1029/2022GL097952.

2020

  • Becker, E., & Vadas, S. L. (2020), Explicit global simulation of gravity waves in the thermosphere, J. Geophys. Res. Space Physics, 125, e2020JA028034, https://doi.org/10.1029/2020JA028034.
  • Chou, M.Y., Pedatella, N. M., Wu, Q., Huba, J. D., Lin, C. C. H., Schreiner, W. S., J. J. Braun, R. W. Eastes, & J. Yue (2020), Observation and simulation of the development of equatorial plasma bubbles: Post-sunset rise or upwelling growth?, J. of Geophys. Res. Space Physics, 125, e2020JA028544. https://doi.org/10.1029/2020JA028544.
  • Kogure, M., Yue, J., Nakamura, T., Hoffmann, L., Vadas, S. L., Tomikawa, Y., et al. (2020), First direct observational evidence for secondary gravity waves generated by mountain waves over the Andes, Geophys. Res. Lett., 47, e2020GL088845. https://doi.org/10.1029/2020GL088845.
  • Koshin, D., K. Sato, K. Miyazaki, and S. Watanabe (2020), An ensemble Kalman filter data assimilation system for the whole neutral atmosphere, Geoscientific Model Development, 13, 3145–3177, https://doi.org/10.5194/gmd-13-3145-2020.
  • Matsushita, Y., D. Kado, M. Kohma, & K. Sato (2020), Relation Between the Interannual Variability in the Stratospheric Rossby Wave Forcing and Zonal Mean Fields Suggesting an Interhemispheric Link in the Stratosphere, Ann. Geophys., 38, 319–329, https://doi.org/10.5194/angeo-38-319-2020.
  • Matsuoka, D., S. Watanabe, K. Sato, S. Kawazoe, W. Yu, & S. Easterbrook (2020), Application of deep learning to estimate atmospheric gravity wave parameters in reanalysis data sets, Geophys. Res. Lett., 47, e2020GL089436. https://doi.org/10.1029/2020GL089436.
  • Minamihara, Y., K. Sato, & M. Tsutsumi (2020), Intermittency of gravity waves in the Antarctic troposphere and lower stratosphere revealed by the PANSY radar observation, J. Geophys. Res. Atmos., 125, e2020JD032543, https://doi.org/10.1029/2020JD032543.