
Unique hot spring microbial communities largely a product of chemistry (NOT heat)

 Hot spring chemistry results from reaction of groundwater with volcanic rocks in the subsurface

Basalt:

-an igneous (volcanic) rock
-relatively rich in iron (Fe), magnesium (Mg), and silicon (Si)
-mineral composition: glass, plagioclase, pyroxene, olivine, amphiboles
<u>Rhyolite:</u>

-similar to basalt, but slightly more enriched in Si

Basalt-groundwater reactions produce reduced compounds (electron donors):

e.g.:

 $2FeO_{(rock)} + H_2O \Rightarrow Fe_2O_{3(rock)} + H_2$ $FeS_{(rock)} + H_2O \Rightarrow FeO_{(rock)} + H_2S$ $FeO_{(rock)} + 2H^+ \Rightarrow Fe^{2+} + H_2O$

As a result of fluid-rock interactions, hot springs fluids emerge:

- warm (to ~93°C in Yellowstone; to 402°C on seafloor)
- enriched in reduced compounds (i.e., *electron donors*) (H₂, H₂S, aresenite, methane, etc.)
- enriched in metals (Fe, Mn, etc.)

Exposure to atmosphere provides electron acceptors (i.e., oxidants) (primarily O_2 , but also sulfate, nitrate, etc.)

Cations and Anions	Concentration (µM)	Weak Acids/ Bases	Concentration (µM)
Na ⁺	12 532	Si	4819
K+	954	DIC [†] [CO ₂]	1763
Ca	116.7	В	651
Al	108.7	As	70.1
Fe	86.1	NH_4^+	44.9
Mg	9.4	DOC [‡]	41.0
Zn	2.1	S(-II) [H ₂ S]	7.4
Mn	0.65	P	0.9
CI⁻	13 342	H₂(aq) [§]	0.036 (0.028)
SO ₄ ²⁻	1331	O₂(aq) [§]	<0.08 (0.00)
F-	174.9	Charge Difference [¶]	3.0%
NO_3^-	24.4	Ionic Strength [¶]	0.0165 M

Table 1 Concentrations of selected chemical constituents measured inSuccession Spring source water on day 103 (October 29, 2001)

pH = 3.1

(from Macur et al., Geobiology, 2004)

