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Abstract. This paper emphasizes that the macrodynamics of the terrestrial magnetosphere is 
more effectively treated in terms of the primary variables B and v (the B, v paradigm). The 
common practice of relating the dynamics to E and j (the E, j paradigm) provides direct an- 
swers in a variety of symmetric cases, but breaks down in even so simple a static problem as 
a flux bundle displaced (perhaps by reconnection with the magnetic field in the solar wind) 
from its normal equilibrium position in a static dipole field. The essential point is that a di- 
rect derivation from the equations of Maxwell and Newton leads to field equations written 
in terms of the continuum fields B and v. The equations can be recast in terms of E and 
j, of course, but they are then unwieldy, being integrodifferential equations. Hence the E, j 
paradigm, when correctly applied, is seriously limited in its effectiveness in dynamical prob- 
lems. Circumventing the limitations with the common declaration that E is the prime mover, 
actively penetrating from the solar wind into the magnetosphere, provides dynamics that is 
unfortunately at variance with the results that follow directly from Maxwell and Newton. The 
paper outlines the standard derivation of the basic field equations and then goes on to treat 
a variety of circumstances to illustrate the effectiveness of the deductive B, v paradigm in 
the continuum dynamics of the magnetic field and plasma. There is no attempt to develop a 
comprehensive model of magnetospheric activity. However we suggest that the ultimate task 
is more effectively attacked with the B, v paradigm. 

1. Introduction 

The theory of magnetospheric activity is commonly expressed 
in terms of the electric field E(r,t) and the electric current density 
j(r,t), with the view that the electric field drives both the electric 
current and the bulk plasma motion u = c E x B/B 2, while the cur- 
rent causes the magnetic perturbations AB (r, t). We refer to this 
formulation as the E, j paradigm. The paradigm works from the 
basic principles of symmetry, charge conservation, the unperturbed 
field lines of a static magnetic field [cf. Stern, 1992], and Ampere's 
law. The electric field within the magnetosphere is regarded as the 
active inward extension of the electric field Es = -rs x Bs/c 
in the solar wind with velocity v s and magnetic field B s. The 
paradigm provides convenient relations, via the Biot- Savart in- 
tegral form of Ampere's law, between the electric currents of en- 
ergetic particles and the associated magnetic field perturbations in 
static configurations. However the effective application is limited 
by the fact that the principles of symmetry and equipotential field 
lines do not apply to nonsymmetric and time-dependent circum- 
stances of magnetospheric activity. Charge conservation combined 
with the unperturbed field is not always sufficient to provide the es- 
sential current paths for computing the field perturbations, even for 
arbitrarily small static perturbations of a known field configuration. 
Furthermore, the inward projection of the interplanetary electric 
field along the magnetic field lines is not applicable unless the con- 
vection of the ionosphere is keeping up with the field line convec- 
tion at the magnetopause so that the field is stationary (0/0t = 0). 
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So the paradigm, however convenient in simple cases, becomes in- 
effective for treating strong, nonsymmetric, or time dependent ef- 
fects. 

The purpose of the present paper is to exhibit some of the 
limitations of the E, j paradigm with specific examples, and then 
to elaborate the alternative B, v (or B, u) paradigm, working 
with the magnetic field B (r, t) and the plasma velocity u(r, t) 
or v(r, t) in the dynamical equations [Parker, 1962, 1979, 1994; 
Siscoe, 1983]. The essential point is that the magnetospheric sys- 
tem is driven by the internal forces of trapped particles and plas- 
mas and by external forces exerted by the solar wind, rather than 
by applied macroscopic electric fields. Hence the magnetospheric 
system is described by the dynamical equations relating momen- 
tum and force, that is Newton's equations of motion containing the 
appropriate Maxwell, Reynolds, and plasma pressure stresses. The 
Maxwell and Reynolds stresses are expressible directly in terms of 
B and v, so that the dynamical equations are naturally formulated 
in terms of B and v and provide a direct deductive approach to 
magnetospheric physics. As we shall see, no physics is omitted in 
failing to mention the electric current in treating the deformation of 
B by particle forces (or the reverse). The considerations on charge 
conservation, playing an essential role in the E, j paradigm, are 
automatically taken care of by Maxwell's equations (which guar- 
antee charge conservation) and by Newton's equations (which au- 
tomatically provide ion and electron motions consistent with the 
electric current requirements of Ampere's law) on which the B, v 
paradigm is based. 

To state this in other terms, the macroscopic behavior (on 
scales large compared to the the cyclotron radii of the individual 
ions and electrons) of the magnetosphere is described by magneto- 
hydrodynamics (MHD) which we refer to here as the B,v 

10,587 



10,588 PARKER: ALTERNATIVE PARADIGM 

paradigm. The equations of MHD form a complete set of partial 
differential equations, providing a deductive approach to the theory 
of magnetospheric activity. The physical concepts accompanying 
the MHD equations are mechanical in nature, involving the push 
and pull of the Maxwell stresses (the pressure and tension of the 
magnetic field) against the fluid motion, with the field and fluid tied 
together into a single elastic continuum insofar as the fluid is unable 
to support an electric field E t in its own moving frame of reference. 

It should be noted that the MHD equations permit surfaces of 
discontinuity in the circumstances of the planetary magnetosphere, 
deformed by a quasi-static solar wind. Examples are the magne- 
topause and auroral sheets. The location of these discontinuities is 
uniquely defined by the B,v (MHD) equations applied to the con- 
tinuous fields in the regions between. On the microscopic scales 
(the cyclotron radii) the surfaces of discontinuity have finite thick- 
ness and internal structure that can be described only by the kinetic 
equations of plasma physics. The macroscopic condition is simply 
the balance of the total presure across the surface of discontinu- 
ity. The treatment is analogous to the treatment of a shock transi- 
tion in a macroscopic hydrodynamic flow, where the location of the 
shock transition is determined by the large-scale hydrodynamics, 
with conservation of mass, momentum, and energy (the Rankine- 
Hugoniot relations) across the small thickness of the shock. The 
internal structure of the shock can be treated only with application 
of the complete kinetic theory. 

Now the dynamical equations of the B,v paradigm can, of 
course, be expressed in terms of E and j, replacing the bulk plasma 
velocity by c E x B/B 2 and B by the Biot-Savart integral 

B(r) - 1 / dar, J(r' ) x (r- r') c Ir-r' I 3 

taken over all space. However, the result is unwieldy, converting 
partial differential equations into global integro-differenfial equa- 
tions. So the E, j paradigm has no tractable master field equations 
to guide the theory. Hence in the active convecfing magnetosphere 
the E, j paradigm is obliged to resort to the ad hoc introduction 
of individual effects. In the hands of experts the ad hoc construc- 
tion provides a surprisingly detailed qualitative model of the active 
magnetosphere [cf. Fejer, 1964; Vasyliunas, 1970], such as the Rice 
Convection Model [Wolf, 1974, 1983; Erickson et al.,1991; Wolfet 
al., 1991; Yang et al., 1994]. Unfortunately, the physical explana- 
tions become increasingly complicated and indirect in the language 
of the E, j paradigm, and the quantitative errors are a stumbling 
block for more complex situations. A single example suffices to 
illustrate the problem. 

The Birkeland currents j_l. are often "explained" by noting 
that they are associated with the nonvanishing divergence of the gra- 
dient and curvature drifts of the ions and electrons of the magneto- 
spheric plasma. The mathematical relations between the Birkeland 
current density ill and the plasma presure gradient is then worked 
out, with the conclusion that the Birkeland currents are caused by 
the plasma distribution. In another direction, it is sometimes stated 
that the region 2 Birkeland currents play the important role of 
shielding the low- latitude magnetosphere from the effects of the 
magnetic substrom, thereby explaining the observed absence of 
substrom effects at low latitudes, but in fact these statements are 

truisms, missing the fundamental point that the region 1 Birkeland 
currents are induced by the magnetic shear between the polar fields 
(carded by the solar wind into the antisolar direction) and the sur- 

rounding lower-latitude fields, not caught up in the solar wind. That 
is to say, the region 1 currents follow from Ampere's law in the 
magnetic field deformed by the tailward transport of flux from the 
sunward magnetopause. The region 2 Birkeland currents arise in 
the region of the return flow that is forced by the accumulating 
magnetic and plasma pressure on the nightside. The return flow 
is blocked from low latitudes by the extreme adiabatic compression 
of the particles and plasma that would arise in bundles convected 
to low latitude [Zhu, 1993]. The intensity of the region 2 current 
at any given latitude follows from Ampere's law as proportional 
to the gradient in the Maxwell stress necessary to drive the return 
flow of the massive v•scous ionosphere. So the Birkeland currents 
are located where the mechanics of the magnetospheric convection 
places them. The curvature and gradient drifts are determined by 
the mechanical deformation of the magnetosphere, rather than vice 
versa, and are automatically in compliance with the requirements 
of the mechanical deformation of the magnetic field. 

The advantage of the a,v paradigm is that it proceeds deduc- 
tively from the field equations of Newton and Maxwell, automati- 
cally steering the investigation along the central path and bypass- 
ing the nonproblems and complicated indirect relations between the 
secondary quantities. 

The basic simplicity of the principal variations of the mag- 
netosphere has been noted for sometime [cf. Sharma et a1.,1993], 
and references therein) from the low dimensionality (,,o 3) of the 
observed variations. This consideration, together with a desire for 
a more deductive, less ad hoc, theory for the observed magneto- 
spheric activity, again suggests the B,v paradigm with its sim- 
ple mechanical concepts and convenient field equations. From the 
point of view of B•v, geomagnetic activity is the mechanical con- 
sequence of the turbulent mixing of the magnetopause with the so- 
lar wind and magnetic reconnection across the magnetopause. This 
grabs geomagnetic flux bundles and stretches them back into the 
goetail at the same time that the pressure of the solar wind com- 
presses the magnetosphere, ,while the plasma and energetic particles 
within inflate the magnetosphere. In short the dynamics of the mag- 
netosphere is primarily a shoving match between particles and mag- 
netic field, that is between the Reynolds stress and particle pressure 
on the one hand and the Maxwell stress on the other. The essential 

point is that these macroscopic stress fields transcend the internal 
microscopic details of the plasma and its electric currents. If there 
is a special need to know the microscopic details, they are readily 
worked out from the macroscopic fields. 

This is not to say that electric currents and parallel electric 
fields do not play a key role in special situations, for example creat- 
ing the aurora and in the expansion phase of the magnetic substorm 
[Zhu, 1995]. However those important phenomena are set up by 
extreme conditions developing in B, and the presence of Ell can 
be established only by first working out the deformation of a by 
the mechanical forces exerted by the particles and plasma. Then if 
ill proves to be so large as to require a strong Ell, the consequences 
of Ell [Coroniti and Kennel, 1973; Schindler et a1.,1991] must be 
introduced into the calculation of a. It is not possible to pursue the 
physics in the opposite order except where observation provides the 
solution to the problem ahead of time. Further commentary on Ell 
is to be found in section 3. 

The exposition begins with a brief review of some specific 
limitations of the E, j paradigm, not always appreciated along side 
the effective applications of the paradigm. Then the well known dy- 

, 

namical equations are worked out again from Maxwell's equations 
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to illustrate the nature of the B, v paradigm. Several static magne- 
tospheric phenomena are treated with both paradigms in section 4, 
from which the reader can see the individual merits and limitations 

under simple circumstances. Finally, the paper treats some time de- 
pendent cases in sections 7 and 10, easily handled with B and v 
but difficult with E and j. The pitfalls of declaring an equivalent 
electric circuit for the E, j paradigm are noted in sections 10 and 
11. Section 8 develops the B, v paradigm in a partially ionized 
gas appropriate for the ionosphere. 

2. The E, j Paradigm 

As already noted, the ]g, j paradigm considers the electric 
field E within the magnetosphere to be a consequence of the ac- 
tive inward penetration of the electric field Es = -rs x Bs/c 
in the solar wind, following the ideas of Alfven [1939, 1950, 1981], 
Dungey [1958, 1961], Oguti [1971], Heikkila [1974],Banks [1979], 
Lysak [1990 and ref. therein]. The conventional E, j paradigm is 
stated concisely by McPherron [1991, p. 618] in a recent review of 
substorms. 

...Since field lines are generally equipotentials, the electric field 
of the solar wind is transmitted into the magnetosphere and iono- 
sphere by the connected magnetic field lines. This electric field sets 
up a convection system that moves magnetospheric plasma from 
the tail behind the Earth to the day side. The ionospheric plasma 
undergoes the same motion and in addition conducts electrical cur- 
rents driven by the electric field... 

On the other hand, both the E, j and B, v paradigms are 
sometimes indicated in the contemporary literature on magneto- 
spheric activity. We note [Gonzalez et al., 1994 p. 5774] where 
they state that 

...The primary causes of geomagnetic storms at Earth are strong 
dawn-to-dusk electric fields associated with the passage of south- 
ward directed interplanetary magnetic fields. The solar wind en- 
ergy transfer mechanism is magnetic reconnection between the 
IMF and the Earth's magnetic field. The basic energy transfer pro- 
cess in Earth's magnetosphere is the conversion of directed me- 
chanical energy from the flow of the solar wind into magnetic en- 
ergy stored in the magnetotail, followed by its conversion into pri- 
marily thermal mechanical energy in the plasma sheet, auroral par- 
ticles, ting current, and Joule heating of the ionosphere. Extraction 
of energy from the solar wind requires a net force between the so- 
lar wind and Earth, with force times solar wind speed giving the 
energy input rate... 

Another point to be noted is that the basic role ascribed to j in 
the E, j paradigm, together with the notion of an applied electric 
field ]gs, has led to the idea [Alfven, 1981; Heikkila, 1974] that 
magnetospheric activity can be represented comprehensively and 
precisely by simple electric circuits. The notion is a curious one, 
that a dynamical system with infinitely many degrees of freedom 
can be represented by a fixed electric circuit with only a few loops 
(a few degrees of freedom). In fact, it is often possible to provide an 
approximate circuit analog once the basic mechanics is worked out 
from the dynamical equations. However unfortunately, the circuit 
analog can be established only after the fact, and as noted in section 
3, it ignores important aspects of the fluid motions, so it is of little 
practical use in most cases. 

Now the field lines [Stern, 1994] are equipotentials only in 
precisely stationary (O/Or = 0) conditions [Stern, 19771. The 
concept of equipotential field lines can be applied to magneto 
spheric convection [Gold, 1959; Dungey, 1961; Axford and Hines, 

1961; Kellogg, 1962; Walbridge, 1967; Coroniti and Kennel, 1973] 
only in the special case that the ionospheric winds are keeping up 
precisely with the tailward transport of the individual flux bundles 
involved in the flux transfer events. However •s has no power to 
maintain this stationary (0/0l ---- 0) condition. For instance, when 
there is no reconnection of field lines between the magnetosphere 
and the solar wind, the magnetopause is precisely an equipotential 
surface so far as the external Es is concerned. So there can be 
no electrostatic stimulation of the interior, that is Es by itself does 
nothing to create convection. What little convection there may be 
(~ 102m) is driven by the small-scale fluctuations in the mag- 
netopause [Axford, 1962; Parker, 1958, 1967a, b, 1969a; Lerche, 
1966, 1967; Lerche and Parker, 1967; Eviatar and Wolfe, 1968; 
Vasyliunas, 1970; Schieldge and Siscoe, 1971; Coroniti and Ken- 
nel, 1973; Tsurutani et al., 1992]. 

That is to say, it is the Maxwell stress provided by a nonvan- 
ishing perpendicular magnetic field Ba. that transmits the momen- 
tum of the solar wind across the magnetopause into the magneto- 
sphere. The same Ba. provides a potential difference across the 
magnetic field, but the stress transmitted by the electric field is small 
O(v •/c •) compared to the magnetic stress. Tsurutani and Gonza- 
lez, [1995] estimate that the shear stress exerted by the passing solar 
wind via the small scale fluctuations is approximately 1 - 3 x 10- • 
of the force arising from outright reconnection of the geomagnetic 
field lines with a southward interplanetary magnetic field at the sun- 
ward magnetopause. It is this substantial reconnection and the as- 
sociated large Maxwell tangential force on the magnetosphere that 
initiates the substorm, of course. 

Imagine, then, that a static magnetosphere is disturbed by the 
abrupt reconnection of a geomagnetic flux bundle into a southward 
interplanetary magnetic field Bs at the sunward magnetopause. 
The reconnected flux bundle is rapidly transported by the solar wind 
into the geomagnetic tail, during which time the massive iono- 
spheric footpoint of the reconnected flux bundle responds but little. 
It follows that the electric field E = - v x B/c within the recon- 

nected flux bundle declines from ]gs at the magnetopause to zero at 
the unmoving ionosphere. So the electric field generally does not 
map downward along the field lines in the active magnetosphere, 
that is the electric field has no power of penetration to drive the 
motion of the plasma, contr•ary to the common assertion. Rather, 
it is the Maxwell stress exerted on the ionosphere by the tension 
and pressure of the displaced reconnected magnetic flux bundle that 
drives the ionosphere. More simply, it is the accumulated displace- 
ment, rather than the rate of displacement, of the flux bundle that 
drives the ionosphere. The electric field maps along the magnetic 
field lines only if and when the Maxwell stresses can bring the iono- 
spheric convection into a steady state that keeps up with the flux 
transfer at the magnetopause. 

To consider the problem from a different point of view, E, 
given by - v x B/c, cannot be the compelling physical effect, that 
is the prime mover, because the dynamical equations must be co- 
variant. That is to say, the equations must be couched in terms of 
physical concepts that are applicable in every inertial frame of ref- 
erence, for example the frame of the solar wind and the frame of the 
magnetosphere. So if Es were to be considered the prime mover 
for exciting magnetospheric activity in the frame of reference of 
Earth, how would we treat the excitation of the passing solar wind 
by the nonconvecting magnetosphere? There is no significant elec- 
tric field within the magnetosphere. Hence there would be no prime 
mover and hence no excitation of the solar wind. On the other hand, 
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if the calculation were carried out in the frame of the solar wind, in 

which there is then no electric field, there is no basis for activat- 

ing the magnetosphere. However, there would be an electric field 
]grn = q-vs X B/c in the magnetosphere which activates the solar 
wind, contrary to the conclusion reached in the frame of reference 
of the magnetosphere. 

It should not go unnoticed that, with the nonrelativistic Lo- 

rentz transformation E • = E q- v x B/c, an electric field Ell par- 
allel to the magnetic field, arising from intense field aligned current 

ill' is uniquely defined in all flames of reference, Ell - Ell, just 
as B is well defined and invariant, neglecting terms second order 
in v/c. 

To treat the other half of the ]•, j paradigm consider the often 
stated concept that j is the cause of AB. In the usual meaning of 
the word "cause" this implies that the energy that goes into the cre- 
ation of AB, increasing the magnetic energy by B ß AB/47r per 
unit volume, is supplied by j. However, this is not how AB comes 
about. The energy source is primarily the kinetic energy of the so- 
lar wind which impacts the magnetopause, grabs bundles of flux, 
and deforms the elastic terrestrial magnetosphere. The fluctuating 
solar wind and the associated varying deformation provide a vary- 
ing •7 x B, with which there is associated incidentally a varying 
j, according to Ampere's law. The Maxwell equation OE/Ol -- c 
V x B - 4•rj tells us that any momentary deviation of 4•rj from 
cV x B quickly produces an E that compels j through Newton's 
equations for the motion of the electrons and ions to become equal 
to cV x B/4•r. The electric field is also described by Faraday's 
induction equation V x E = -(1/c)0B/0t, of course. The 
energy to create the necessary electric current comes from the de- 
formation of the magnetic field, as is easily shown from Poynting's 
theorem (section 3). So AB is the energy source, driven by the 
mechanical forces of the solar wind, that creates j. That is to say, 
in the magnetosphere the magnetic field is the cause of the current. 

It should be recognized that the situation is different in the 
laboratory plasma, where the action is often initiated by discharg- 
ing a condenser bank through the plasma and/or through external 
current coils. There is one unique reference frame, defined by the 
laboratory boundaries of the plasma. An enormous potential differ- 
ence is applied to the boundary of the plasma, in contrast with the 
equipotential magnetopause. The energy is delivered to the system 
by the applied and well defined E, causing electric currents to flow 
and doing work at the rate j ß E. The magnetic fields are caused 
by j, through Amperes law (i.e., the Biot-Savart integral), and E is 
clearly the prime mover. 

It is interesting to note that the E, j paradigm is also an es- 
sential part of the picture, along with B and the dynamics of the 
individual ions and electrons, in the plasma structure of the ideal 
stationary magnetopause over the cyclotron radius of the imping- 
ing solar wind ions. The magnetohydrodynamic B,v paradigm is 
not applicable to such small scales, of course, and the problem is 
nonlocal because the impinging solar wind ions play the role of an 
initial applied emf, driving currents along the field lines into the 
ionosphere as an essential part of the stationary equilibrium of the 
magnetopause. Detailed analysis [Parker, 1967a, b; Lerche, 1967; 
Lerche and Parker, 1967] shows that the ionospheric resistivity dis- 
sipates the currents so that there can be no enduring equilibrium. 
Eviatar and Wolf[1968] suggest that the microstructure of the mag- 
netopause is dynamically unstable so that the absence of stationary 
equilibrium is not confronted in nature, leaving some interesting 
questions unanswered. 

The unipolar inductor provided by the motion of Io relative 
to the rotating magnetosphere of Jupiter is another example of the 
proper use of the E, j paradigm, with the precisely defined motion 
of Io providing the driving emf [Goldreich and Lyndon-Bell, 1969]. 

On the other hand, it will become clear in the illustrative ex- 

amples that the ]•, j paradigm is often hampered by (1) the need to 
know the perturbed field B q-A B in order to describe the paral- 
lel current ill to a sufficient degree of precision and (2) the need to 
know the fluid motion v before ]• and j can be related by an alge- 
braic (tensor) Ohm's law. Thus it is relatively easy to compute E 
and j once B and v are worked out from the dynamical equations 
(which generally do not depend on ]• and j), but it is difficult to go 
the other way. Unfortunately, these facts are sometimes overlooked 
and the path ofjl I is based on the unperturbed B, while Ohm's law 
is applied to E in the reference frame of the coordinates rather than 
to the field E • = E + v x B/c in the local frame of the mov- 
ing fluid. In fact, lg t cannot be computed until after v and B have 
been determined. Thus for instance, the comprehensive magneto- 
spheric models of Vasyliunas [1970] and Wolf[1983] illustrate how 
far the ]g• j paradigm can be carded to provide an ad hoc first or- 
der representation of geomagnetic disturbance. However, they can 
provide the correct ionospheric current pattern only in the second 
iteration with v deduced from the Lorentz force calculated the first 

time around. A skillful theoretician can accomplish these iterations, 
but why use proxy variables and a tricky ad hoc approach when the 
B,v paradigm provides the partial differential field equatons for the 
comprehensive deductive approach? Sections 6.2 and 9 provide il- 
lustrations of the difficulties (1) and (2), respectively. 

The same general problem arises in the popular practice of 
declaring an equivalent electric circuit for a dynamical system, for- 
getting that the current paths are generally not known until the dy- 
namical problem is solved and B is known and forgetting that the 
effective electromotive force depends upon the motion of the cur- 
rent path across the magnetic field, which is not known until v has 
been determined. In fact, the correct electric circuit is distributed 

over v(r, t), and its proper description is precisely stated by the 
dynamical equations for B and v, from which ]• and j are eas- 
ily computed once B and v are determined. Section 11 provides a 
simple illustrative example. 

3. The B, v Paradigm 

Application of the B, v paradigm to the active planetary 
magnetosphere [Parker, 1962] is based on Newton's equations of 
motion, including the Maxwell stress, and on Maxwell's equations, 
along the lines indicated in the general development of the paradigm 
by Lundquist [1952] and Elsasser [1954]. The mutual consistency 
of the equations becomes evident upon close inspection. For in- 
stance, Maxwell's equations assert that electric charge is conserved, 
which is tantamount to asserting conservation of particles, and 
hence mass. Then Newton's equations can be applied to the mo- 
tions of the individual ions and electrons of a collisionless plasma 
to compute the mean electric current density. Substituting the re- 
sulting expression for the current density into Maxwell's equation 

0E 
= cV x B- 4•rj (1) Ot 

yields Newton's equation of motion for the macroscopic bulk mo- 
tion of the plasma [Parker, 1957]. Thus the particle dynamics is 
such as to fulfill Ampere's law automatically. This detailed result, 
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which is described in the next section, is implied by Poynting's the- 
orem, of course, showing that the concept of energy and momentum 
carries over from mechanics into electromagnetism. 

In summary, Newton's equations at the microscopic scale of 
the individual ions and electrons automatically prescribe motions 
that produce the electric currents required by Ampere's law. Com- 
bining this fact with Poynfing's theorem, it follows that the mean 
macroscopic bulk fluid motion of the ions and electrons is also de- 
scribed by Newton's equations in mrms of the mean macroscopic 
Maxwell stress ransot. This should come as no surprise in view of 
the general compatibility of classical mechanics and electromag- 
netic fields in which the equivalent momentum of a particle with 
charge e can be written Pi + e Ai/c, where Ai is the vector po- 
tential in the Lorentz gauge. Nora, then, that if Ampere's law were 
not automatically satisfied in the large scale by the individual par- 
ficle motions, it would not be possible to wrim the Maxwell stress 
in mrms of E and B alone. Some functional of the plasma ve- 
locity v and its derivatives would appear in the Maxwell's stress. 
Physics would then lose its covariance and we would live in a dif- 
ferent world. 

It follows that the time dependent macroscopic physics of 
magnetospheric activity reduces to the dynamics of the conrending 
particle pressure Pij (thermal momentum flux), the Maxwell stress 

ransot Mij, B • Bi Bj (2) mo - + 
and the Reynolds stress tensor Rii, 

I•ij -- --pUiUj . (3) 

Thus for a plasma with density p and macroscopic bulk motion ui, 
the dynamical equation has the basic Newtonian form 

OR• OM• 0 Opij + -• (4) - - 
to which may be added a gravitational force, viscosity, etc. From 
the fact that E - -u x B/c in a collisionless plasma it follows 
from Faraday's law of induction that 

OBi 
- 

Ot 

which decrees that Bi is transported bodily with ui. 
There are occasional and important exceptions, of course, as 

already noted. The most intoresting addition to the induction equa- 

tion is a significant electric field Ell parallel to B, arising where 
the plasma is too tenuous to carry the electric current demanded 
by Ampere's law. A case in point arises in the region 1 Birkeland 
currents in the extremely low density (•< 1 electron/cm a) beyond 
the plasmapause. The appearance of the mrm --cX7 x Ell on the 
right-hand side of (5) violams the frozen in condition on the field 
[Coroniti and Kennel, 1973; Schindler et al., 1991]. If, on the other 
hand, the plasma, or an un-ionized gaseous background, becomes 
so dense that there are many inmrparticle collisions, as is the case 
in the ionosphere, a resistive diffusion ransot r]i j is included on the 
right-hand side of (5), which also gets away from the frozen in con- 
dition. 

With these points in mind a variety of magnetospheric phe- 
nomena can be understood in simple mrms from the disturbed con- 

ditions in inmrplanetary space [Tsurutani et al., 1990; Tsurutani and 
Gonzalez, 1993]. For instance, the expansion phase of a substorm 
appears to be the direct consequence of switching on the same Ell 
that causes the auroral enhancement [Zhu, 1995]. That is to say, the 
region 1 Birkeland current sheet is a consequence of the tailward 
displacement of magnetic flux, and when the current density be- 
comes large enough to generate plasma turbulence (anomalous re- 

sistivity and electric double layers) the required Ell becomes large. 
Calculations show that the Ell releases the magnetic field in the 
outer magnetosphere from its line tying to the ionosphere, thereby 
facilitating the expansion of the geotail. The sudden release appears 
to be the cause of the Pi 2 pulsations (Zhu, 1995). 

The direct approach of the u• B paradigm to the driving 
forces, Pij, Rij, Mij, etc. simplifies many aspects of the the- 
ory of magnetospheric activity. The first point is that the current 
j flows across B where, and only where, the plasma pushes against 
the field. Where the plasma does not push against the field, j is 
necessarily parallel to B. So it is the plasma and particle pressure 
distribution that determines the electric current patterns, which can- 
not otherwise be construcmd. Hence the assertion of an equivalent 
electric circuit generally cannot be made until the plasma pressure 
and Maxwell stress have been established. That means a proper dy- 
namical solution to the problem must be in hand. For instance, the 
region 1 and 2 Birkeland currents follow as a direct consequence 
of Ampere's law applied to the magnetic flux bundles displaced by 
the solar wind from the sunward magnetopause into the geomag- 
netic tail and to the ensuing sunward return flow of field around the 
periphery of the polar ionosphere [Zhu, 1993]. 

Quantitatively, the tilt of the polar magnetic field Bp (~ 0.6 
G) connecting into the geotail is observed above the ionosphere as 
the change AB in the sunward horizontal component, typically - 
2 x 10 -3 G (200 nT). The Maxwell stress BpAB/4•r in the an- 
tisolar direction on the polar ionosphere is therefore of the order of 
10 -4 dynes/cm 2, initiating ionospheric and magnetospheric con- 
vection in the antisolar direction. Typical convective velocities v 
in the F layer are 1 km/s in the antisolar direction [Heppner, 1977], 
representing the magnetospheric convection above the polar iono- 
sphere. The Maxwell stress does work on the ionosphere at the ram 

vBpAB/4•r ~ 10 ergs cm-2s -x. The total work over the polar 
ionosphere (with a radius of 20 ø latitude or about 2 x 108cm) is 
then of the order of 101Sergs/s -- 10 TM W [Zhu, 1994a, b]. This 
power input is ultimately consumed by viscous dissipation and re- 
sistive dissipation, of course (see detailed description in section 11). 
Zhu points out that the return (sunward) magnetospheric convective 
flow is driven by the sunward tilted field A B ~ 8 x 10 -3 G (800 
nT) observed around the periphery of the polar ionosphere. The 
ionosphere around the periphery is driven sunward by the magne- 
tospheric convection at speeds of the order of 1 km/s, so the power 
input is of the order of 30 ergs cm -2 s-l, over a characteristic 
width of 10 s cm, so that the work done is of the general order of 
3 x 10xSergs/s- 3 x 10 TM W. 

Application of Ampere's law to the boundary between the an- 
tisolar (polar) magnetic tilt and the peripheral solar magnetic tilt 
provides the region 1 inmnse Birkeland current sheet, while the 
gradually declining solar tilt beyond the periphery provides the 
more diffuse region 2 Birkeland current, akeady noted. The Birke- 
land currents are a simple and direct consequence of Ampere's law 
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and the tailward transport of magnetic flux bundles that have recon- 
nected with a southward interplanetary magnetic field at the sun- 
ward magnetopause. 

Finally, it should be noted that the variables F• and j are eas- 
ily computed, when needed, f•om u and B, with the well known 
relations E .1. - -u x B/c and j- c•7 x B/4•r. 

4. Newton's and Maxwell's Equations 

Having asserted the compatibility of Newton's and Maxwell's 
equations at both the microscopic particle level and at the macro- 
scopic fluid level, it is important to understand the theoretical basis 
for this salutary condition. First of all, Maxwell's equation (1) im- 
plies charge conservation, as already noted. The divergence of (1), 
with the additional relation V ß E -- 47r6, where 6 is the charge 
density, yields 

O6 
--+ V.j -0 

which is the statement of conservation of charge. Second, if the 
electric current density is inadequate to satisfy Ampere's law j - 
c•7 x B/47r by some small amount A j, it follows fxom (1) that 

= 4r/xj 
0t 

The result is a rapid growth of E in the direction of the inadequacy 
Aj. The current carrying particles behave in a manner described by 
Newton's equations, so they are accelerated by the increment in E 
in such a way as to make up the shortfall in the electric current. That 
is to say, the existence of the displacement current t2E/Ot guar- 
antees that the electric current follows Ampere's law very closely, 
with 0E/0t generally small to second order in v/c compared to 
c•7 x B and 47rj. It is this small t2E/Ot that produces the paral- 
lel electric field Ell responsible for the aurora. Thus, for instance, 
in the absence of the current required by Ampere's law a parallel 
electric field of 10- :• volts/m, providing an accelerating potential 
of 104 volts over 10Skm, would arise in 10 -s s in a magnetic shear 
where the direction of B (0.6 G) changes by 10 -s radian in a dis- 
tance of 2 km across B(I V x BI= 3 x 10 -9 G/cm). So for all of 
its usual diminutive size, OE/Ot has profound effects, providing 
the aurora and preserving Ampere's law because the particles move 
according to Newton's equations. 

The intimate relation between Newton's and Max- 

well's equations can be shown in a variety of ways. For instance, 
Newton's equations can be deduced from Maxwell's equation (1), 
while the magnetic induction equation (5) follows fxom the motion 
of the particles (in whose fxame E t - 0), i.e., fxom Newton's equa- 
tions. Briefly, Watson [1956] and Brueckner and Watson 
(1956) computed the ion and electron trajectories in a magnetic field 
B with characteristic scale œ large compared to the cyclotron radii 
of the individual particles. They used the guiding center approxima- 
tion and went on to solve the collisionless Boltzmann equation for 
small perturbations using the computed particle trajectories, which 
constitute the characteristics of the Boltzmann equation. The result 

where me subscript _1_ denotes the component perpendicular to B. 
The plasma pressures P_t. and Pll (perpendicular and parallel to B, 
respectively) are not always equal in a collisionless plasma, in 

which case there is a centrifugal force term K (Pll - Pñ) as a 
consequence of the motion of particles along the curved field lines. 
The result is the equation of motion 

du 

ß ( P_t.-Pll ) B 2 [(B V)B]ñ 1+ . (7) -v. (p. + + 
Plasma turbulence excited by the anisotropic thermal motions 

rapidly reduces P.I_ - P[[ in all but the most rarefied plasmas, so 
that usually 

B 2 du•_ ___ -V•_(p•_ + ) + [(B. V)B]ñ 
47r (8) 

for slow bulk motion u. At the same time the plasma particles relax 

toward a uniform distribution along the field, with Ell < < E•_ and 

at --v"a (0) 
These equations are the statement of Newton's laws of motion, writ- 
ten in general terms in (4). They are accompanied by the induction 
equation (5) which follows directly fxom Faraday's law of induc- 
tion fxom the fact that E_t. is given as -u x B/c in terms of the 
electric drift velocity u = cE_t. x BIB • deduced fxom Newton's 
equations. 

Chew et a1.,[1956] provide another important derivation of 
the macroscopic momentum 
equation for a collisionless plasma, with the prescription 

d pñ =0, dB 5pll dt pB dt p3 =0, (10) 
for the perpendicular and parallel pressure components based on the 
transverse and longitudinal invariants of the particle motion. 

Consider, then, the assertion in section 3 that the equation of 
motion (7) can be deduced from Maxwell's equation (1) using the 
guiding center approximation for the motion of the individual parti- 
cles to represent the electric current. We start with the well-known 
result Watson [956] that the mean motion v of the guiding center 
is 

1 

v -- u + (•Mwlc/qB4)B x VB•/2 (11) 
-]-(Mw•c/qB4)B x [(B. V)B] 

for a particle of mass M, charge q, and thermal velocity compo- 

is the equivalent equation of motion for the electric drift velocity nents Wl[ and w_t. parallel and perpendicular to the magnetic field, 
u = c E x B/B • of the particles in the form of (4). In particular respectively. The motion parallel to the field is described by 

thereisacontributionffompij arising ffom an anisotropic thermal 1 :•/B4)B{B ß [(B V)B]} (12) velocity distribution in the presence of the curvature K of the field (dv/dt)ll - -( • wñ ß lines. The curvature is 

K -- [(B. V)B]_t. (6) 
For a singly ionized gas consisting of N ions and N electrons per 
unit volume, the current density is the difference of the sum of 
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eVio n and eVelectron over all the particles in a unit volume, so that 
with equation (11) for the total motion of each particle, the result is 

ja. = (c/Be)B 

x [Vpa. + [(Pll- Pa.)/Be]( B' V)B + pdu/dt] (13) 
when all of the geometrical factors are taken into account. The sum 

• Mwa. e e of the factors • and M wll over all particles in a unit 
volume provides the perpendicular pressure Pa. and parallel pres- 

sure Pll' respectively, irrespective of the thermal velocity distribu- 
tion. Substituting this expression for ja. into Maxwell's equation 
(1) yields 

Ot = -(4a'c/Be)B x {pdu/dt + V(pa. + 

-[1/4•r q- (pa. - pH)/Be][(B ß V)B]). (14) 
Given that u -- cEa. x B/B e it follows that the left hand side of 
this equations is small compared to the term pdu/dt on the fight 
hand side by the factor B e/8?rpc e or ue/c e, so it may be set equal 
to zero. The result is the momentum equation (3.4) and (4.2) again 
[Parker, 1957]. 

The essential point of these calculations is that the motion of 
the individual electrons and ions is automatically such as to satisfy 
Ampere's law relating j and V x B (neglecting terms of the order 
of ue/c e or B e/8•rpc e compared to one) if we accept the fact that 
the bulk motion satisfies the usual momentum equation. 

There are special conditions, of course, for example the ener- 
getic particles in the outer magnetosphere and in the geotail, where 
the guiding center approximation is not useful. In such circum- 
stances a complete formal treatment of the relation between New- 
ton's and Maxwell's equations falls back on the entirely general 
considerations of Poynting's theorem, taken up in the next section. 

5. Electromagnetic Force, Momentum, and Energy 

The intimate relation between Newton's and Maxwell's equa- 
tions described in section 3 and section 4 is implied by Poynting's 
classical theorem, establishing the equivalence of mechanical mo- 
mentum and energy and electromagnetic momentum and energy. 
We provide a brief review of the basic principles. Newton's equa- 
tion for electrically charged particles in an electromagnetic field Es 
B can be written 

dv vxB 

- + 
where p(r, t) is the mass density and 5(r, t) is the charge den- 
sity. The individual elementary particles are represented by mov- 
ing localized maxima in p(r, t) and moving localized extrema in 
6(r, t) coinciding with the maxima in p. Thus p(r, t) and 6(r, t) 
are bounded continuous functions of space and time, with charac- 
teristic scales of 10-13cm at the location of the individual electrons 

and ions, and otherwise zero. The velocity v(r, t) is defined only 
at the location of the individual particles, with its value in the inter- 
stices of no physical interest. We start with Maxwell's equations 

V ß E - 4•r6, V ß B - 0, (16) 

0B 0E 
Ot = -cV x E, 4a-j + •- - +cV x B. (17) 

Note, then, that j -- v6 on the right hand side of (15). 

Use (16) to eliminate 6 and (17) to eliminate j. Add the term 
BV ß B/4•r to the right-hand side of (15) to preserve symmetry, 
with the final result 

dv 

P•- - 4•r 
iv. v, + + (v x e) x v, + (v x x 

which can be rewritten as 

0ExB 

Ot 4•rc ' (18) 

dvi 0 Pi OMii (1O) P'•-•-+ Ot c • = Ozj 
where the Maxwell stress tensor Mij is 

Mij -- --6ij 
E e +B e 

871' + + (20) 4•r 

and Pi is the Poynting vector 

Pi - c½ij•EjB•/4•r, (21) 

where in ½ij k is the usual permutation tensor. It is convenient to 
rewrite the left-hand side of (18) in terms of the particle momentum 
flux poi and the Reynolds stress tensor ]•ij given by (3) so that 

O( Pi ) OMij ORij (22) 
It is evident by inspection that Pi/c e represents the momentum 
density of the electromagnetic field, while Mij q- Rij represents 
the total stress or momentum flow field. It must be appreciated that 
(22) applies to every point in space, where p may or may not vanish. 

The electromagnetic energy density and energy flux follow 
similarly beginning with the Newtonian energy statement 

0 1 

N(pv - v. 
=j.E 

- 4•r xB 4•r c9t .E 

C[B. V x E- V-(E x B)] 4•' 

0 E 

Ot 8•r ' 

Since cV x E - -OB/Ot, this can be rewritten as 

0(1 e Ee+ Be) 5ev + +V.P-0, (23) 

where again P is the Poynting vector cE x B/4•r, given by (21). 
It is evident by inspection that the electromagnetic energy density is 
(E e + B e ) / 8 a' and the electromagnetic energy flux is represented 
by the Poynfing vector. Thus Poynfing established the mechanical 
equivalence of electromagnetic and particle stress and momentum 
fields, with the consequences enumerated in section 4. 

Now when E = -u x B/c, it is clear that the electrical 
contribution to the momentum and energy is small to second order 
in v/c compared to the magnetic contribution. Neglecting second- 
order terms, (20) reduces to (2) which states that the magnetic field 



10,594 PARKER: ALTERNATIVE PARADIGM 

possesses an isotropic pressure B2/8•r and a tension B 2/4•r in 
the single direction along the magnetic field. It is easy to show for- 
really from the virial equations that the net effect, averaged over all 
three dimensions, is dominated by the isotropic pressure [Parker, 
1953, 1954, 1969b, 1979]. That is to say, a magnetic field, if left 
to itseft, expands to fill all of the available space, thereby minimiz- 
ing its energy. The solid Earth provides the forces that anchor the 
geomagnetic field, of course, and the quiet-day field in the region 
around Earth adjusts itseft into the minimum energy configuration 
consistent with that constraint and the confining magnetopause. 

Finally, note that the foregoing results apply at every point 
in the electromagnetic field, and therefore they apply to any aver- 
aging over many particles to provide a macroscopic fluid formula- 
tion. The averaging over the nonlinear terms, for example Bi Bj, 
etc. omits the second order terms 6 Bi • Bj where 6Bi, represents 
the local deviation from the mean caused by the individual particle. 
The standard derivation of Poynting's theorem in most textbooks 
[cf. Panofsky and Phillips, 1955; Jackson, 1975] is formu- 
lated in terms of the integral of the momentum and energy over an 
arbitrary fixed volume V. The matter is treated as continuous fluid 
and p, 6, v, j, E, and B are treated as smooth continuous func- 
tions of space and time. Then, since the shape, size, and location of 
V is arbitrary, it is pointed out that the integrand, namely equations 
(19) and (23), must be satisfied at every point in space. 

In the circumstance that E = -u x B/c, it follows that the 
Poynting vector reduces to 

P- B x (u x B)/4•r 

= uñBe/4•r. (24) 
The Poynfing vector represents the transport of magnetic enthalpy 
B e/4•r with the electric drift velocity u in the direction perpendic- 
ular to the magnetic field. It illustrates again the bodily transport of 
the field in the moving fluid. 

It is instructive to derive this same result directly from the 
mechanical work done by the Maxwell stress carried in the moving 
fluid. The work done on an element of area dSj by the motion ui 
in oppositon to the Maxwell stress is 

( Be u•B•BJ)dS j -uiMqdSj - uj 8•r 4•r 

where the Maxwell stress tensor is given by (2), or by (20) upon not- 
ing that the terms in E e are small to second order in u/c compared 
to the terms in B e. The enthalpy flux is the sum of the convective 
transport of magnetic energy uj B e/8a' and the rate at which work 
is done by uj, so that the energy or enthalpy flow is (uj B 2 - 
u• B• Bj )dSj/4•r. To obtain the energy flow across dS• from 
(24), note that the velocity parallel to Bi can be written 
u}B}Bi/B e. It follows that uñ can be written 
u}B}Bi/B e, so that (24) gives the same result. Thus the trans- 
port of energy is in the direction perpendicular to the magnetic field 
and includes the work done by the Maxwell stress in addition to the 
convective transport of magnetic energy. 

Application to a plane transverse Alfven wave in an invis- 
cid infinitely conducting incompressible fluid of uniform density p 
shows how the energy is transported in that simple case. Consider a 
plane Alfven wave with velocity u(z, t) and magnetic field b(z, t) 
in the y direction propagating along the uniform field B0 in the z 

direction. It is easy to show that the exact dynamical equations are 

Ou Bo Ob Ob Ou (25) P•'- 4a' Oz' O• = Bo 0•' 
Then for the wave 

u(z, t) -- Usin[w(t - z/C) + •o], 

where (7 -- Bo/(4•rp) -} and T is an arbitrary constant, it follows 
that 

b(z, t) - -u(z, t)(4•rp)«. (27) 
The magnetic field has y and z components b and B0, respectively, 
so that the magnitude of the field is 

B(z, t) - [B• + 4•rpU2(z, t)]«. (28) 

The energy transported by the wave can be computed in three ob- 
vious ways. First of all, the group velocity is the same as the phase 
velocity C, so the energy flux I can be written 

< v > + < 
representing the energy density of the wave propagating at the 
Alfven speed, where angular brackets indicate the time average. 
With (26) and 27) it follows that 

I - p < u 2 > C, 

2 

On the other hand, the rate at which the Maxwell stress does work 

across any surface z -- const is 

I-- < ub > B/4•r, (30) 

which comes out the same, of course. 

Finally, the energy transport can be computed directly from 
(24) noting that 

u• - u-u.B/B 

= - - 

= %uSo•/S 9' - e•ub/S. (31) 
Thus 

uñ B•/4• ' - eyuBo2/4•r - e, ubB/4•r. (32) 

The time average of the y component is zero and the z component 
gives the result akeady obtained. Thus (24) tells us that the mag- 
netic energy B0 •/4a' is carried in the tranverse oscillation in the y 
direction, but represents no net transport. There is a net transport in 
the z direction because uñ has a nonnegative forward pointing z 
component (even though u does not), given by 

ub U •' 
= --sin2[w(t - z/C) + •]. (33) B C 

So the energy follows a serpentine or sinusoidal path but always 
progresses in the direction of propagation of the wave. 
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6. Application to Stationary States 

The applications of the E, j and B, v paradigms to simple 
cases of stationary currents and magnetic fields show the relative ef- 
ficiency of the E, j paradigm in treating certain symmetric cases, 
as well as the limitations and errors arising in nonsymmetric con- 
figurations. In fact, the efficiency of the E, j paradigm arises pre- 
cisely because it avoids the basic dynamics, concentrating on the 
simple conservation laws applied to the geometry of a symmetric 
unperturbed magnetic field. As we shall see, the scheme fails in 
the absence of symmetry when we come to compute the perturbed 
field configuration, because the field aligned currents are necessar- 
ily aligned along the unperturbed field. The B, v paradigm avoids 
the difficulty because it computes the field perturbations from stress 
balance, finally deducing the currents from the perturbed field with 
the aid of Ampere's law. We shall see that the topology of the cur- 
rents is different from results obtained with the E• j paradigm. 

The applications begin in subsection 6.1 with the well known 
axially symmetric problem of a circular band of trapped ions, that 
is, a uniform ring current, circling Earth, to illustrate the methods 
of the two paradigms, showing the efficiency of the E• j approach 
relative to the B• v paradigm in such simple circumstances. Then 
subsection 6.2 goes on to the nonsymmetric problem of a localized 
equatorial cluster of trapped ions, inflating a single small flux bun- 
dle in a dipole field. We employ both paradigms again, obtaining 
results that are quite different when it comes to the path of the per- 
turbed field lines and the associated currents. In view of the im- 

portance of this result the presentation treats the problem in some 
detail. 

Finally, section 6.3 considers the problem of an elemental flux 
bundle inflated with an isotropic particle distribution within a dipole 
field. The displacement of the flux bundle is computed to show 
the use of the optical analogy in the B, v paradigm. The E, j 
paradigm is not applicable for the reason illustrated in sub-section 
6.2. 

6.1. Equatorial Band of Collisionless Particles 

nevD where VD is the ion gradient drift velocity given by (11)as 

cp dB 
(34) 

= 3cp/ea 

westward. The azimuthal drift current is 

(35) 

I• - 3cnp/a, (36) 

around the ring of radius a, producing the perturbation field in the 
neighborhood of the origin with z component 

ABI> - --27riD/ca 

= -3pAf/a •. (37) 

There is an additional contribution AB• from the diamag- 
netic moment p of each ion in the amount p/a s per particle, or 

ABe, - +p.A/'/a 3. (38) 

in the neighborhood of the origin. The diamagnetic effect of the 
cyclotron motion of the individual ion tends to exclude the mag- 
netic field from the region of the ions, thereby compressing the field 
slightly elsewhere. So AB• represents a field in the positive z 
direction. The total AB in the neighborhood of the origin is the 
algebraic sum of ABi9 and AB• yielding the reduction 

AB• - -2tt.N'/. • (39) 

in the z component of the dipole field in the neighborhood of the 
origin. 

If ABz is a short-lived perturbation, it does not penetrate 
deeply into Earth, which acts, then, as a diamagnetic sphere of ra- 
dius/•(< < a). The result is the perturbation magnetic field 

Consider a uniform thin equatorial band of energetic ions cir- 
cling at a radial distance w -- (z 2 + y2) « _ a around a three- 
dimensional magnetic dipole located at the origin and pointing in 
the negative z direction so that the magnetic field B(w) at the po- 
sition of the ions is in the positive z direction. The mass of each 
ion is M and the charge is e. The ions all have the same velocity to 

•-• I- -•- co,O 

a3 1+• sin0 (40) 

perpendicular to the magnetic field (pitch angle «a'). There are n in sphericalpolar coordinates (r, 0, T) in the vicinity ofEarth (R < 
ions per unit length around the band, foratotalofAf- 2•ran. An r << a). The reduction of the horizontal component of the field of 
equal number of cold electrons is present to preserve charge neu- the equator (z -- 0, 0 -- at the surface of Earth is 3pJV'/a 3. 
trality. The total kinetic energy of the ions is The efficiency of the E, j paradigm is evident in its direct 

œ - A/' 1• Mw 2 path to the final result. However, it is not without interest to obtain some idea of the forces that deform the dipole field to achieve the 
expansion of the field in the vicinity of Earth. As a beginning, note 

= A/'pB(a) that (39) can be rewritten as 

1Mw2/B(a) of the indi- ABz 2œ where p is the diamagnetic moment • 
= (41) vidual ion and B(a) is the magnetic field at the radial distance Bo 3œE 

w -- a in the equatorial plane. Elsewhere in the equatorial plane 
i 2//3 B(w) - B(a)(a/w) 3. Assume thatœ is sufficienfiy smallthat whereœE -- •B D is the magnetic energy in theexternal(r > 

the magnetic perturbation AB(r) is everywhere small compared //) unperturbed dipole field with intensity Bo at the equator at the 
to the unperturbed field B (r). surface of Earth, r -- R, 0 - «7r [Dessler and Parker, 1959, 

The easiest way to calculate the magnetic perturbation is to 1968]. In the presence of the diamagnetic Earth, the fractional re- 
use the E, j paradigm noting that the total azimuthal current is duction of the horizontal component at the equator at the surface of 
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Earth is precisely œ/œE, the fraction of the total magnetic energy 
represented by the kinetic energy of the ions. 

Consider, then, the B, v paradigm, with its focus on Maxwell 
stress and the geometric distortion of the magnetic field by the pres- 
sure of the energetic ions. The direct approach is through formal 
solution of the magnetostatic equation, putting ui = 0 in equation 
(3.4) to obtain 

0 

Oxj (Vii + Mij)- O. (42) 
With axial symmetry this reduces to the quasi-linear 
Grad-Shafranov equation, whose solution is not elementary because 
of the unknown, arbitrary, and generally nonlinear function of the 
vector potential. So, as with the E, j paradigm, we take advantage 
of the fact that the system is only slightly perturbed. Then, applying 
Ampere's law to the Biot-Savart integral, the perturbation AB (r) 
is 

i / dar'[V x B(r')] x (r- r') aB() - I ' 
The equation for magnetostatic equilibrium ha the presence of the 
force F per unit volume exerted by the particles and plasma on the 
field B is 

4•F + (V x B) x B - 0. 

The vector product with B results in 

(V x B)a. - 4•rF x B/B 2 

where the subscript indicates the component perpendicular to B. 
Symmetry decrees that there is no torsion in the field (•7 x B)ll - 
0, so the Biot-Savart integral for AB(r) becomes 

all(r) - 

f aar B(r')[r(r'). (r - r')]- r(r')[B(r'). (r- r')] I r- r' I . (43) 

Specification of the force F (r) exerted on the fields gives 
the deformation AB (r) [Parker, 1962]. 

The similarity of the mathematics to the Biot-$avart integral 
for AB (r) in the E, j paradigm is obvious, of course. In that 
paradigm we would write F - B x j/c, from which it follows 
that j_l. -- cF x B/B 2. Thus, for instance, a ring current I of 
radius a produces a magnetic field 2•rI/ca at the center of the ting. 
In terms of the total outward radial force f' = IB(a)/c per unit 
length around the ting, the field at the origin is 

2•r•' 

all(0)- aB(a) (44) 
The force .• is a consequence of the diamagnetic expulsion of the 
dipole moment p of each ion, which is opposed by the Lorentz force 
IB(a)/c. The force f'i is exerted on a magnetic dipole moment 
Pi by the field Bj is pj OBi/c9:ej. In the present instance, with p 
pointing in the z direction, this is pOBw/Oz = 3pB(a)/a per 
ion, so that 

.7:' = 3npB(a)/a. 

As a consequence of this force, the ion drifts in the azimuthal direc- 
tion with a velocity VD such that qvD B(a) -- c.7 z, yielding (35). 

In other words, the ring current I arises in order that the inward 
Lorentz force IB(a)/c balance the diamagnetic repulsion. 

1 

Now for an equatorial band of ions with pitch angle • a', the 
pressure tensor has the two nonvanishing components 
Pqoqo -- Pww, each of which is equal to the kinetic energy den- 
sity of the ions. With •v representing radial distance (x :• + y:•) « 
from the z axis, it follows that r - r t -- -ew •v for the origin 
(r -- 0). Then B(r) - ezBo(R/w) 3 and B. (r- r t) - 0, 
so that 

an(o)- 
Integrating by parts, with Pww nonvanishing except in a small 
neighborhood of •v -- a, yields 

where 

2œ 

AB(0)- -e,, BoR----- • (45) 

/_7 œ - 2•r dz dww pww (46) 

represents the total kinetic energy of the ions. This result is just (41) 
again. 

It is instructive to look more closely at the forces exerted by 
the equatorial band of ions at w -- a. Denoting the small radial 
width of the band by h (< < a), the ions exert a total radial force 

1 Mw • per unit length inward at the inner edge (w -- :r- (,/h)• 
a) of the band and outward at the outer edge (•v -- a q- h, assuming 
that the ions are distributed uniformly across h). It follows from 
(44) that 

AB(O) -- 2a'.•' aB(A) (a q- h)B(a + h) 

4•rf'h [1 + O (h•)] a:•B(a) 

= 2p.Afla a (47) 

in which p -- « Mw:•/B(a), which is the same result as (39), of 
course. The point is that the net effect of the same force per unit 
length exerted in opposite directions at a and a + h arises from the 
longer circumference and the weaker field at a + h. 

It is also instructive to examine the forces exerted on the ions 

in the small angular sector A•o of the band. At w -- a there is an 
outward radial force aA•o.•'. At w -- a + h, the force is inward 
and of magnitude (a + h)A•o.T. The compressive particle force 
•'h is exerted in the azimuthal direction around the radius a of the 

band, providing a net outward radial force .]:'(h/a)aA•o. Thus the 
total radial force is zero, so that the ions in the band are in quasi- 
static equilibrium with the magnetic field B(r), with the Lorentz 
force of the drift current nqvD/c balancing the diamagnetic repul- 
sion. 

6.2. An Equatorial Clump of Particles 

Consider a small cluster of iV' energetic ions with mass M, 
1 

charge e, and velocity w with pitch angle •r and individual dia- 
magnetic moment p at a radial distance a in the equatorial plane 
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of a two dimensional magnetic dipole field. An equal number of 
cold electrons is assumed as well as a tenuous background of col- 
lisionless thermal plasma. The dipole, with moment BoR e per 
unit length in the z direction, extends uniformly along the x axis 
(y = z = 0) and points in the positive z direction, producing the 
magnetic field 

B== - +Bo sin9o, B• - -Bo cos9o (48) 

in cylindrical polar coordinates w -- (y2 q_ z 2) « and 9o (measured 
around the x axis from the y axis). In Cartesian coordinates, 

2BoR2yz BoR2(z • - y2) 
(49) 

It is convenient to think of Bo as the polar field at the surface of a 
two-dimensional Earth, w --/i•. The magnitude of the field is 

.- 
and the field lines are the circles 

(50) 

w = 2• cost (51) 

with radius A and the centers on the y axis at y = A so that they 
are tangent to the z axis at y = z = 0. 

Suppose, then, that the .iV' ions are spread uniformly over a 
small rectangle in the equatorial plane (z = 0) at x = 0, y = a. 
The rectangle has side h in the radial y direction and side I in the 
x direction (h, l < < a) with a surface number density •, so that 
•r = •lh. The magnetic field at the position of the particles is 
B(a) = Bot•2/a • and points in the negative z direction. 

The E,j paradigm begins by noting [Stern, 1992] that the 
ions have the gradient drift 

l B'(a) l 
- ,B(.) (52) 

2cp 
vv - q--- (53) 

in the negative z direction. The surface current density within the 
rectangle of ions is 

J- yevv (54) 

2cU 

J- aB(a) (55) 
in the negative x direction where U is the particle kinetic energy 
per unit area, 

U- •vMw • 
= •,pB(a). (56) 

The total particle energy œ is then hlU. 

Assuming that there are enough background thermal 
electrons, the electrostatic forces maintain local charge neutrality. 
If follows from conservation of charge that the drift current J bifur- 
cates into two field-aligned currents, each of surface density Jll - 

1 
• J flowing away along the fieldlines from the back end (toward 
negative x) of the rectangle. It also follows that two field aligned 
currents Jll converge from each side to flow into the front end of 
the rectangle, sketched in Figure 1. The closure of the current sys- 
tem across the ionosphere in the neighborhood of the dipole at the 
origin is assumed to be nondissipative, so that U is conserved for 
a steady state. (In fact, the terrestrial ionosphere is dissipative and 
the energy œ is slowly degraded [Parker, 1966]). In the present 
idealized (dissipationless) state, it follows that 

JII- cU/aB(a). (57) 
Stern [1992] suggests that the region 1 Birkeland currents may 
be precisely this JII produced by energetic particles trapped in the 
geomagnetic tail. 

The next question is the nature of the geomagnetic perturba- 
tion produced by J.l_ and Jl[' The current Jll flows along the field 
lines on the surface z = 0, I between the two circles 

w -- acos9o, w -- (a + h)cos9o. (58) 

With JII flowing along the field, it follows (see Figure 1) that the 
ribbon of current Jll has a width h(w) such that h(w)B(9o) - 
const, while conservation of current requires h(w)Jll(W ) = 
const. Thus 

Jll(W)- Jil(a)(a/w) • (59) 
For h, l • • a the field around JII is the field prøduced•y two 
antiparallel ribbons of electric current of width h(•v) separated by 
a fixed distance l, with dh/dw = 2h/w • 1. 

The magnetic field of two antiparallel ribbons of surface cur- 
rent density JII with width 2b and separation 2d is readily expressed 
in terms of the local Cartesian coordinates (•, r/, •), sketched in 
Figure 1, where ( represents distance parallel to the ribbons, r/is 
distance measured from the midplane between the two and • is dis- 
tance measured across the width 2b of the ribbon from the line up 
the middle of each ribbon. The result is the scalar magnetic poten- 
tial 

_ s. {(o - )en - + - T (, - + + 

(0 + g),+ (. + 

rl• + tan- 

rl +• +tan rl + 
describing the field at position (•, r/) for •:•, r? < < a :• . At greater 
distance from the ribbon the curvature and the slow variation of the 
width h with ( (along the field lines) must be taken into account. 
The two ribbons of Jll lie locally in the planes r/= 4-d (/? = 2d) 
and the edges of the ribbons are at• = +b(h(w) = 2b). The field 
component Bg through the space between the ribbons is 

'tan- 1 b - • d- r I 

B• - JII x 
½ 

•q-tan-1 b + • 
d-q 
•q-tan 

_lb-• 
d+q •q-tan-1 b q_ • ] d- r I ' 

(60) 
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Figure 1. A schematic drawing of the unperturbed field lines rv = a coscp and zv = (a + h) cos•p at x = 0, l for 
the two-dimensional dipole at the origin. The rectangle h x I of ions at a < y < a -Jr- h, z = 0 provides the surface 
current J, which divides into the field-aligned currents Jll flowing away in both directions from the back and into the front 
ends of the cluster of ions. The indicated local coordinate system (•, r/, •) is used in (60) and (61) for treating the magnetic 
fields produced by Jl[. 

On the midplane (r/-- O) between the current sheets 

2Jll (lan-l b - • -l- lan -l b + • ) (61) c d d ' 

with B n - 0 from symmetry considerations. In the simple case 
that œ < < h (i.e. d < < b), we have Bn - 0 and 

B•(w) - 4•rJil(w)/c 

throughout the interior of the thin region between the two parallel 
ribbons of -4-Jll. Close to the edges of the ribbon the field declines, 
of course. The field is negligible in the exterior space, except near 
the edges, and declines as B•(•) ,,, (4Jll/c)bd/•2 for •2 >> 
b 2. It follows that the magnetic field extending lengthwise along 
the ribbons of Jll (w) is deflected by the small angle O(w), where 

O(w)- B•(w) 
B(w) 

4•rJll(W) 
cB(w) 

4•rJIl(a) 
cB(a) 
4•rU 

= (63) 

at the radial distance cv along the unperturbed field line 
w -- acos•o. The deflection is constant along the field line be- 

cause J(rv) -,- B(rv), so that O(w) - O(a) = 0. Note, then, 
that the field is deflected abruptly by the surface current density J 
in the amount 20 where it passes through the rectangle of energetic 
ions in the equatorial plane. 

The next question is the path of the perturbed field lines, par- 
ticularly those on which the cluster of equatorial particles is trapped. 
It is here that E, j paradigm, that has served so well up to this point, 
runs into difficult. The field lines in the midplane r/-- 0 in the in- 
terior of the region are represented by the family of solutions of the 
differential equation 

d( B 

4 •r Jll 
cB 

=0 

for b > > d(h > > œ). It follows that in a distance of the order 
of b/0, the field line leaves the region between the ribbons, that is, 
I • ]> b. With sufficiently small h(= 2b) this distance is small 
compared to the length O(a) of the field line. For • > > b, 

in order of magnitude. The deflection falls rapidly below 0 in • > > 
b. The total transverse •/b displacement increases asymptotically 
as (3 v9• lb)«. The perturbed field lines have the form sketched in 
Figure 2 where they pass through between the two ribbons of cur- 
rent. This result is incorrect, (1) because the perturbed field lines 
fail to intersect the equatorial cluster of particles that are supposed 
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Figure 1. A schematic drawing of the unperturbed field lines • = 
a co$• and •x7 = (a -{- h) co$•o at z = 0, I for the two-dimensional 
dipoleattheorigin. Therectangle h X l ofionsata < y < a+h, z = 0 
provides the surface current J, which divides into the field-aligned currents 
Jll flowing away in both directions from the back and into the front ends of 
the cluster of ions. The indicated local coordinate system (•, r/, ½) is used 
in (60) and (61) for treating the magnetic fields produced by Jll' 

to be the cause of their deflection, and (2) because field lines in static 

equilibrium are deflected in the manner shown only upon crossing 
a region of enhanced pressure, that is, enhanced B. So Jll must be 
tied to the perturbed field, rather than the unperturbed field. That 
is to say, in the correct solution the current Jll partially follows the 
perturbed field lines, providing the uniform deflection given by (63) 
everywhere along the perturbed field. The error is qualitative be- 
cause of the arbitrarily small width of the perturbed flux bundle. 

To compute the consequences to first order in the perturbation 
note that arc length ds along the circle •v = acostp is given by 
ds = adtp. The separation H (9) of the perturbed field line from 
the unperturbed satisfies the condition dH = Ods. If the field line 
is fixed in the rigid conducting Earth at • = R = acos•oR, •o = 
•OR, it follows that H(•on) - 0 and for 0 < •o < TR, 

H(7•) -- a0(7•- 70. (64) 

The outward displacement of the ions at the equator (•o -- O) is, 
therefore, 

H(O)- aO•pn, (6,5) 

= 4•rVTs/B(a) •, 

4•rUtpR a4 
= Bn 2 R 4 , (66) 

Note that the width of each ribbon of JII declines as zv 2 or sin 2 
•r -- 9) as T increases toward •r/2, so that the idealization 

that the width h(T ) of the ribbons is large compared to their fixed 
1 

separation œ requires that TR not be so near to •r as to violate 
cos2 TR • h(O)/œ. It is evident that this calculation is not 
self-consistent, because the angular deflection • indicates that the 
field lines are displaced a total distance of the order of aO from 
their unperturbed positions, carrying them into regions where the 
field differs by AB ~ OB. However, this error is as large as the 
perturbation described by (62), so we cannot expect the result to be 
quantitatively correct. 

So consider the B, v paradigm, which avoids these prob- 
lems by computing the perturbed field directly from the equations 
of stress balance, using the optical analogy. The electric currents 
then follow from Ampere's law, and we shah find them to be sub- 
stantially different from those computed using the E, j paradigm 
and sketched in Figure 1. 

To pursue the B• v paradigm, we begin by noting that the 
effect of the trapped particles is a slight inflation of the elemental 
flux bundle at the equatorial plane. Hence the elemental flux bundle 
is expelled more strongly at the equator by the pressure gradient in 
the surrounding magnetic field, that is, by the diamagnetic repul- 
sion. The normal equilibrium balance between the outward force 
-K7B2/8•r on each elemental flux bundle and the inward tension 
force (B ß V')B/4•r - TK is upset, where T is the magnetic 
tension B•/4•r and K is the curvature of the field lines. The in- 
flared flux bundle is displaced outward along its entire length so that 
the sharp curvature across the equatorial apex of the bundle (where 
the particles are trapped) affords an equilibrium balance of tension 
against expulsion, sketched in Figure 3. The easiest way to compute 
the force with which the ambient pressure gradient tends to expel 
the ions is to note that the diamagnetic moment per unit area vp is 
repelled by the ambient dipole field by a force f' per unit area given 
by 

OB• 
•- •'P Oz 

= 2Via. (67) 

This force of expulsion is opposed by the magnetic tension in the 
displaced flux bundle on each side of the cluster of ions in the equa- 
torial plane. The field is deflected by an angle 0 from the z direc- 
tion on each side, sketched in Figure 4. So the tension B(a)2/4•r 
provides a total inward force OB(a)2/2•r from both sides of the 
equatorial plane. Equating this to f' yields (63) at •v = a. On this 
point the two paradigms agree. 

Now consider the path of the flux bundle from its displaced 
apex at the equatorial plane inward to the dipole at the origin. In 
the B, v paradigm the path is calculated from the optical analogy 
[Parker, 1981a, b, 1989, 1991, 1994]. The method is not restricted 
in any way to small deflections and displacements, although we 
shall carry through the computation in the limit of small deflection 
to compare directly with the results of the E, j paradigm. So the 
B,v paradigm, employing the exact method of the optical analogy, 
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Figure 3. A sketch of the ambient field (solid lines) as a backdrop for the flux bundle (arrows) displaced by the presence 
of energetic ions trapped at the equatorial plane. 

avoids questions of J II along perturbed or unperturbed field lines, 
with J computed only after the field is fully determined. 

The essential point is that the path of any elemental flux bun- 
dle, however it may be displaced in the ambient field, is the same as 
an optical ray path (geodesic) in an index of refraction proportional 
to the magnitude B ~ (a/w) 2 of the ambient field. In the present 
case, pressure balance guarantees that B within the elemental flux 
bundle is the same as the ambient field outside, except at the loca- 
tion of the ions in the equatorial plane. So the path of the bundle is 

described by Fermat's principle 

6/dsB-O. 
Euler's equation reduces to 

K - OlnB/Osñ, (68) 

where K is curvature of the field and s.l_ denotes distance per- 

o+H.L(O) 

a 
F 

F Aa 

1 F' 

Figure 4. A drawing of the displace flux bundle ADEB (given by (71)) against the ambient field line (dashed curve) through 
the point E. The center of the field line ADA of radius a lies at F while the center of the displaced flux bundle lies at/pt. 
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pendicular to the ray path. This formal statement is nothing more 
than the requirement already mentioned, that the transverse gra- 
dient OP/Os.[ of the ambient pressure P is balanced by the op- 
posing transverse magnetic tension force TK. In the present case 
T = B2/47r and P = B2/87r, which yields (68). For the present 
problem, B ~ rv- • from which it follows that the ray paths are 
either circles rv = consl concentric about the origin, or radial lines 
T = coast emanating from the origin, or circles passing through 
the origin rv = Acos(T -- X) (see Appendix A). Neither of the 
first two is appropriate, so the perturbed field lines extending be- 
tween the surface of Earth (rv = R) and the ions at the equator 
(rv = a) must be arcs of circles that pass through the origin. The 
unperturbed field lines are the circles 

(1) 2 y-•a +z•_ 1 • •a , 

of course, tangent to the z axis at the origin. The perturbed field 
lines are not necessarily tangent to the z axis. 

Now the flux bundle containing the ions is displaced outward 
and it is convenient to think of each point (y, z) on the unperturbed 
circular field line moving radially outward (from the center of the 
circle) to the new position (y + Ay, z + Az). For such a radial 
displacement, 

Az z 
- , ß 

Ay y- •a 
The transverse radial displacement H of the flux bundle is 

H- [(Ay) • + (Az)2] « 
œ 

= Ay 5a y- «a' (70) 
The perturbation introduced by the ions displaces the center of the 

i )Xc. circle from y -- •a, z -- 0 to some new position y -- - 
1 

Aa), z -- Ab. The radius of the circle becomes •(a 
Neglecting terms second order in Aa, Ay, etc., the equation for 
the displaced circle reduces to 

1 1 

2(y- •a)Ay + 2zAz -- yAa + 2zAb + •a(Ac- Aa) 
for the upper (z > 0) half of the field line. Using (69) to eliminate 
A z, the result is 

1 2 

1 

y--5. a 
•Ay - yAa + 2zAb + «a(Ac- Aa). (71) 

Three conditions are imposed on the perturbed circle. The first is 
that the circle pass through the origin, so that Ay = Az = 0 
where y = z = 0, requiring Ac = Aa. The second condition 
is that d(y + Ay)/dz = -0 as z declines to zero at the position 
w = a of the trapped ions. Since dy/dz ~ z (vanishing as 
z --• 0), differentiation of (71) for Ay yields Ab -- ---}aO. The 
third condition is that the field line is fixed (Ay = Az = 0) at the 
solid Earth, represented by 

acosta , T = Ta, Y = R•/a, z = 

R(1 - R • /a •) «, 

requiring that 
! 

Aa --•0-• 1-•- (72) 
to the first order in 0, given by (63). In the limit a > > R, these 
results reduce to 

Aa--Ac--•aO(-•) 
a A b. 

Thus Aa and Ac are larger than Ab by the large factor 2aiR. 

The picture is clear in the limit oflarge a/R, then. The circle, 
sketched in Figure 4, is rotated away from tangency to the z axis 
by the angle 0 and the diameter of the circle is increased by Aa, so 
that to lowest order in R/a the equatorial (T = 0) apex of the flux 
bundle is displaced outward the distance H(0) = Aa. To lowest 
order the center of the circle remains on the y axis, but is displaced 
outward a distance « Aa. In Figure 4 the unperturbed field line is 
a circle of diameter a with its center at the point F on the y axis. 
The perturbed field line has a diameter a + Aa with center at the 
point Ft. The line O F t is inclined at an angle 0 to the y axis. The 
perturbed field line intersects the y axis at point B, at a distance 
H(T = 0) beyond point A, where it is inclined by the angle 0 
to the z direction. The two points D and D t represent the fixed 
terrestrial footpoints of the perturbed field line at w -- R. 

Analytically, it follows from (71) that 

Ay-- «a • (yAa + 2zAb) 
and from (70) that 

H(y, z) -- al-(yAa + 2zAb) (73) 

on the upper half (z > 0) of the unperturbed field line (y = 
wala, z -- w(1 -- wa/aa)«) so that H(T - 0) - Aa at 
the apex (w = y = a, z = T = 0). That is to say, the pressure 
of the ions causes an outward displacement Aa of the apex of the 
field line from y = a to y = a + Aa = a + H(• = 0) where 

! 

H(T-0)-0• 1-•- 
! 

B(a) • R 1- •5- ß (74) 
This result is to be compared with (66) giving H(T ) at the apex 
from the E,j paradigm. The factor Ta in (65) is replaced by the 
factor (a/R)(1 - R2/a2)«. In the limit of large a/R, Ta goes 

1 

to •a', which is replaced by the large number air in the B, v 
paradigm. The difference is qualitative in the limit of large 

It is essential to understand precisely where the difference 
arises. Both methods provide the same inclination 0, given by (63) 
at the fixed footpoint of the field line and at the apex. The E, j 
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paradigm gives uniform t9 everywhere along the unperturbed field 
line. It is easy to show that the same calculation in the present case 
gives quite a different result, with 

- 
,in(v) ,in(v) 

ds a d T 

Noting that y -- a cos2 T and z -- a sin T cos T along the unper- 
tarbed field line, it follows from (73) that 

1 [Aa sin2T - 2Ab cos 29] 
or, with zv -- a cos T, 

[( ] 0(zv)-0(a) 2 1-•- • 1-•- -I--2•--1 

with O(a) representing the inclination at the apex, given by (63). 
It is evident that 0(]/) -- O(a), so 0 has the same value at both 
ends, already noted. The difference lies in the factor (w/•)(1 -- 
w:•/a :•) « in the brackets on the right-hand side, increasing to the 
large value (2«/3)a/1• at its maximum at w/a -- 1/3« -- 
0.577, before falling to zero at :v ---- a. The question arises as 
to how t9 can become so large between the end points. The answer 
is, of course, that it is the inclination of the flux bundle relative to 

the ambient unperturbed field along the perturbed path that matters. 
The dashed curve in Figure 4 represents a field line w ---- a cos T 
of the unperturbed field, passing by the perturbed flux bundle at the 

Figure 5. A skematic drawing of the flattened and displaced flux bundle 
passing between the field lines of the ambient field on either side. The closed 
path of the surface current Js flowing around the flux bundle is indicated 
by the heavy lines. The direction of Js on each side of the flux bundle is 
halfway between the perturbed and unperturbed magnetic field. 

Figure 6. A drawing of the ambient and displaced fields in the neighbor- 
hood of the equatorial plane, again showing the current Js to point halfway 
between the two fields. 

position E. It is obvious by inspection that the angle of intersection 
is of the order of O(a). The formal calculation is carded through 
in Appendix B showing that the inclination of the perturbed field 
lines relative to the local unperturbed ambient field has the uniform 
value O(a), given by (63), along the entire length of the perturbed 
field line. The error in computing the displacement of the field line 

through the lg, j paradigm arises in placing JII along the unper- 
turbed field lines. 

In fact, the current pattem is qualitatively different from that 
employed in the lg, j paradigm. We need only compute X7 x B 
to see how the current flows. The essential point is that the surface 
current J, associated with the displaced flux bundle flows in the 
direction halfway between the external ambient field and the field 
of the displaced flux. Hence the currents close locally, as indicated 
in Figure 5. 

To run quickly through the form of the currents, consider Fig- 
ure 6 which is an idealized sketch of the displaced flux bundle in- 
clined relative to the ambient field by the angle O where it crosses 
the equatorial plane shown against the background ambient field 

10. B. The surface current J, is inclined to the ambient field by • 
The force f' per unit area in the equatorial plane responsible for 
relocating the flux bundle involves the Lorentz force JBz/c (op- 
posing the diamagnetic repulsion) in the equatorial plane. That is 
to say, the diamagnetic repulsion is opposed by the Maxwell stress 
By Bz/4a' in the flux bundle on each side of the equatorial plane. 
Hence 

JB• = 2 ByB• (75) c 47r 

from which it follows that the surface current J(= cB/2a') flows 
in the equatorial plane across the field and out of the plane of the 
page in Figure 6. Now the surface current density Js arising in the 
shear plane between two magnetic fields whose directions differ by 
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the angle 0 follows from Ampere's law as 

with the component 

cS Js - • sin 2 

i cB 

J, cos•O - •--• sinO 
cBy 
4•r 

_ 1j (76) 2 

perpendicular to the equatorial plane flowing away in both direc- 
tions from the sheet of ions at z -- 0. Hence current is conserved. 

However, it must be emphasized again that conservation of current 
computed from Ampere's law is nothing more than a check on the 
arithmetic of the computation. The fields are determined by stress 
balance, and Ampere's law guarantees conservation of current for 
any field deformation. So in place of Stem's suggestion that the re- 
gion 1 Birkland currents are primarily a consequence of J II from en- 
ergetic particles trapped in the geomagnetic tail, the B, v paradigm 
states that region 1 currents arise simply from Ampere's law in the 
magnetic shem' between the field of the geotail and the closed field 
lines at low magnetic latitudes. The magnetic field of the geotail is 
maintained in its extended posture by its connections into the solar 
wind, by intrusion of the solar wind into the magnetopause, and by 
the inflation of an internal population of energetic particles, each 
in variable and generally unknown proportions. At any moment in 
time the distribution of the shear and of the region 1 currents over 
latitude is determined by detailed combination of these several dy- 
namical effects distributed along the geotail. 

An essential result of the B, v paradigm is the flattening of 
the displaced flux bundle by the pressure of the ambient field on 
each side [Parker, 1981a, b], shown schematically in Figure 5. 
The field outside the displaced flux bundle is hardly perturbed at 
all, whereas within the flux bundle the field all deviates by the an- 
gle 0 from the ambient field direction. This extends down to the 
dissipationless ionosphere employed in the calculation. The result 
is a decrease of the horizontal component Bocos9o in the amount 
of OBosin9o at the footpoints of the displace flux bundle, and 
zero elsewhere. The flattening of the displaced bundle provides a 
foot point in the form of a narrow north-south strip. 

The flattening of the flux bundle implies that the cluster of 
ions at the apex in the equatorial plane is also flattened to some de- 
gree. The dynamics of the flattening of the cluster presents an inter- 
esting problem, particularly when combined with the field-aligned 
currents and the associated ionospheric dissipation. 

6.3. Isotropic Particle Distribution 

Consider briefly the problem of computing the deformation 
of a dipole field by various particle distributions. $ckopke [1966] 
provides a general result for a axially symmetric equilibrium shell 
of energetic ions with arbitrary pitch angle distribution. Here we 
take up the example of a single elemental flux bundle in a two di- 
mensional magnetic dipole inflated by plasma with isotropic ther- 
mal velocity, for which the plasma pressure p is uniform along the 
flux bundle. We neglect the small loss cone that arises in the pres- 
ence of a solid Earth at w = R, causing the plasma pressure to fall 

to zer• as zv nears R. The purpose of the example is to illustrate 
the utility of the optical analogy in the B, v paradigm. 

For the two-dimensional dipole the ambient field is again pro- 
vided by (50). The magnetic field b(w) within the inflated flux 
bundle follows from the condition of pressure equilibrium across 
the bundle, yielding 

b(w) - Bo(R4/w 4 -/3) « (77) 
where ,3 -- 8•rp/Bo • represents the plasma fl at the surface w -- 
R. The field strength b(w) within the inflated flux bundle provides 
the effective index of refraction for that field. The field lines are the 

geodesics defined by 

• / dwœ(w, 9, 9') - 0 
where now 

E(w, 9') - (1 + =29'2)«(R4/w4 - 

with 9' -- dg/dw. Then since 0œ/09 -- 0, Euler's equation 

dw 

can be integrated to give 

=0 

0œ 
- 1/'• 

where • is a constant with dimensions of inverse length. This can 
be written as 

•g'(R 4- •74) « -- (1 -I- •9'•) «. (78) 
or 

where • -- •w and 

- 4-1 (79) 

• (l+4n)«::F1 , 
n- flt•4/R 4. 

Equation (79) reduces to the quadrature 

,3«(9-- 91) -- • [(•12 _•2)(•2 2 q-•2)]• 

(80) 

(81) 

(82) 

where the integration constant 91 is chosen such that the apex • = 
•l of the path occurs at 9 -- 9•. The elliptic integral is a standard 
form, from which it follows that 

(1 + 4n)¬ (9 - 91) -- F(cos-•/•, k), 

= cn-•(,•/,•l, k), 

(83) 
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where the modules k is 

k- •-r 1- . (84) 
2• (1 + 4n)« 

[3 31n2 1•7 q- O(n4)] ' n« I- •nq- -•- - --n 3 
Then 

• -- •cn[(1 +4n)¬(T-T1),k ]. 

Placing the apex ofthe fieldline at w -- L, wheredw/dT - 
0, it follows from (78) that 

t• - LIRa(1 - X)« (85) 

where X = flL4/R 4 ( 1. Note that if X > 1, the plasma 
pressure at the apex exceeds the ambient pressure and there is no 
equilibrium solution, except for radial lines (dT/dw = 0). 

It is sufficient for present purposes to treat the case of weak 
inflation, X (( 1, for which it is convenient to note the exact 
relafionsfit•L • - X/(1-X), t• • - x/(lq-x), • - 15X/(1- 
X), •22 -/•/(1- X), n - X/(1- X) •,(1 + 4n){ - (1 + 
X)/(1 - X). For a field •ne with a•x at •e equaWr T = •1 = 0, 
ß e field fine •rsects w = R at •e latin& TR given by (83) as 

F(cos-•R/L k) 
- ' (86) 

(1+ 4n)¬ 

L 4 X 3cos- • « (87) - ---- Zq- 1- •-•) 

The field line with the same apex radius L in the absence of inflation 
reaches zv --/i• at the latitude cos- • I•/L. from which it is clear 
that the foot points of the inflated field lines have a latitude that is 
lower by the amount 

(88) 

than the ambient field lines. That is to say, the inflated field lines are 
distended, as we would expect. This is best illustrated by computing 
the change in the radial distance to the apex as a consequence of a 
small inflation/? or X while T•t remains fixed. Then to lowest order 
n • k 2 -• X. Use (87) to compute c9L/c9 X, with the result that L 
changes by the small amount H, given by 

H 

4n x, 

= •-ff) [36os-•+•(1-•-•) ] 
to first order in X- 

In order to compare this result with (74) (L • a), note that 
the thermal energy density of a monammic gas is •p with p -- 
flBoe/87r - fl[B2(L)/87r] L4/R 4. The area between the field 
lines separated by unit distance at the equator can be computed to 
first order in X from the unperturbed field, for which the separation 
H(T ) of the lines is proportional to y/L, where y = L cos2T 
along the field line. Then with arc length ds = Ld•o, it is readily 
shown that the area is L( TR + sinTR cosTR ) ~ L[cos- • R/L+ 
(R/L)(1 - R2/L2)«]. It follows that the thermal energy U in 
the flux bundle with unit cross sectional area in the equatorial plane 
(T = 0)is 

U - •pL[cos- • q- •(1 - •-•) «]. 
Using this relation to express p or/3 in terms of U, it follows that 

16•-U 

3LBo•[cos-•R/L + (R/L)(1 - Ra/L2)«] ' 

H 4•rL4U[cos-11•/L q- «(R/L)(1 - R2/L2)«] 
Bo2RS[cos-iR/L + (R/L)(1 - R2/L•)«] 

where Bo is the field intensity B(R) at w - /i•. In terms of the 
field B(L), 

H __ 4•rUL [cos-•R/L+ «(R/L)(1- R:•/L:•)« ] B(L) 2• co8-112•/L q- (R/L)(1 - R2/L')« ' 

In the limit of small R/L, 

32U 

3LBo • ' 

H e,• 
4•-U L 

n 
This is the same as (74). That is to say, inflation of a flux bundle 
with an isotropic plasma of energy U causes the apex of the inflated 
flux bundle to move outward by about the same distance as the same 

1 

energy in particles with pitch angle 5a' at the equatorial plane. 
It should be noted again, that the displaced flux bundle tends 

to flatten from the pressure of the ambient field across which it ex- 
tends. The foot point is again a narrow north-south strip. 

7. Flux Transfer 

7.1. Individual Flux Bundles 

The transfer of geomagnetic flux bundles into the geomag- 
netic tail, following reconnection with the interplanetary magnetic 
field at the sunward magnetopause, is an integral part of magneto- 
spheric convection at times of geomagnetic substorms and storms. 
Relatively little attention has been paid to the dynamics of the indi- 
vidual flux bundles in the process of transfer. This section treats the 
subject briefly to show how the B, v paradigm handles the prob- 
lem. As we shall see, the basic concepts are clear enough whereas 
the details of the phenomenon are sufficiently chaotic as to be quan- 
titatively intractable. 

Consider a flux transfer event, involving the pick up of a mag- 
netospheric flux bundle from the sunward magnetopause from 



PARKER: ALTERNATIVE PARADIGM 10,605 

where it is carried in the solar wind in the magnetosheath back into 
the geotail. A typical flux transfer bundle is observed to have a di- 
ameter of the order of 1/i•E and an internal magnetic field of the 
order of 10 -4 13, from which one infers a total magnetic flux of 
the order of 4 x 10 la Maxwells. The flux bundle connects into an 
ionospheric foot point with an area of 7 x 10 la cm 2 (for B - 0.6 
G), equivalent to a square 80 km on a side. The outer end of the 
flux bundle at the magnetopause is transported a distance of the or- 
der of 2x 101ø crn (30RE) from the sunward magnetopause into 
the geotail in the 200 km/s solar wind in the magnetosheath in a 
time of the order of 10 a s. The great mass of the ionospheric foot 
points of the flux bundle suggests that the foot points do not move 
significantly in that time. On the other hand, the Alfven speed in the 
outer magnetosphere is of the order of 10 a km/s, as a consequence 
of the low ambient plasma density (N _< 1 atom/cm a) beyond the 
plasmapause. The relatively slow transport velocity of 200 km/s at 
the magnetopause suggests that the displaced flux bundle is not fa• 
from quasi-static equilibrium within the outer magnetosphere dur- 
ing the transpori into the geotail. Hence, except near the ionosphere, 
the instantaneous path of a moving flux bundle can be approximated 
by the static equilibrium path between the outer end, moving with 
the solar wind, and the fixed ionospheric foot point. In the s•ple 
case of a two-dimensional model of the geomagnetic dipole, treated 
in subsections 6.2 and 6.3, it follows from the optical analogy that 
the flux bundle lies along a circle that intersects the origin. Denot- 
ing the ionospheric foot point by St -- a, z = b and the outer end 
at the magnetopause by St -- Y (t), z = Z(/), it is readily shown 
that the path of the bundle is given by the circle 

(y:• + z:•)(bV - aZ) + y[a:•Z - bY :• + bZ(B - Z)] 

-z[b2Y - aZ :• + aY(a - Y)] - 0 (89) 
at any instant in time. 

The motion u of the displaced flux bundle at any point deter- 
mines the local electric field E = - u x BIc within the flux bundle. 

The surface current density around the displaced flux bundle is read- 
ily computed from the inclination of the displaced bundle relative to 
the ambient magnetic field. in particular, it follows from (89) that 

dz _ a2Z - bY :• + bZ(b - Z) + 2(bY - aZ)y (90) 
dy - b2Y - aZ 2 + aY(a - Y) - 2(bY - aZ)z 

along the path of the displaced flux bundle. For the ambient field 
line with an apex at St -- L, z - O, we have 

y2 -yL + z • -0 

dz L- 2y 
-- o 

dy 2z 

Hence, for the ambient field line through the point (y, z) it follows 
that 

L- Y•+Z• 
Y 

dz z • - •! • 
d'• = 2Stz (91) 

at that point. The angle between the displaced flux bundle and the 
ambient field is 

O(y, z) = tan -1 (d•yy) -tan-1 (d•yy) (92) d a 

where (dz/dy)d is the slope of the displaced bundle given by (90) 
and (dz/dy)a is the slope of the ambient field given by (91). The 
electric current pattern around and along the displaced flux bundle is 
described in subsection 6.2 and is illustrated in Figure 5. The inabil- 
ity of the E, j paradigm to address the problem of finding the path 
of a widely displaced flux bundle is obvious. Note in particular that 
the motion of the lower end of the flux bundle is determined largely 
by the mechanical motion of the ionosphere and has no direct con- 
nection to the electric field in the rapidly moving outer end of the 
flux bundle. As noted earlier, the force exerted on the ionosphere 
by the displaced flux bundle is proportional to the displacement of 
the outer end of the flux bundle rather than to the instantaneous rate 

of displacement to which the electric field is rela•ed, illustrated in 
subsection 7.2. 

It should be noted/hat the basic physical principles are the 
same in a three-dimensional dipole, but the computation is much 
more .complicated. First, the Euler equation for the equilibrium path 
is of the form of Abel's equation and has no elementary Solutions. 
Second, the outer end of the displaced flux bundle at the magne- 
topause is transported by the solar wind. In two dimensions this is 
parallel to the meridional planes in which the field lines lie. How- 
ever, in three dimensions the displacement generally has a nonva- 
nishing component perpendicular to the local geomagnetic field at 
the magnetopause. The flux bundle slides freely only in the dikec- 
tion parallel to the geomagnetic field, but not across the geomag- 
netic field, so the motion perpendicular to the geomagnetic field 
strongly deforms the geomagnetic field at the magnetopause, prob- 
ably resulting in local reconnection and generally creating a messy 
theoretical problem. The essential point is that the problem can be 
stated easily in terms of the B, v paradigm even if the dynamics 
is too complicated to allow a formal solution. 

7.2. Ionospheric Motion 

Now by the time a large body of displaced magnetic flux a½. 
cumulates in the geotail (as during the onset of a substorm), the 
ionosphere begins to move and it is of interest to note the formula- 
tion of this dynamical problem. The succeeding sections treat the 
detailed problem, recognizing the partially ionized state of the iono- 
sphere. However, as preparation for the complications Of the Hall 
and Pedersen conductivities, it is useful to treat an idealized case to 

enumerate the elementary stress balance and momentum transfer. 
There is nothing particularly new here except the emphasis on the 
direct approach to the dynamics, describing the momentum in terms 
of the plasma velocity and the stress in terms of the magnetic field. 

Consider, then, the simple idealized plane polar ionosphere 
and magnetosphere model neglecting all resistivity and viscosity. 
Imagine an ionosphere of uniform density p confined between the 
planes z -- 0 and z -- L. Consider the idealized case in which 
the nonconducting atmosphere below (z < 0) has no viscosity so 
the ionosphere slides fieely about except for its own inertia. The 
magnetosphere in the space L < Z < A(A > > L) has neg- 
ligible material density and essentially infinite Alfven speed. The 
whole sysiem is threaded by a uniform vertical magnetic field B 
and the magnetopause at z -- A is subject to arbitrary horizontal 
displacement, as when the field is picked up by the solar wind and 
transported a large distance H along the magnetopause in, say, the 
St direction. The layout is sketched in Figure 7. 
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Figure 7. A schematic drawing of the sheared field (0, Bb (z,0,B) associated with the displacement •(z,t) relative to the 
footprint at the magnetopause z -- A. 

Denote the Lagrangian displacement of an element of fluid in 
the ionosphere by •(z, t), assuming that 0/0y -- 0. The fluid 
velocity v(•, t) in the ionosphere is O•/Ot, introducing the mag- 
netic field'Bb•z, t) in the F direction at the rate described by the 
induction equation 

Ob Ov 

Ot Or 

0• 
= OzOt' (93) 

In the present idealized example of a vertical field without local 
compression the displacements are horizontal and uniform over the 
horizontal plane so that they produce no magnetic perturbation be- 
low .the ionosphere. The appropriate boundary condition for b(z, t) 
is b(0, t) = 0 with b = 0 throughout the nonconducting atmo- 
sphere in z < 0. The conducting Earth plays a role only where 
O/Oy # o. 

The Maxwell stress My z -- .B b/4 •r reacts back on the fluid 
for which the momentum equation •s 

0• B • Ob 
= (94) POt 2 4n' Oz 

The Alfven speed B/(4•rp) « in the ionosphere is denoted by C. 
The Allyen speed is .essentially infinite in the tenuous magneto- 
sphere (L .• z < A), so that if the field is held fixed at the mag- 
netopause (z = A), it is convenient to measure the displacement 
• from the i•osition'at which the field is vertical (b = 0). Hence, 

t) - ' A-L 

~ 1 
= A t) (95) 

and b(z, t) = b(L, t) throughout L < z < A. Equation (93) can 
be integrated once to give 

t) - 
in the i9nosphere, where the integration constant is zero with the 
choice • = 0 for b = 0. Substituting into (94) gives 

0• c•O• Ot • • = 0. (97) 
Consider the solution 

• - Dcos • coscot, 
where D is an arbitrary constant. It follows from (96) that 

b - D• sin •coscot. 

(98) 

(99) 

Substituting (98) and (99) into (95), the result is 

col L L (100) C tan• = •. 
It is clear that in the limit of small L/A, the quantity coLIC is 
either small compared to one, so that 

or 

c 
co• (101) 

co ~-l-n•r 1-t n•r2A •'" 
where n = 1, 2, 3,-. ß We are concerned here only with the fun- 
damental frequency, given by (101). 

Suppose, then, that the time t = 0 finds the magnetopause 
(z = A) displaced a distance H in the negative y - direction 
and thereafter held fixed. The system is without motion at the time 
t = 0, but the nonvanishing Maxwell stress accelerates the iono- 
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sphere from rest. The initial value of • is then H throughout the 
ionosphere and there is a kink in the field at z = L, with a deflec- 
tion tan-1H/A. The kink provides an initial sharp transient, of 
no particular physical interest, that propagates back and forth be- 
tween z = 0 and z = A with partial reflection at each crossing of 
z = L so that the initial pulse rapidly degrades into an increasing 
number of pulses of diminishing amplitude. The principal motion 
is the fundamental oscillation 

z ct 
•(z, t) - Zeos (1;a) 

• Hcos• 
Ct 

(œA)« 
H z Ct 

- (/;a)« 
Hz Ct 

--'• -- --C08 • 

in the ionosphere, neglecting terms O(L/A) compared to one. It 
follows that 

CH Ct 

v(t) "• (LA) « sin (LA)--'--• 
The electric current and electric field are uniform across the iono- 

sphere with the instantaneous values 

j(t) -- -ex---- 
cB Ob 

4•r Oz 

cBH Ct 

• +e• 4•rLA cos (LA) « 
vB 

E(t) - -e•-- 
c 

BCH Ct 

• +ex c(LA)« sin(LA)----• 
in the ionosphere (0 < z < L). In the magnetosphere b is uniform 
with the value b(L, t) given above, while the velocity is 

t) - v(t)(a- 

The electric field is accordingly 

E(z, t)- E(t) (A- z)/(A- L), 

vanishing at the magnetopause z -- A, from which it is clear that 
the electric field at the magnetopause has nothing to do with the 
motion within the magnetopause and in the ionosphere. The initial, 
relatively rapid displacement of the magnetopause by a distance H 
in the negative y direction at time t = 0 can be adequately de- 
scribed by the velocity -HS(t) at z = A with 

t) - - ;)/(A - 

throughout the magnetosphere. The associated electric field is the 
short intense pulse 

t) - ;)/(A- 

which vanishes before the ionosphere has begun to move. So again, 
the electric field at the magnetopause is not related to the iono- 

spheric motion and vice versa. The ionosphere moves in response 
to the Maxwell stresses. 

It is easy to extend the calculations to include viscosity in the 
ionosphere and in the non-ionized atmosphere (z < 0) below the 
ionosphere, as well as a conducting Earth at z - œ etc. However, 
the foregoing idealized calculation is adequate for purposes of il- 
lustrating the basic principles. We turn next to a formulation of the 
B, v paradigm in the ionosphere, taking account of the massive 
neutral atomic constituent. 

8. Partially Ionized Gases 

Consider a plane stratified ionosphere composed of N neutral 
atoms per cm 3, and n electrons and ions per cm 3, the ions being 
singly charged. The mean effective collision time for the individ- 
ual ion with the ambient neutral atoms is denoted by ri and the 
collision time for an electron with the neutral atoms is re. The 
ion-electron collisions provide an equivalent collision time r. The 
electron-electron and ion-ion collision times are comparable to each 
other but of no particular interest. The local mean velocity of the 
ion gas is denoted by w and of the electron gas by u, with the v 
representing the local mean velocity of the neutral atoms. The colli- 
sions provide a mean drag force on each constituent, so that for cold 
electrons and singly charged ions, the momentum equations are 

dw 

M-•- - -e E+ - c re 

wxn) :U(w-v) re(w-u) +e E+ - - , (102) 
c Ti 

+ . 
7' 

(103) 
The equation of motion for the neutral atoms is 

NM dv nM(w - v) nm(u - v) d'-[ = -V'p + + (104) ri re 

where/9 is the pressure. Viscous and gravitational terms can be added if desired. 

Note that the electric current density j is 

j - ne(w- u) (105) 

c 

= 4-•V x B, (106) 
the second equality being Ampere's law. The relation can be solved for U, yielding 

c 

u-w 4rrneV x B. (107) 
Consider, then, the case of weak ionization n < < N, appropriate 
for the terrestrial ionosphere. The inertia of the ions and electrons 
is small compared to the inertia of the neutral gas. The Maxwell 
stresses are exerted on the ions and electrons and are transferred 

to the neutral gas through collisions. The relatively massive neu- 
tral gas responds only sluggishly to the collisions, so that on that 
timescale the left-hand sides of (102) and (103) are negligible, that 
is, the inertia of the electrons and ions is negligible compared to the 
inertia of the neutral gas. The ions and electrons are in quasi-static 
equilibrium between the Maxwell stresses and the collisional drag 
of the neutral gas. 
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Neglect the left-hand sides add (102) and (103) and then mul- 
tiply by n, with the result that 

- nm(u- v) j x B = nM(w v)+ (108) 
c ri re 

The right-hand side of this relation represents the friction terms on 
the right-hand side of (104) with the result, using Ampere's law, 
that 

NMdV (V x B) x B (109) •- - -Vp+ 4a' 
plus whatever viscosity and gravitation effects are appropriate. 
This, of course, is the usual MHD momentum equation, with the 
fluid pushed around by •7p and by the Lorentz force, that is, by the 
divergence of the Maxwell stress tensor. 

Next solve (107) and (108) foru andw in terms ofv,X7 x B, 
etc., with the result 

(V x B) x B emir, 
w - v + 47rnQ + 47rneQ •7 x B (110) 

u-v + (V x B) x B cM/ri 47rnQ - 47rneQ V' x B (111) 
where 

M m 
Q = -- + -- (112) 

ri re 

It is then a straightforward calculation to solve either (102) or (103) 
for E, obtaining 

•, .x• [(vxn) xn]xn - 
c 4•ncQ 

M/ri - m/re (V x B) x B 
4•rneQ 

(113) 

c [ (•Uln)(ml•,) + •] V x n ' + 4•ne 2 Q 
It is convenient to define the diffusion coefficients c•,/• and r/, with 

cB(M/ri - m/re) (114) a - 4•ne(M/ri + m/r•) 
representing the Hall resistive diffusion coefficient, 

B 2 

1• = 4•rn (M/ri + m/re) (115) 
as the Pedersen resistive diffusion coefficient, and 

rl = 47me2 M/ri + 

- B{-vxb 
½ 

+a(Vxb)a. x b+(,+b2/5)(Vxb)a.+,(Vxb)11} (118) 
where the subscripts .1. and II m •e components perpendicular 
and parallel to b. 

Note that (117) can be written 
B 

½ 

x {-/•[(V x b) x b] x b+a(V x b) x b+ r/V x b} (119) 
where 

E'- E + (S/c)v x • 

is the electric field in the frame of reference of the moving neu- 
tral atoms. Equation (119) is the form of Ohm's law for a par- 
fially ionized gas, of course, but it cannot be used effectively until 
the velocity v has been determined from the dynamical equations. 
This difficulty is sometimes over looked in applications of the Es 
j paradigm. Illustrative examples are provided in sections 9-11. 

Substituting (117) and (118) into 

0B 
=-cV xE 

ot 

yields the induction equation 

0b 

o-F = v x (v x •) 

+v x {a[(v x b) x b] x b- •(v x b) x b- . x b} 
(120) 

=Vx(vxb)-V 

x{(.+b•/?)(Vxb)a.+a(Vxb)a_ xb+.(Vxb)11} ' (121) 
It is not without interest to express E in terms of the ion drift ve- 
locity w or the electron drift velocity u. Solving (110) and (111) 
for v and substituting into (113) yields the two expressions 

E- B{-w x b+•(Vxb)x b+;/Vxb} (122) c 4•rneQ 

cBm/r, E- B---{-u x b-•(Vxb) x b+;lVxb} (123) 
c 4•rneQ 

so •at •e •ducfion equation c• • expressed a•ord•gly. 
The m• V x (v x b) on •e fight-h•d side of (120) repre- 

sen• •e g•s• of field wi• •e moving fluid, •at is, •e smnd•d 
• •ducfion effect. The rem•g m•s represent d•sion •d 
dissipation and •e HaH effect. R is •s•cfive • •m out •e en- 
ergy equation • s• •e nat•e of •e dissipation. For•g •e scalg 
produce of b wi• (118) •d using •e v•r idenfi• 

as the Ohmic resistive diffusion coefficient, where B is a charac- 

teristic magnetic field strength. Fejer [1953] and others provide 
conductivities as a function of altitude in the ionosphere. Write 
b - B/B, so that 

E- •t-v x b 
c 

-/•[(V x b) x b] x b+a(V x b) x b + r/V x b} (117) 

A.VxD-D.VxA+V.(DxA), 

it can be shown that 

0 b • b • 
Ot 8•- + v. (v•. •) 

= -f. v - 4•r/?f • - q(V x b)•/4•r 
-V. [/•b2f + af x b + ;If], 

(124) 
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where f is the Lorentz force divided by B2, 

f= (Vxb) xb 4•r (125) 
The convective transport of magnetic enthalpy is 
v.t. b 2/4;r. The first term on the right-hand side is the rate at which 
the fluid does work on the field. The third term is the usual Joule 

dissipation term, which can be written ,/2/•r ff desired. The second 
term is the Pedersen dissipation. The final term, involving the di- 
vergence of/•b2f + af x b + •/f represents only a redistribution 
of magnetic energy within the region. It provides no net dissipation, 
as is obvious from the fact that it vanishes when integrated over a 
volume sufficienfiy large that f vanishes on the surface. The Hall 
effect provides no net dissipation, of course, although it provides an 
energy redistribution flux 

af x b- -ab2(V x b)a. (126) 

within the region of nonvanishing Lorentz force. The momentum 
(109) can be rewritten 

NM dv d-•' = -Vp + B2f (127) 
to which viscous terms, etc. may be added if needed. 

Simultaneous solution of (120) and (127), along with some 
statement on the pressure p, provides a complete description of the 
macroscopic behavior of the ionosphere. In fact, the dynamics of 
the ionosphere involves only small perturbations AB of the quiet 
day field so that the equations can be linearized to good approxi- 
mation. The linear form is studied briefly in the next section. The 
essential point is that, with the basic equations formulated in terms 
of the variables v and B, the time dependent case can be treated 
directly. Electric fields can be calculated after the fact ff they are 
needed. Charge conservation is automatic, and electric currents 
take care of themselves. 

The momentum equation (127) is the familiar momentum 
equation of magnetohydrodynamics. The induction equation (120) 
is similar to the induction equation of MHD. It is evident from in- 
spection of the right-hand side of (121) that the total resistive dif- 

fusion coefficient of (X7 x b)[[ (representing diffusion of field per- 
pendicular of b) is r/, while the coefficient of (V' x b) a. is r/+ b •/•. 
So the resistive diffusion is anisotropic, but still of the nature of re- 
sistive diffusion. The Hall term, whose coefficient is c•, is more 
interesting. Neglecting resistive diffusion, write (120) as 

•b 

0--•- = V x (v x b)- 4•rV x af, (128) 
where f is the dimensionless Lorentz force defined by (125). Then 
write the momentum equation (127) as 

0v 1 1 

O--•- +co x v - N-MVP - V•v 2 + 4•-C2f, (129) 

where co -- X7 x v is the vorticity and 6' -- B / (4•r N M) « is the 
Alfven speed in the characteristic field B. Consider the idealized sit- 
uation in which the neutral gas density NM and the Hall coefficient 
a are locally uniform. Then the curl of the momentum equation 
yields the vorfieity equation: 

5--•- = V x (v x w) + 4a'C2V x f. (130) 

Using this expression to eliminate V x f from (128) yields 

ß (131) 

It follows that the vector b+aw/C • is carried bodily with the fluid 
motion v, as distinct from the transport of b with v in the absence 
of the Hall effect. So the concept of a "frozen in" field remains. 
The field is neither b, that is "frozen in" in the absence of the Hall 
resistivity, nor the vorticity in the absence of a magnetic field, but a 
linear combination b + (a/C2)co of the two. 

Note, then, that since m/re < < M/ri in the ionosphere, 
(114) yields a • eB/47rne, where n represents the ion and elec- 
tron number densities. It follows that the coefficient a is given by 

a/6 '2'"' N/nai (132) 

where •i -- eB/Mc represents the ion cyclotron frequency in 
the characteristic field B. Thus, with [w [ ~ 1/tw, where tw is the 
characteristic rotation or shearing time of the fluid motion, it fol- 
lows that the ratio of aco / C 2 to b is of the order of (N/n) / fli t•. 
The ratio N/n is large (~ 10 a at an altitude of 300 krn) and 
Qi ~ 3 x 102/sec for a single ionized oxygen atom in 0.6 G. 
So the ratio aco/C2b is small for motions with characteristic time 
large compared to say, 10s, and it is b that is tied to v to a first 
approximation. As N/n declines upward into the magnetosphere, 
the ratio becomes smaller, and the frozen in condition obtains (in 
the absence of significant diffusion). However, ideal or not, the in- 
duetion equation shows that b + aco/C '2 is a physical concept that 
is useful in treating dynamics. 

As is well known, the pertinent quantity is the ratio of the 
Pedersen and Hall coefficients t3/a. To obtain some idea of the 
magnitude of/3 and a in the ionosphere, recall that the mean free 
paths for ions and electrons are comparable in order of magnitude. 
Hence ri/re ~ (M/m) « and m/re is smaller than M/ri by a 
factor of the order of (m/M)«. It follows from (114) and (120) 
that 

cB 

4•'ne 

C/nfl. 
B2r• 

4;rnM 

• C2r•N/ra, 

where 6' -- B/(4•'mm) « is again the characteristic Alfven 
speed. Hence we have the familiar result that 

in order of magnitude, showing that resistive diffusion is more im- 
portant than the correction c•co/C 2 to b in the induction equation. 

Note that in the same approximation 

rac 2 (• 1) rl -• 4•ne 2 + - , 7' 
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so that 

in order of magnitude. 

9. The Plane Polar Ionosphere 

Before taking up some diffusive dynamical problems of iono- 
spheric convection in the succeeding sections, it is useful to note 
briefly some elementary idealized circumstances in which an iono- 
sphere without diffusion may be set in closed circulation by the 
Maxwell stress associated with magnetospheric convection. The 
response of the massive ionosphere is slow, of course, so it is also of 
interest to see how the stressed magnetic field arranges itself across 
a simple uniform ionospheric model when the motion of the iono- 
sphere can be neglected. We cite a variety of simple solutions to 
(120) and (129). 

9.1. Plane Model 

Consider the polar ionosphere in the approximation that the 
mean field is vertical with a uniform strength B. Above a plane 
Earth the ionosphere is set in motion by the transport of magnetic 
flux bundles from the day side magnetosphere into the magnetotail 
as a consequence of reconnection at the magnetopause, etc. The 
net effect is to tilt the polar field away from the vertical, so that 
there is a Lorentz force exerted on the ionosphere by the tension in 
the tilted field, as sketched in Figure 7. In the simplest case, let the 
tilt of the field be independent of the horizontal coordinates x and y. 
The result of the tilt is a time dependent magnetic field in an accel- 
erated ionosphere (v•, Vy • 0). The horizontal magnetic pertur- 
bations B• and By are small compared to the vertical component, 
of course, so that the quantities b•c • B•c/B and by -- By/B 
are both small compared to one. Note that the horizontal unifor- 
mity yields (•7 x b)z = 0 while the transverse component is 
(X7 x b)ñ = -ezOby/Oz + eyOb•/Oz. Equation (120) or 
(121) reduces to the linearized form 

Obz ~ 0 [ Obz aOby] Ot- 0-• vr q- (r/q-/3)• z q- '•z-z J' (133) 

ot, y _• o [ oo• ot, y ] ot- o-• vy - "3-; + ('• +/•)•;J' (134) 

neglecting terms second order in bx and by. The momentum equa- 
tion (127) becomes 

Ov• = C• Ob• O ( Ov• • (135) ot 35-z + • •' Oz ]' 

0% = c2 Oby O ( 0% • (136) ot •zz +• •' Oz ? 
in the same approximation, noting that (v. •7)v -- 0. The quantity 
C is again the characteristic Alfven speed B/(4a' N M) « and we 
have included a viscosity/•. The Lorentz force, given by (125), is 

1 db•, 1 dby 
f•- 4•r dz fy - 4-• d•-' (137) 

Note, then, that the coefficients, a, t, •/,/•, and C may be functions 

of z. The essential point is that (133)-(136) provide a complete set 
of four equations for time dependent v•, vy, b•, and 

If the electric current density j is needed for some purpose, it 
follows simply as 

cB Oby cB Ob• 
J •' - 4 •r O z j y - q- 4-• 0--•-' (138) 

The electric field follows from the linearized form of (117) with 

- -- - % + a (•/+/•) (139) • 77-,- 77J' 

- -- q- v• q- (r/q-/•)•zz q- a•zzJ' (140) c 

from which it follows that the electric field E t in the frame of ref- 

erence of the moving ionosphere is 

-_ . -(.+•) (141) 

4•r [(r/+ •)j• + ajy] C2 • 

(142) 

47r 

c•-[ - "j• + (•1 +/?)Jy ]. 
Solving these two expressions for j• and jy yields the familiar re- 
suit 

c • (r/q-/•)E'• - aE• (143) J•- 4-• (r/q-/•)•q-c• • ' 
c • (.+ •)•'• + (.+ 

JY - 4•r (r/+/•)2 + c• 2 (144) 

It is well known, and obvious by inspection of 133)-(136), 
that there are Alfven waves, modified by the Hall resistivity a and 
dissipated by the Ohmic and Pedersen resistivity r/q- fl. Time- 
dependent solutions ezpi(cot + kz) in a uniform medium provide 
the usual dispersion relation 

•-• - •-• U [i(r/+/•) 4- a] - I - 0, (145) 
so that 

1 

•c + •+Y•[•"+i•+•]"• • [+"+i•+•)] - +•-• 

where the sign 4-a is independent of the 4- in front of the braces, 
that is, there are four modes. The Pedersen and Ohmic resistive 
diffusion coefficients (fl q- r/) provide diffusion whereas the Hall 
resistive diffusion coefficient a couples b• and by. With Hall re- 
sistivity alone (fl q- r/-- 0) the result is 

co =4- 1+ 4-2C kC ' 

ak •+1+76+ • ß 
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For ak/2C > > 1, there are the respective fast and slow modes 

kC=+ 1+ +... 

kC=+ • 1- • +.... 
On the other hand, in an ionosphere so dense that c• < < r/q- fl 
the equations reduce to the usual resistive magnetohydrodynamic 
equations for a scalar field. There is only a single wave mode prop- 
agating in each direction along B. 

9.2. Steady Acceleration of the Ionosphere 

Suppose that the Maxwell stress Bgbz/4rr is maintained at 
a constant value at the top of the ionosphere while by = 0. The 
asymptotic form of the motion, after initial transients have died 
away, is 

vz = a•t + U•(z), (146) 

Vy - ayt + Uy(z), (147) 

where az and ay are constants. Presumably c•, r/, t, and the Alfven 
speed C are all functions of height z. Then if viscosity is neglected, 
(135) and (136) can be integrated immediately to give 

j•o z d z t bz(z)- az C(z,):•, (148) 

j•o z d z t by(z)- ay C(zt):z, (149) 

satisfying the condition that the Maxwell stress across the lower 
surface (z = 0) of the ionosphere is zero. However, if there is 
no applied by(L), it follows that ay = 0. Hence by(z) = 0 
throughout 0 < z < L. The statement is then, that the Maxwell 
stress B2b•(z)/4a ' at the level z provides the acceleration a• of 
the mass 

azS3- W 
up to that level, since there is no Maxwell stress across the lower 
boundary (z -- 0) and we have omitted the viscous stress in the 
present illustrative example. 

The induction equations (133) and (134) can be integrated 
over z, with the result 

Ux(z) + (r I + fl)az/C :z -' D1, 

Uy(z) - aaz/C :• = D:•, 
where D1 and D2are constants. Working in the fixed frame of 
reference in which Ux (0) - Uy (0) - 0, it follows that 

r/+ flh ]0 

Uy(z)- az -- , 
o 

where the subscript zero denotes the value at z -- 0. The final 
result is 

vz(z t)_az[t+(rl+•) r/+•] , C • C • ' 0 

Vy ( Z, t ) -- ax •-• - •-ff o 
Note then that Vy is independent of time. It is nonvanishing only in 
so far as c•/C 2 varies with z. The electric field follows from the 
(139) and (140) as the growing uniform field 

B , Ey-ax-- (•-•- +t . (150) E• - az--(•- o o c c 

The electric current is 

cBax (151) jx- O, jy- 4rrC2(z). 
The total integrated current is just (c/4•r)Bbx(L) from Amperes 
law, of course. Note that applying the electric field Ey to the lump- 
ed ionospheric conductivity gives the wrong result because it is E• 
that drives the current rather than Ey. Note also that the problem of 
ionospheric acceleration by a specified Maxwell stress cannot be ad- 
dressed by prescribing an applied electric field at the magnetopause 
because the electric field is not the driver and F, is not known at the 

ionosphere until the dynamical equations have been solved. Using 
the B, v paradigm to deduce the solution makes it possible to go 
back and restate the dynamics of the ionosphere in terms of the E, 
j paradigm of course, but this ad hoc exercise serves no obvious 
purpose. 

The ion and electron drift velocities can be computed from the 
linearized forms of (110) and (111) if they are needed. The electric 
drift (plasma) velocity in the tenuous magnetosphere (z > L) is 

ltx __-- C . 
B' 

--az[(rlC-½2'8)o 
lty --' --C" B' 

(152) 

= -az ß (153) 
0 

The rate at which the Maxwell stress exB:•bx(L)/4rr does work 
per unit area on the ionosphere (0 < z < L) is 

p - u•B•b•,(L)/4• - 

Babx(L)ax [(rl + fl'• 4• C2 ]o q- t] (154) 
The work goes into accelerating the ionosphere whose kinetic en- 
ergy density is 

r- + 
so that 

dT = pa: It + (r/+ •) r/+ •] (155) d-7 \ o 
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The work also goes into resistive dissipation of density D with D/B 2 
given by the two terms 4•r•f 2 and t/(V x b2)/4•r on the right- 
hand side of (!24). It follows that 

• (,• +/•)p/c • D - a• ß (156) 

The total is 

dz •+D = a• 4• Ca +t (157) 0 

Which is precisely eqtial •o the energy input rate P of course. The 
Lorentz force œ is given by (137). 

93. Asymptotic Field Neglecting Ionospheric Wind 

In the idealized case of an ionosphere that is so massive that 
v• and v• are negligible compared to the rate of diffusioi• of the 
fieldput v• -- vy -- 0 in (133) and (134). After a time ofthe ørder 
of L a/(r/+ t) the field relaxes asymptotically to a final steady 
state (O/Or -- 0) in which (133j and (134) can be integrated once 
to yield 

db• db• 
(•/+ j•)-•zz + a-•zz = C•, (158) 

db• db• 
-a-•z- z + (r/+/•)•z-z - Ca, (159) 

where Cx and Ca are constants. These two equations can be solved 
for db•/dz and db•/dz and integrated again yielding 

b•(•) = C•Z•(•) - C,Z•(•), (160) 

•(•) = c•r•(z) + c• •(•), 

where the integrals •1 and •a are defined as 

(161) 

• &(. + •) r•(•) = (• + •)• + .•' (162) 

Ea(z) -- (r/+/•)a + aa, (163) 
and represent the height integrated conductivities. With b• (L) given 
and b• (L) = 0 it follows that 

c• = •(•)r•(•)/[r•(•)• + r•(•)•], 

so that 

b•(z) = b•(L) Z•(L)P"•!z)+ Za(,L)•a(z) (164) •(•;)• + •(•)• ' 

•(•) _ •.(;)•,(;)•(•) - r•(;)r•(z) Zl(L)a + Za,(L)a . (165) 
In the idealized circumstance of a vertically uniform ionosphere it 
follows that 

•(•) = •(•)•/•, 

•(•) = 0. 

If for some reason we need the electric current density it follows 

from Ampere's law (138) that 

i•(z) = + 

c• b.(•) (•+ •)•'•(•) - •'•(C) 4-• [(r/+/•)a + aa][El(L)2 + 
&(•) - 

•s • (• + •)r•(•) + •(•) W• •( )[(. + e)• + •][r•(•)• + •(•)•' 

(166) 

(167) 

The electric fi61d follows from (139) and (140) as 

E• = Bb•(L) •a(L) (168) 
c [z](t,) + z•,(t,)] ' 

s,, = •(•) •,•(•) c •(L)a + Ea(L)a. (169) 
One notes that the total integrated Loreritz force is equal to the total 
Maxwell stress exerted on the ionosphere which follows from (137) 
as 

• d•f• - •b•(•). 
The rate at which the Maxwell stress does work on the ionosphere 
is just the Maxwell stress multiplied by the speed of the magneto- 
sphere cE•/B above the top of the ionosphere. The power input 
is then 

•, = •(;)a•/4,•, 

= Bab•'(L)aZ•(L) (170) 
4•[r•(•)• + r•(•)•]' 

Turning to the energy equation (124) the two dissipative terms on 
the fight side are 

4•r/•f a+r/ Vxb /4•' 

_4_•[(db•)a (db• a] 4•rrl. a .a •T + \ •T / + •-•-(J• + s• ), 
b•(;)•(, + •) 

4•r[•(L) + •](L)][(r/+/•)a + aa]' 
(171) 

Multiply by B a to dimensionalize the result to ergs/cm 3 sec and 
integrate over z from 0 to L. The result is just P of course. 

9.4. Field Relaxation Neglecting Ionospheric Wind 

The next problem is the time-dependent relaxation of the mag- 
netic field in an idealized massive ionosphere whose bulk motion 
can be neglected. It is sufficient for this preliminary study to treat 
the idealized case in which the ionosphere is a uniform slab of thick- 
ness L with c•, /J, and r/uniform across L. 

The calculation begins with (133) and (134) where vx and vy 
are put equal to zero. The equations can be written 

0 0 • ] O•by. • - (r I +/•)•-z2 b• - +a Oz a , (172) 
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0 02 ] • - (rl +/•)•-•z • bu - -o• oZ • , (173) 
in a uniform ionosphere. Hence both bz and by satisfy •e equation 

0 0 • ]• • -0 (174) 

The general solution of these equations is expressible in terms of an 
infinite sum over the separable solutions. We consider some special 
cases to illustrate the separate contributions from c• and/3 + r/be- 
fore treating the general case. Consider first the idealized situation 
in which the ionosphere is so dense that •i ri, •e re < < 1, where 
fli and f•e are .the ion and electron cyclotron frequencies eB/Mc 
and eB/mc, respectively. (Recall that the ion and electron mean 
free paths for collision with neutral atoms are comparable in or- 
der of magnitude). Hence ri/re ~ O(M«/m«) and f•ir/ is 
small compared to •ere by O(m«/M«). Neglecting m/re = 
(eB/c)/nere compared to M/ri - (eB/c)/niri in (114)- 
(116) yields fl/a • •ivi, a/rl --• •ere.) Then a,• << r/ 
and (174) reduces to 

0 0 • 

[•. - r/•-•z•]•b - 0. (175) 
Note again that b• and by vanish at the top (z = 0) of the mas- 
sive nonconducting atmosphere. The magnetosphere of collision- 
less plasma (r/+/3 = 0) lies above z = L and has negligible 
mass. Thus the magnetic field in z > L can change quickly with 
time as a consequence of the transport of magnetic field at the dis- 
tant magnetopause. (z = A > > L). So it is interesting to see the 
consequences of various time-dependent forms of the tilt bz (L) of 
the field applied to the top (z = L) of the ionosphere. 

Suppose then that bit (L) - 0 for all t while b• (L) - 0 
for t < O, jumping suddenly to the fixed value b0 at time t - O. 
Mainta. ining ba• = b0 at z - L for t > 0 requires horizontal 
displacement i n the x direction at the magnetopause z = A. The 
field for t > 0 is readi'ly shown to be 

( )] - bo +- Z(-1)nsin n•rz n2•r20t - -•-exp - L2 (176) 71' n= 1 

and for ut > > L, 

b•(z, t),,, bo - -•sin-•exp - • 

a s the field relaxes to the asymptotic static form boz/L. 

Alternatively, suppose that the tilt bz (L) of the field is switch, 
ed on suddenly at time t -- 0 in z > L but thereafter relaxes back 
to zero. A simple case is given by the applied. transverse component 
b•(L,t) in the form 

- (178) 

for t > 0 where erf denotes the error function. Then since 
erf(oo) -- 1 the tilt bx jumps from 0 to b0 at time t - 0 and 

subsequently returns asymptotically to zero as t- 1/2 with 

b•(L,t)~bo • !-•+'" (179) 
for large t. The resulting field or tilt b, throughout 0 < z </• is 

: bo [err[(L+ z)/(4rlt)«]-erf[(L- z)/(4rlt)«]] (180) 
~ (•rrlt)« 1- 12tit +... , (181) 

declining asymptotically as z/t • in response to the declining tilt 
applied at z = L but varying linearly with z up across the iono- 
sphere. The electric current is given by (cB/47r)Ob•/Oz ff it is 
needed. The Loreritz force exerted by the Maxwell stress Bbm/47r 
is proportional to c3bm/Oz so that it is uniform across the height of 
the ionosphere. Other examples are given in Appendix C. 

In the opposite extreme (a > > r/+/3) for a tenuous iono- 
sphere the field equation (174) approximate s to 

Ot•-F •-z•-O. (182) 
This equation has the separable solutions expi(cot + kx) with co -- 
q-c•k 2 representing waves with a phase velocity vq• ---- co/k - 
4-c•k and a group velocity dco/dk - q-2ak. There are similarity 
solutions of the form ta9(•) where • ---- z/t« and 9 satisfies 

,•2,H a(a- 1)9 - 0. 83) a2m•v+7, -- +(i-a)( 9z+ (1 

where the roman numeral superscripts indicate derivatives. 

Setting a -- --« yields the two solutions 

2 2 Z 2 

9 - sin•-•, cos4at, 
the first of which satisfies the bounda•. condition that b• - by -- 0 
at z -- 0. Therefore we have from (172) and (173) (with. r/- • - 
0) the solution 

z 2 z 2 

b• - +t-•/2sin•t-•, by - +t-1/.•cos 4at' 
and the complement.ary solution 

b• = +t-1/2cos•t-.•, by --t,l!2sin z2 4at' 

But only one of b•, by can be made to vanish at z = 0 in this 
case. Polynomial solutions in/• are easily constmc .ted for(182) and 
the first few orders are exhibited in Appendix D. The polynomials 
that contain only the first pow er of t vanish at z -- 0 satisfying 
the boundary conditions on b• and by. Polynomials of second or 
higher order in t do not vanish at z = 0 and so are unsuitable in the 

present context. It is obvious by substitution into (172) and (173) 
that one solution is 

= (184) 
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for which bz = by = 0 at z -- O. The complementary solution is 

bz(z t)-• • t)- azt (185) , •z , by(z, - 

The rotation of the vector (bx, by) over height z is a consequence 
of the Hall effect, of course. 

The general case, retaining both a and r/4- t, employs the full 
equation (174). The separable solution ezpi(wt 4- kz) provides 
the dispersion relation w = k214-a 4- i(r/4- fi)]. The similar- 
ity solutions taG(•) are described by the fourth order differential 
equation 

+(•/+ fi)•G H' + [¬•' - 2(a - 1)(•/+ fi)]G H (186) 

+(• - a)•G' + a(a - 1)G - o 
which we note is invariant under the transformation • --• --•. 
There is again a variety of polynomial solutions. For instance if 

3 
a -- •, the solution G -- • leads to 

• - +.zt, % - z [•z'+ (. + (187) 

and the complementary solution 

1 z 2 • - z [• + (. +/•)t], % - (188) 

of (172) and (173). These solutions satisfy the boun- 
daryconditionthatbz = by = 0atz = • = 0. They ex- 
hibit a Maxwell stress (tilt of the field) growing linearly with time 

123 1 3 starting from bx - 0 by • or bx - by - 0 at time , -- •'z , 
t = 0. Additional polynomial solutions are indicated in Appendix 
D. The purpose of the foregoing array of mathematical solutions 
has been to illustrate the application of the B,v paradigm to mo- 
tion of a partially ionized medium. The next section takes up the 
combined motion and diffusion, going to a steady state to minimize 
the computation. As the reader can readily demonstrate, approach- 
ing the problem with the E, j paradigm is problematical unless the 
solution from the B, v paradigm is available as a guide. 

10. Steady Motion of the Polar Ionosphere 

If the steady Maxwell stress B2b(L)/4• ' of the tilted mag- 
netic field is applied at the upper surface z = L of the ionosphere 
for a sufficiently long time, the massive idealized ionosphere even- 
tually achieves a steady motion vz(z), vv(z ) limited only by the 
viscous drag on the lower boundary z = 0. Viscosity may drag 
the nonconducting atmosphere in z < 0 along with the ionosphere 
to some small degree so we work again in the frame of reference 
of the motion at z = 0, putting vz = vy = bz = by = 0 at 
z = 0. Under stationary conditions (O/Or = 0) and the idealiza- 
tion that a, t, •/, p, and (7 are independent of z, (133) - (136) can 
be integrated over z to give 

dbz adbv _ •: + ( • + /•)-•z + • v• (189) 

dbz dby _ 
v• - "27, + (" + •s) • 

dvz 
C = • ' + V '•z-z - Va 

(190) 

(191) 

dvy 
C 2 b y 4- P '•zz -- V4 (192) 

where v is the kinematic viscosity lt/p and where the four 14 are 
constants, to be evaluated by applying the boundary conditions. 

Now by (L) = 0 and, since there is no viscous stress in z > 
L, it follows that dv•/dz = dvy/dz = 0, as z increases to L. 
Hence (191) and (192) yield 

• = C2b•(œ), • = o. (193) 

Use (189) and (190) to eliminate vz and vy from (191) and (192), 
obtaining 

b• - v (•1 4-15) d2b•, av d2by _ Va (194) C • dz • C • dx • - C•, 

av d2bz v(•l + 15) d2by _ V4 
C2 dz 2 [-by- C2 dz 2 - C•. 

Then let 

(195) 

b• - • + Q•expqz, (196) 
V4 

by -- • + Q•expqz, 
where Q1 and Q2 are constants. The result is 

(197) 

[C=/v- (rl + lS)q2]Q1 - aq=Q= = O, (198) 

.q•Ql 4- [C2/v - (rl 4-13)q•]Q• - O. (199) 
Setting the determinant equal to zero yields the two possibilities 

C•(.+/• 4- i.) _= v 
•[(• + •)• -5- •]' q•,' = •(• + • •: i•)' (•00) 

so that there are four roots 4-q• and 4-q2, with q2 = q• and 

C 

q• - v• It/+ fl- ia]«' 

with 

C(cosO + isinO) 
-«[(. +/•)• + 

(201) 

1 

2,cos0 - 1 + [(r/+ f/)2 + a=]« ' (202) 

•+/• }« 2«sinO - 1 - [(r/+/•)2 + a2]] ' (203) 
For q = +q, we have Q2 = -iQ•, while for q = -l-q2, Q2 = 
+iQ•. 

The complete solution has the form 

Va 
bx(z) -- • + Kl expql z 

4-K2exp(-qlz) + K3expq2z + K4exp(-q2z), (204) 
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or(z)- C2 iKlezpqlz- 
iK2ezp(-qlz) + iKaezpq•z + iK4ezp(-q•z), 

where the Ki are arbitrary constants. The velocity 
(vz, vy) follows from (189) and (190) 

(2o5) 

The boundary conditions that vz -- vy -- b: - by - 0 at 
z - 0 require the four relations 

uV•/C • + i(K• - K2)/q• - i(Ks - K4)/q• - O, (207) 

V3/C 2 + K1 + K2 + Ks + K4 - O, (208) 

V4/C • - i(K1 4- K2) 4- i(Ka 4- K4) - 0, (209) 

respectively, upon making use of the fact that 

Now the boundary conditions at z -- L are bv(L ) - 0 with 
dv•,/dz - dvy/dz - 0, yielding (193). There is no viscous 
stress in z > L and no acceleration in z < L, so d2vz/dz • = 
d2vy/dz • - 0 as z approaches L, requiring 

Kl ezpql L + K•ezp(-ql L) 

+Ksezpq•L + K4ezp(-q•L) - 0, 

K1 ezpql L + K2ezp(-ql L) 

-Ksexpq•L- K4exp(-q•L) - O. 

It follows from (211) and (212) that 

(210) 

(211) 

K• - -K1 exp2qlL, K4 -- -Kaexp2q•L (212) 

These two relations combined with (208) and (209) yield 

Vs + iV4 

K1 -- -- 2C2(1 - ezp2qlL)' 

2(1 - exp2ql L) ' 

Vs-iV4 

Ks = - 2C•(1 - ezp2q•L)' 

(213) 

_ b•(L) (214) 
2(1 - ezp2q•L)' 

upon using (193) for Vs and V4. The constants V1 and V2 follow 
from (206) and (207) as 

C2bz(L) (cothqlL cothq•L) + , (215) V1 -- 2// ql q• 

V2 iC2br(L) ( cothqlL cothq2L) - - + , (216) 2u ql q• 

Equations (204) and (205) can now be written 

bz(z) 

sinhql (L - z) b•(L) 1 - 2sinhqlL sinhq•(L- z)] (217) 2sinhq•L ' 

= •ib•(L)[ sinhql(L- z) sinhqlL sinhq•(L - z)] (218) sinhq2L ' 

The velocity components follow from (189) and (190) with 

vz(z) -- C2bx(L) [ coshql L -- coshql (L -- z) 2u qlsinhqlL 

coshq2L - coshq•(L - z) ] q•sinhq2L ' 
(219) 

iC2bx(L) [ coshql L - coshql (L - z) v2(z) -- 2y -- qxsinhqxL 

coshq2 L - coshq2(L - z) ] q2sinhq•L ' 
(22o) 

The Lorentz force (V x b) x b/4a' exerted on the fluid is 

1 db• 
L- 

4•' dz ' 

bx(L) [qlcoshql(L- z) 8•r sinhql L q•coshq•(L- z)] (221) + ' 
i dby 

f Y - 4•r dz ' - 
ibz(L) 

8•' 

_ qlcoshql (L - z) sinhqlL q•coshq2(L - z)] (222) + sinhq•L ' ' 
For the record the current density is 

cB dby 
4•r dz ' 

= -cW, (223) 

cB db•, 
4•r dz ' 

= +cBf•. (224) 

The electric field follows from (113) and the (189) and (190) as 

dby dbz , E. - B [ - V__y _ ( q +/?)-•-z + o• , -27J 

= -V•B/c, 

B[ v' - C 

-- 4-Vi BIc, 

where V1 and V2 are given by(215) and (216). 

(225) 

(226) 
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The motion of the magnetosphere (z > L) is given by 
cE x BIB 2, or 

= V•, (227) 

vy - -eEl/B, 

= +;4. 

Note from (219) and (220) that the motion of the neutral gas at the 
upper boundary of the ionosphere (z -- L) is 

C2b•(L) (1 1) 2•, ql sinhql L q- , (229) q2sinhq2L 

vy(œ)- v2 

iC2b•(L)( i _ i ) (230) 2y q• sinhq• L q•sinhq• L ' 

Comparing (229) and (230) with (227) and (228) it is evident that 
the magnetospheric plasma does not move with the same velocity 
as the neutral gas at the top of the ionosphere. The motion of the 
magnetospheric plasma is different from the drift of the ions and the 
electrons, too. The magnetospheric plasma moves with the electric 
drift velocity, whereas the ionospheric constituents all drift slowly 
in various ways relative to that frame of reference as a consequence 
of the collisional forces and the viscous drag. 

The driving force B 2 b• (L)/4 •r is in the x direction. The 
y component of the ionospheric velocity vy is nonvanishing as a 
consequence of the viscosity and collisional drag through the Hall 
effect, of course. This follows formally upon noting from (201) - 
(203) that putting c• -- 0 leads to q• -- q2. Equation (216) gives 
V2 - 0 so that (225) yields Ex - 0 and (220) yields vy(z) - O. 
Newton's third law requires that the viscous drag across the lower 
surface (z -- 0) of the ionosphere is also in the x direction and 
equal to the driving force at the upper surface of the magnetosphere. 
Differentiation of (220)establishes that dvy/dz vanishes at z -- 0, 
while differentiation of (219) yields the viscous stress pdvx/dz at 
z - 0 as being precisely equal to the applied Maxwell stress 

dv• B2b•(L) 
P dz - 4• 

To examine the solutions in more detail, note that the ion and elec- 
tron drift velocities follow from (110), (111), (189), and (190). It is 
convenient to write 

cBM/ri cBmlr, (231) a•= 4•rneQ 'a•-= 4•rneQ' 
so that 

Then, using primes to denote differentiation with respect to z, the 
ion drift velocity is 

(233) 

(234) 

(235) 

i [ (•l + ia2)q• coshq• (L - z) = V2 + •bx(l) sinhq•L 

_ (, - ia2q•coshq•(L - z)] (236) sinhq2L ' 

With these results it is easy to show from (105) or (106) that 

icB 

j•-- 8•b•(L) 

coshq•(L- z) x sinhq•L q•coshq•(L - z) ] - ' (237) 

cBb JY - + 8•r •,(l) 

q•coshq•(L - z) ] q•coshq•(L- z) q- . (238) x sinhq• L sinhq2L 
Since q2 - q•*, it is obvious that wx, wy, ux, uy, jx, jy are all 
real quantities. 

that 
When ql,aL < < 1, it is readily shown from (217) and (218) 

z 

b(z) = 

x[1- - - •z) 
3y[(r/+/•]2 + c• • + 04(q•,2L)], (239) 
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b•(L) 
b'z(z)- L 

x[1- C2(? + •)(L • - 3Lz + •z •) ]_04(q•,2L)] (240) 3y[(7 + •)2 + a2] , 

by(z) • -b•(L) 

«z) 
+ + 

[1 + 02(q1,2L)], (241) 

by(z) - 

b•(L) C2a(L • - 3Lz + •z •) 
L 3y[(7 + B)2 + a2] 

[1-9 02(q1,2L)]. (242) 

It follows from (215) and (217) that 

V1 -• b.(L) [ C2L 2 L (• + f;) 1 + 3•(• + f;) -9 04(ql,2L)] , (243) 

The energy delivered into the ionosphere by the 
Maxwell stress, that is, by the Poynting vector, is dissipated into 
heat via viscosity and via the combined Ohmic and Pedersen resis- 
tivities. The term B2f. v on the right-hand side of (247) represents 
the rate at which the Lorentz force B2f does work on the neutral 

atmosphere in opposition to the viscosity. It is readily shown that 

B 2 

B2f'v - •-• [Vlb• + V2by - (7 + •)(b• + by )], (249) 

wherein b• and b• follow from (217) and (218) while the remaining 
terms on the right-hand side of (247) reduce to the resistive dissi- 
pation 

2 

B2147r•f 2-97(Axb)2/47r] - B ,2 ,2 •-• (7.9/•)(b• -9by ). (250) 
The sum reduces, then, to the total given by (248). The viscous 
dissipation rate (ergs / cm-3 s) is 

V2 - bx(L) c•[1 + O4(ql 2L)] (244) L ' ' 

, 

The electric current densities j• and jy are proportional to -by and 
-9b•x, respectively, through Arepete's law, of course. 

The energy budget of the ionosphere is easily elaborated. The 
energy flux is given by the z component of the Poynting vector 
evaluated at z = L, that is, by the Maxwell stress multplied by the 
electric drift velocity, so that 

CB 

Pz(z) - -•--7•-w (E•,by - Eyb•,), 

At z = L this reduces to 

S 2 

47r (Vlb• + V2by). (245) 

.vl + ) - 

B 2 C 2 sinhql(L z)sinhq2(L- z) ----br(1) 2 - (251) 
4•r y sinhqlL sinhq2L ' 

so that the total viscous dissipation across (0, L) is 

•o L ,2) __ e(vi + v. 8 

[(7 +/•)2 + a2] b•(L)2[qlcøthql L _ q2cothq2L]. (252) 
The resistive dissipation is 

B 2 B 2 
4•r (7 + •)(b• + by ) - 4•r 

S 2 

P•(L) - -•-• Vl b•(L). (246) 

It is evident from (227) that this is just the x-component of the 
velocity of the magnetosphere multiplied by the applied Maxwell 
stress [Zhu, 1994a]. It is, of course, also equal to E-J, where J is 
the total integrated current across the height of the ionosphere. 

The energy is withdrawn from the Poynting vector in the iono- 
sphere at the rate given by the right-hand side of (124). Noting that 
the divergence term is identically zero because O/Ox -- O/Oy -- 
0, the rate D ergs / cm-3 s is 

D- B2[f. v + 4?r/•f 2 + 7(A x b)2/4?r], (247) 

S 2 

47r [b• v• -9 by vy -9 (f• -9 7)(b• -9 b•2)], 
since fi - b'i/47r. Eliminating vx and vy through (189) and (190), 
it follows that 

D- -•-•-• ( Vl b i -9 V2 B • ) . (248) 
Comparing this result with (24:5) for Pz (z), it is obvious that dPz / 
dz - -D. The Poynting vector falls to zero at the lower boundary 
(z -- 0)of the ionosphere where bz - by - 0, of course. 

(7 -9 ]3)qlq2b•(L) 2 
sinhql L sinhq2L coshql (L- z)coshq2(L- z), (253) 

and the integrated total is 

B2 ]o L .•--•w ( 7 -9 • ) d z ( b • -9 b • 2 ) 

__ lB2 (7 -9 ]•)C2bx(L)2 [½o•thqlL ½ø•thq2L] (254) 8•r ay ql q2 

It is straightforward to show that the sum ofthe viscous and resistive 
dissipation is equal to the total energy input, given by (246), with 
V1 given by (215). 

It is evident from this example that there is no overall algebraic 
relation (i.e., no Ohms law) between F, and j because the velocity 
v varies across the thickness of the ionosphere. There is (ll7), but 
it cannot be used until v(z) is known. So, as already noted, it is 
not possible to compute the current flow in the ionosphere from the 
electric field applied at the upper surface of the ionosphere without 
first solving the dynamical equations for v(z). The B•v paradigm 
begins with exactly that dynamical problem, and the solution of the 
dynamical equations provides both F,(z) andj(z) ff we wish to know 
them. 
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11. Equivalent Electric Circuit 

The E, j paradigm has led to the idea that various aspects 
of the magnetosphere can be represented by a fixed electric cir- 
cuit, to which Kirchhoff's laws can be applied to deduce the dy- 
namical properties of the magnetosphere. It is declared that j is 
channeled through the path of least ionospheric resistivity, and it is 
declared that a change in the parameters anywhere around the cir- 
cuit necessarily effects the current flow everywhere else around the 
circuit, just as it would in a rigid electrical loop circuit of wires, 
resistors, inductances, applied emfs, etc. in the laboratory. Unfor- 
tunately, the magnetosphere is not a rigid body so that the circuit 
analogy has only limited use. The electric current is determined 
by the deformation X7 x B of the magnetic field, that is, by the 
force F - B x (X7 x B) exerted on the field by the gas with 
(V x B) •_ - F x B/B•. This has no general tendency to co- 
incide precisely with the region of minimum (r/ q- •). A more 
fundamental difficulty is created by the fact that the current path 
is distributed broadly over a range of motion v, with varying local 
electric field E t (-- E q- v x B/c). There is no uniquely defined 
"voltage" to apply to the circuit. Consequently, different portions 
of the circuit behave more or less independently of each other, their 
connection being only the dynamical one described by (4) and (5) 
rather than by the simultaneity implied by Kirchhoff's laws. The 
analogous electric circuit can be constructed, if at all, only after the 
dynamical problem has been solved to determine B and v. 

The general apriori inapplicability of an electric circuit con- 
cept can be seen directly from the induction equation (5) and the mo- 
mentum equation (4), plus whatever heat flow conditions are needed 
to specify Pij. The two equations together determine the local dy- 
namical evolution of v and B. Given the initial v and B through- 

fact, a small field component in both the x direction and the z di- 
tion. they to œ), 
so they can be neglected. Linearizing the dynamical equations for 
b and v, and neglecting all terms in vz, bz, and all terms of sec- 
ond order in O/Ox and v and b, the result for stationary flow is the 
velocity 

z) = + z) (55) ' 4•'pu 

in the y direction throughout -- A ( z ( 0 so that v(z, -- A) = 0. 
In0(z<L, 

Ov 

+ - 0 (25) 

C20b 0 v •z + U•z• - 0 (257) 

where C is again the Alfven speed B/(4a'p)«. A single integra- 
tion yields 

Ob 

v + - (58) 
Ov 

C2b + U•z - V4 (259) 
where V2 and V4 are constants in direct analogy with (190) and 
(192). The boundary conditions at z -- 0 are b - 0, with the 
viscous stress equal to the applied Maxwell stress, 

Ov B2b(x,L) 
PV•z - 4•r ' (260) 

out the interior of a closed surface $, the subsequent dynamical and the velocity fitting to (255) at z -- 0. At z -- L, b(z, z) be- 
evolution of v and B throughout the interior of $ is uniquely de- comes equal to the applied b(z, L) while Or/ 
termined by the values of v and B on $, regardless of what hap- 
pens elsewhere along the current paths extending outward across 
$. And that is not a property of a local portion of a simple electric 
circuit, where the interruption of the current anywhere around the 
circuit instantaneously affects the current everywhere. One may in- 
troduce more complicated circuits including moving loaded lines to 
simulate Alfven wave propagation, of course, but such circuits be- 
come precise only in the limit of a continuous distribution of circuit 
branches. However the correct behavior of the continuous distri- 

bution of circuit branches is described exactly by (4) and (5) and 
cannot be determined by other means in the general case. 

Oz = 0 since there is no viscous stress exerted on z = L from 
z > L. It follows from (259) that the condition at z = 0 and 
z = L both require 

V4 = C•b(x, L). 

Then use (256) to eliminate Ov/Oz from (259) obtaining 

•z 2 k•b + k•b(z, L) = 0 

It is sufficient for present purposes of illustration of electric where 
current flow to consider the simple case of a viscous nonconducting 
(r/= cx>) atmosphere extending from the fixed surface z: --A to 
z -- 0. In 0 < z < L there is an idealized ionosphere in which It follows that 
there is a resistive diffusion coefficient r/and a uniform viscosity 
kt ---- p•,. Above z = L there is only a tenuous highly conducting 
plasma (r/: 0), extending up to z = A. The system is penetrated 
by a uniform magnetic field B in the z direction. The system is 
driven from above, as in section 10, by moving the foot points of 
the magnetic field B at the magnetopause (z = A) in the y direc- 
tion, producing a y component Bb(x, L) throughout the tenuous 
magnetosphere L < z < A, as in section 10. There is, however, 
an important difference and that is that in the present case it is as- with 
sumed that b(x, L) varies slowly with z, on a scale I >> L,A. 
The net effect is to drive the system in the y direction with the speed 
v(x, z) under the applied Maxwell stress B2b(z, L)/4•r. As a 

k = 

b(z,z) = b(z,L) [1 -sin hk(L- z)] sin hkL 

V2 - b(x,L) (-• + •lkcot hkL). 
consequence of the slow variation of b(x, L) with x, there is, in in order to satisfy (255) at z -' 0. The electric current is 

(261) 

(262) 

(:263) 
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c BOb J•--4-• 0'•' 

4•r sin hkL 
•cos hk(L- z), (264) 

cB Ob 

jz 4•r Oz' 

cB Ob(z,L) [ sin hk(L- z) ] 4-• •':• 1 - sin 'h k L ' (266) 

Thus jz is small O(1/kl) compared to ja•. Note, then, that 
the principal current ja• declines upward across 0 < z < L in 
response to the declining Loreritz force while the resistivity r/is 
uniform. This illustrates the point made earlier that the ionospheric 
currents are not simply concentrated at the level where r/is a mini- 
mum. There are other influences as well, for example the variation 
of E • with the fluid velocity v. Appendix E provides an illustra- 
tive example of the effect of the vertical variation of r/(z), showing 
again that there is no direct local relation between ja• (z) and r/(z) 
alone. 

Now the principal electric current is in me negative x direc- 
tion, providing a one-dimensional electric circuit extending (if for 
the moment we neglect the slow variation with x) from x 
to x = +o0. If may be imagined that the space is periodic, so that 
the circuit closes at x -- -4-o0. The total current Jx per unit length 
in the y direction is 

J• - dzj• 

471' 
(267) 

which is simply an expression of Ampere's law. The electric field 
E• is readily computed from Ohm's law, which is written ja• -- 
•rE'•(a = c2/4•rr/)and E• is the electric field 

= E, + )B/c (6s) 

in the frame of reference of the fluid. Then E• follows as j•/•r, 
given by (264). The terms depending upon z cancel out of this 
relation, of course, because y7 x E = 0, leaving the constant terms, 

- ---' + •kcot hkL . (269) 

If the fixed circuit analogu were correct in some direct way, 
one would expect to find j• -- •rE•. However, of course, this is not 
correct, because the fluid is moving and the relevant electric field 
for driving the current is E•, as noted in sections 9 and 10. So even 
in so simple a system as the one-dimensional circuit constructed 
here, the construction can be carried through only after the problem 
is solved. 

However, now consider the consequences of the slow varia- 
tion of the driving field b(x, L) with x. The result is a small jx, 
hitherto neglected, flowing upward from z = L along the perturbed 
field and closing at z -- A where the driving force that causes the 
Maxwell stress B 2 b(z, L)/47r is applied. Suppose, as an example, 
that 

b(x, L) = bo + b•cos Kz (270) 

where b• ( bo and K(= 1/1) is small compared to k. Then 

jx - -cBb•Ksin Kz[1 - sin hk(L- z)] (271) 4•r sin hkL 

The result is a series of side loops sketched in Figure 8. The conven- 
tional electric circuit analog can be aware of these auxiliary loops 
only by considering the stress balance, and it can treat them quan- 
titatively only after carrying through the above formal solution to 
the dynamical problem, or its equivalent. 

As a final point, note that for b(x, L) • C 1, treated here, 
the magnetic conditions at any position x depend only on the local 
b(z, L). The small field perturbation elsewhere has no first-order 
effect on conditions at x. Thus the idea that a change in conditions 
at one location in an electric circuit impacts conditions everywhere 
around the circuit is inapplicable, showing that the circuit analog 
conveys the wrong physics. Local conditions are exactly that, and 

z=A 

z=L 

• • • • z=O 
_2•- -•' +•' +2•' 

Kx 

Figure 8. A schematic drawing of the electric circuit analogue with the main current described by (264) and the auxiliary 
current loops indicated by equation (271). 
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they sprout their own auxiliary current loops as needed to remain 
localized. 

In the more complex situation when the applied force is 
strongly inhomogeneous and a function of time, the various parts of 
the system communicate with each other only on the Alfven wave 
transit time, which may be slow compared to the characteristic rate 
at which the applied force changes. The instantaneous circuit is en- 
tirely inappropriate and some suitable loaded line WOuld be neces- 
sary to represent the effect. However, again a correct circuit analog 
can be set up only after the appropriate field equations for v and 
B are properly solved. That is to say, the activity of the magneto- 
sphere is mechanical in natwe, and electric circuit analogs can be 
constructed only after .the fact. The question, [hen, is what is to be 
gained by their construction? 

In conclusion, the solution to a problem in magnetospheric 
plasm a lies in the dynamical stress and momentum balance and the 
associated deformation of B. Electric circuit analogies can be con- 
structed once ihe problem is solved, but there seems to be little to be 
gained by it since the electric circuit deals only with the peripheral 
quantities E and j, which are directly available from B and v. 

dw (l+w2(p'2)« - 0. 
Integration yields 

where k is an arbitrary constant. If k = 0, the result is the family 
of radial lines, for which (p• = 0. In the opposite extreme that (p• is 
large, it follows that rv = ,• = const, providing circles concentric 
about the origin. For 0 < krv < 1, integration yields 

kw - sin((p - (p•. ) 

where (Pl is an arbitrary constant. This provides a circle of diameter 
1/It through the origin. The center of the circle lies at rv -- 1/2k, 

12. Concluding Remarks 
There is little to say in conclusion, unless we are to repeat the 

general remarks in the introductory section. The idealized exam- 
ples making up the bulk of the text illustrate the deductive method 
of the B, v paradigm and the general applicability to the macro 
physics of the magnetosPhere. The paradigm follows directly from 
the equations of Newton and Maxwell, yielding a set of partial dif- 
ferential equations that are sel.f-consistent and complete in them- 
selves. Thus the B, v paradigm works directly with the mechani- 
cial pushing and pulling that makes up macroscopic magnetospheric 
activity, thereby providing a'direct deductive approach to the dy- 
namics of the magnetosphere, and avoiding the difficulties of the 
•, j paradigm, which focuses on secondary quantities. 

As the subject of magnetospheric physics advances into more 
complex dynamical problems, the deductive approach becomes im- 
perative. The principles and declarations that carry the •, j para- 
digm forward are already in some degree of error in the simple ex- 
amples cited in the text: The definition of parallel currents in terms 
of the unperturbed field, the idea of the dynamical inward penetra- 
tion of the interplanetary electricfield along the magnetic field lines, 
and the notion that simple electric circuit analogs define magneto- 
spheric dynamics before the fact, are all cases in point. It can be 
argued, of course, that the E, j paradigm can be made to work 
with sufficient care and foresight. However, this is equivalent to 
the statement that, if the correct solution to a dynamical problem 
is known in some way, then the description of the dynamics is eas- 
ily translated into the E, j paradigm, which we have repeatedly 
emphasized: The essential point is that the B, v paradigm, with 
its tractable and complete set of partial differential equations, pro- 
vides the means for deducing the correct dynamical solution from 
the boundary conditions and the basic physical principles embodied 
in Newton's and Maxwe•'s equations.' Only with a purely deduc- 
tive procedure can one proceed with assurance of a correct result 
for a specified circumstance. 

Appendix B: Angular Deflection of Flux Bundle 

The field lines of the ambient two-dimensional dipole are 
given by the circles 

(y-«a) 2+z •-- ¬a •, 

for which 

dz It- «a 
_ = . dy z 

The diameter of the circle is a and the center is located on the 

y axis at y -- « a. The perturbed field line, described by (71), can 
be written 

(V- •a') • + (z- a•) • -- • -'• (•3) 

where a' = a 4- Aa represents the diameter, with the center at 
y -- «a', z -- Ab, with Aa and Ab given by (72) and ---}aO, 
respectively. It follows that 

dz (y - 
•yy =- z-Ab ' (B4) 

We are interested in the angular difference in the direction of 
the two circles where they intersect at some point (y, z). Let y 
specify the location of the point of intersection, for which z(> 0) 
follows as 

z -- +(ay- y:•)« 

Appendix A: Path of Flux Bundles from (B 1). Substituting this result into (B3) yields 

In polar coordinates (w, (p) Fermat's principle can be written 

6 / dw (1 + w • (p'g) « =0 

where (pt • d(p/dw and the index ofreffaction B is !/w •. Since 
(p does not appear 'm .the integrand, Euler's equation reduces to 

! 

in terms of the locatio n y of the point of intersection. 

The slope (dz/dy)a of the ambient field line and (dz/dy)p 
of the perturbed field line follow from (B2) and (B4). Their differ- 
ence is 
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[y(a -- y)] « ([y(a- y)]« - 
1 

--• -z•b 5a 
y(a- y) 

(86) 

(•7) 

[4(rl +/3)t] « 

+[4(.+ •3)t] « 71' 

4(rl + •3)t 4(rl + •3)t ' 

upon neglecting Ab compared to y« (a - y) «. 
Denote the small angle between the two slopes by •P. Let 

(dz) _tano,(d•yy) - tan(O + •b). 

Since 

tan(O + •b) - tanO "• •Plcos20, 
it follows from (B7) and (B8) that 

(s8) 

• -• -2Ab/a 

-• 0. (B9) 

So the deflection 0 relative to the ambient field is independent 
of position along the perturbed field line and has the same value as 
given by (63). 

Appendix C' Ionosphere Without Hall Effect a - O: 

As another example of the diffusion of field in a motionless 
ionosphere with c• -- 0, suppose that the field or tilt applied at 
z-Lis 

b•(L, t) - bo er f c [(rl + •3)t]« 

+[(.+/•)t] « •rL 2 (1-exp[-(rl+fl)t])]' 
Then for (rl + fl)t < < L2, 

b•(L t) ~ bo [ (rl + l•)t ] { , =L • 

with •e app• field •cm•g as t • •om zero at time t -- 0. At 
!•ge t, 

b•(L,t) • bo 1- =(? + •)t •"' 
The field applied to the upper surface (z -- L) of the ionosphere 
grows initially as t -} and subsequently, after a time comparable to 
the characteristic diffusion time L2 / (rl+ j•), levels off to a uniform 
value bo. The field throughout the ionosphere 0 < z < L follows 
from (153) as 

b:(z, t) - •-• (L + z)er f c [4(rl + •3)t]« 

Then for 4(rl + •3)t > > L2, 

b•(z, t) ~ bo • 1 - [•r(rl + •3)t]« '" ' 
The field relaxes to a linear increase upward through the ionosphere. 

As a final example, suppose that the field applied at z -- L 
grows linearly with time in the beginning but after a time compa- 
rable to the characteristic diffusion time L2/(rl +/3), slacks off to 
an increase proportional only to t «. Let 

b•(L, t) - bo •-• 1 + [•r(rl + •3)t]« exp - (r I + 
2L 2 L « 

-[1+ (rl•)t]erfc[(rl+t3)t] }. 
For (rl + •3)t << L 2, 

o•(L,t) ~ Ooz•, 

while for (rl + fl)t > > L 2 

b•(L,t) ,,, bo [ (r/+ fl)t] « •rL 2 ß 

The field throughout 0 < z < L follows as 

bz(z t) - bø(rl + •3)t { [ (L-z)2 + l] er f c L - z ' L 2 2(rl+ •3)t [4(rl+ •3)t] « 

(L+z) 2 +l]erfc L+z L+z - 2(. +/•)t [4(. +/•)tl« + [•r(. +/•)tl« 

(z + z)"] exp - 4(. + •)t 

[•r(r l + •3)t]« exp - 4(rl + •3)t ' 
Then for (rl + •3)t > > L, 

o•(z, t) ~ •o • • (.+ •)t 
and again bz (z, t) increases linearly upward across the ionosphere. 
The linear variation is a consequence of the vanishing or declining 
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time rate of increase of bz(L, t) in the limit of large time t. The 
local Lorentz force in the ionosphere is proportional to oqb/oqz and 
is asymptotically uniform over z. 

Appendix D: Polynomial Solutions to Equations (9.51) 
and (9.54) 

It is a simple matter to generate polynomial solutions to (183) 
and (186). Generally, the solutions can be written as infinite series, 
but with proper choice of a, the series can be terminated at any de- 
sired point. S•g with the simplest solutions, consider ß = •o, 
satisfying (183) for a -- 0, 1. The resulting solutions are 

bz = Do, by = D• + D2z, (D!) 

Dot, by = Doz2/2a, (D2) 

where Do, Dx, and D2 are arbitrary constants. The complemen- 
tary solutions are obtained by interchanging bz and by and changing 
the sign of one of them. 

If • -- •, then a -- «, •. The solutions are 

b• = z, by = 0, (D3) 

b x - zt, by - za/6a. 
If • = •2, then a = 1, 2. The solutions are 

(D4) 

bz = z 2, by = -2at, (D5) 

bz -- z2t, by -- z4/12a- at 2. (D6) 

The solution (D5) is just the complementary solution to (D2). 

If 9 _ •a, then a -- •, •. The solutions are 

bx -- Z 3, by -- -6c•zt, (D7) 

b• = fit, by = zS/20a- 3azt 2. 
The solution (D7) is the solution complementary to (D4). 

(D8) 

For higher order polynomials, write 

• = •n 4- al• n+4 4- a2• n+8 4- -'.. (D9) 

Substitution into (182) yields the indicial equation 

n(n- 1)(n - 2)(n - 3) = 0, 

so that n = 0, 1, 2, 3. Then 

a 2 - a(n + 1) + ¬n(n + 2) 
a• = -a2(n + 4)(n + 3)(n + 2)(n + 1)' 

a 2 - a(n + 5) + ¬n(n + 4)(n + 6) 
a2---a• a2(n+8)(n+7)(n+6)(n+5) ' 

am+l ----am 

(D10) 

(Dll) 

(D12) 

a 2 - a(n + 4m + 1) + ¬(n + 4m)(n + 4m + 2) 
(n+ 4m)(n + 4m - 1)(n + 4m - 2)(n + 4m - 3)' 

(D13) 

The series terminates after the m + n term with the choice 

a -- «n 4- 2m 4- «. (D14) 

The linearity of (183) permits superposition of these many individ- 
ual forms, of course. 

In a similar vein polynomial solutions of (185) can be gener- 
I 3 

ated. For instance, the solution 
giving rise to the solutions z and (186) and (187). The quadratic 
form q• 
for a = 1, and q• = •2 + 2(r/+/3) for a = 2. Hence for a = 1, 

bz = z • + 4(r/+/3)t. (D15) 

Substituting this into (172) and (173) yields 

by = rl + l•z2 - 2a [1- (rl + l•)•]t (D16) 
together with the complementary solutions. For a = 2, 

bz = z2t 4- 2(, 4- fl)t 2 (D17) 

with 

z4 (rI + •)z2t [ rl + • ] by = 12a + - a 1 - ( )t 2 (D18) 
etc. Note, however, that these solutions do not individually or in 
combination satisfy the boundary condition that bz = by = 0 at 
Z:0. 

The higher-order polynomial solutions can be generated along 
the lines indicated for (182). 

Appendix E: Cross Field Currents 

The cross-field currents are determined by the force exerted 
on the field by the fluid, so that the cross field currents can be deter- 
mined only after consideration of the dynamical equations. There- 
fore there is no simple algebraic relation between the cross field cur- 
rent density and the local resistive diffusion coefficient, although in 
the final asymptotic steady state of ionospheric motion driven by 
Maxwell stresses transmitted downward by a deformed magnetic 
field, the Lorentz force depends in a functional way upon the form 
of the vertical variation of the resistive diffusion coefficient r/(z). 
To treat a single simple illustrative example, consider the case taken 
up in section 11 ignoring the slow variation with z, which is of no 
interest in the present case. Write b(z) in place of b(z, z ) and imag- 
ine that again the motion in the y direction at the underside z = 0 
of the magnetosphere has some such value v(0) as given by (255) 
with u = u(0) throughout --A < z < 0. With p, u and r/as 
functions of height z throught out the ionosphere 0 < z < L, 
rewrite (256) and (257) as 

dv d db B 2 db d dv 

dq + - O, T;4 + - o. (El) 

Integration over z yields 

db B 2 dv 
(E2) 

where V2 and V4 are independent of z, with l/• again equal to the 
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Maxwell stress Beb(L)/4•r, as required by the boundary condi- 
tions at z -- L where the viscous stress falls to zero. Introduce the 
variable 

½(z) - 

with the dimensions of inverse velocity and define the function 
f(•) as [p(z)v(z)/p(O)v(z)]«, with C e -- Be/4a'p(0) again. 
Equation (E2) becomes 

v + db/d• - Ve, Ceb + fedv/d• - C2b(L) (E4) 

from which it follows that 

d 2 C e ] d•2 fe(•) [b(z)- b(L)]- O. (E5) 
In the simplest case suppose that f(() is a constant. Then 

sinh•[C(L) - C(z)] } b(z) - b(L) 1 - . (E6) 
sinh•C(L) 

The velocity follows from (E4) and the boundary condition at z -- 
0 from (255), with the result 

v(z) - Cb(L){ CA 1 + 

[cothC'C(L) C'C(z)) + sinhC•Z)]} (E7) f (1 - cosh. f . 
The cross field current is 

c db 

jr(Z) - - •-• B d• 

cSb(;)c - 
4•rf•7(z) sinh •((L) 

The electric field follows from Ohm's law as 

(E8) 

4a' B v - _ c 

= ycoth f .(o)' 
A weak ionosphere, C((L)/f << 1, yields 

(El0) 

c• - + C((z) [1_ ((z)] 'f •(L) -!- ß ß ß (Ell) 
cS,(c) 

4•r((L)r/(z) { c2 } 1 + •-ff[((L)- ((z)] e +... (El2) 

Er - Bb(L)C [ 1 - c cdc) y(o) ' (El3) 
The velocity varies but little across the ionosphere and jn is directly 
proportional to 1/r/(z) to lowest order as a consequence. 

On the other hand, the terrestrial ionosphere is not weak in 
this respect. Including the Pedersen resistive diffusion 

Beri 
l• "' 4a'nm (El4) 

(given by (115) with m/re << M/r) along with r/, write 

= 1/NAiwi (ELS) 

where wi is the ion thermal velocity, and Ai is the cross section 
for collision of an ion with a neutral atom. The Alfven speed C 
is essentially B/(4a'NM) « where M is taken to be the mass of 
a neutral air atom as well as an ion. Approximate the kinematic 
viscosity v by «,•wi where A is the mean free path 1/NA for col- 
lision of neutral atoms with neutral atoms, with a cross section A. 

Then with p(z)/p(O) ,,, 1, it follows that f2 __ v/l•(l• >> r/). 
Putting •(L) = L/I•, it follows that, in order of magnitude, 

cc() ~ 
I - 

= (3LenNAiA) «. (El6) 

It is evident at once that the effect declines upward as (nN) «, so 
that the ionospheric D layer appears to be the principal contributor. 
Then with n -- 105 electrons/cm a and N - 10 le atoms/cm a, 
Ai - A - 10-16cm e, and the characteristic scale L - 107 
cm for the D region the result is approximately 0.5. However, the 
cross section for ions on neutral atoms is substantially larger than 
the geometrical atomic dimension because of the deformation of the 
neutral atom by the electrostatic field of the passing ion. At the low 
velocities (wi•lOScm/s) in the D region (T ,,, 500K)Ai may 
be 10 -14 cm e or larger. The value of C{(L)/f is ten or more 
times larger, that is 5 or more. The result is a strong modulation of 
//(z) -• bythe factor cosa[C[C(L)-C(z)l/f]/sinh[CC(L)/f] 
on the right hand side of (E8). 

It is easy to construct more realistic examples. Instead of f -- 
const, the choice f ,-, •a or exp ,c• yields solutions to (ES) in 
terms of Bessel functions with imaginery arguments, etc. However, 
the essential point is the same, that C•(L)/f•O(1) so that the 
velocity varies strongly upward through the D layer, with the result 
that jr does not vary simply as [r/(z) -- /•(z)] -1 upward across 
the ionosphere. 
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